technical manual
practice section 816173
©Tellabs, Inc., 1 May 1986
76-816173
$\operatorname{rev} A$

6173 4Wire-to-4Wire SF-to-DX Intermediate Repeater

contents

section 1 general description page 1
section 2 application
section 3 installation
page 2
page 7
page 8
page 15
page 8
page 17

1. general description

1.01 The 6173 4Wire-to-4Wire SF-to-DX Intermediate Repeater module (figure 1) provides both active transmission interface and bidirectional signaling conversion between a 4wire facility that uses 2600 Hz single-frequency (SF) signaling and a 4 wire trunk or line that uses duplex (DX) signaling. Providing greater signaling range than conventional E\&M signaling, DX signaling is extended toward the termination via $D X$ signaling leads to the facility pairs rather than via separate E\&M signaling leads. The 6173 is designed in accordance with the specifications given in AT\&T Technical Reference Pub 43001: Functional Criteria for Voice-Frequency Terminating Equipment/Metallic Facilities/Central Office.
1.02 In the event that this practice section is revised or reissued, the reason for revision or reissue will be stated in this paragraph.
1.03 The 6173 module offers the following features and options:

- From 0 to 24 dB of prescription-set gain or loss, in switch-selectable 0.1 dB increments, in both the transmit and receive channels at the facility-side ports.
- From 0 to 24 dB of prescription-set loss, in switch-selectable 0.1 dB increments, in both the transmit and receive channels at the terminalside ports.
- Active prescription slope-type or bump-type amplitude equalization, equivalent to that provided by the Western Electric (WECo) 309B Prescription Equalizer, in both the transmit and receive channels.
- Independently switch-selectable post-equalization, pre-equalization, or equalizer bypass (exclusion) for both the transmit and receive equalizers.
- Isolation transformers that are center-tapped to derive balanced simplex (SX) leads at all four ports.
- Terminal-side SX-lead reversal switch.
- Switch-selectable 0 or $4 \mu \mathrm{~F}$ of midpoint capacitance for the DX signaling leads.

- Independently switch-selectable 1200,600 , or 150-ohm terminating impedance at all four ports.
- Integral 2600 Hz SF tone oscillator.
- Minimum-break transmit pulse correction.
- Full precision receive pulse correction.
- Maximum signaling and supervisory range of 5000 ohms for the external DX loop.
- Integral DX balance network that provides from 0 to 6750 ohms of resistance, switch-selectable in 250 -ohm increments, and from 0 to $7 \mu \mathrm{~F}$ of capacitance, switch-selectable in 1μ F increments.
- Front-panel LED's that light to indicate SF-to-DX busy (rcv busy LED) and DX-to-SF busy (xmt busy LED).
- Lightning surge protection at all transmission ports.
- Reverse-battery protection, transient-limiting circuitry, and RC (resistance-capacitance) filtering and decoupling networks to minimize crosstalk coupling and the effects of noise on the input power leads.
- Operation on filtered, ground-referenced -42 to -54 Vdc input power with current requirements of 80 mA typical at idle (at -48 Vdc) and 100 mA maximum (at -54 Vdc).
- Type 10 module for mounting in a variety of Tellabs Type 10 Mounting Shelves, which are available in versions for relay-rack (occupying 6 inches of vertical rack space) and apparatuscase installation.

2. application

2.01 The 6173 4Wire-to-4Wire SF-to-DX Intermediate Repeater module is typically used at a telephone company central office (CO) to interface a 4wire SF transmission facility, convert that facility's SF signaling to duplex (DX) signaling, and extend that signaling to a distant termination (e.g., a PBX at a customer's premises). DX signaling, which is extended toward the termination via DX signaling leads to the facility pairs, is used in applications requiring greater signaling range than would be possible with conventional E\&M signaling (which is extended toward the termination via separate E\&M leads). The 6173 module combines the functions of a 4 wire line amplifier, an SF transceiver, an SF-toDX signaling converter, and a 4wire pad/transformer module. No external transmission interface circuitry is required because the 6173 is a complete SF signaling and terminating circuit, less power, on a single Type 10 card. Thus, the module provides not only bidirectional signaling conversion but also active transmission interface (impedance matching, level control, and amplitude equalization) between the SF facility and the DX trunk or line. Figure 2 shows a typical application.

terminal interface

2.02 The 6173 interfaces the terminal-side trunk or line via prescription attenuators in the transmit and receive paths (see paragraph 2.04) and via transformers at the transmit input and receive output ports. Each terminal-side transformer provides balanced, switch-selectable 1200,600 , or 150 -ohm terminating impedance. The 1200 -ohm option is used for interface with loaded cable; the 600-ohm option, for interface with nonloaded cable or carrier; and the 150 -ohm option, to provide a small amount of slope-type amplitude equalization for nonloaded cable through the deliberate impedance mismatch. Both terminal-side transformers are center-tapped to derive balanced simplex (SX) leads, by which the

DX signaling path is extended toward the terminal equipment. Connection of these SX leads to the module's integral DX unit is controlled by an option switch that selects either a normal or reversed arrangement (see the block diagram, section 5 of this practice). In the normal arrangement, the transmit input simplex (XMT IN SX) lead is associated with the transmit input pair, and the receive output simplex (RCV OUT SX) lead is associated with the receive output pair. In the reversed arrangement, the XMT IN SX lead is associated with the receive output pair, and the RCV OUT SX lead is associated with the transmit input pair. The SX-lead reversal option is provided to accommodate signal-ing-lead reversals at other points in the circuit.

facility interface

2.03 The 6173 interfaces the facility-side SF signaling facility via prescription amplifiers in the transmit and receive paths (see paragraph 2.04) and via transformers at the transmit output and receive input ports. Like the terminal-side transformers, each facility-side transformer provides balanced, switch-selectable 1200, 600, or 150 -ohm terminating impedance. Also, both facility-side transformers are center-tapped to derive balanced simplex ($S X$) leads, which can be used to provide sealing current to a metallic facility from a local source external to the module, or which can be strapped together to establish a return path for sealing current applied at the distant end of the facility.

level control

2.04 Prescription-set transmit and receive amplifiers on the facility side of the 6173 allow the module to interface the SF signaling facility directly, i.e., without a separate facility-side line amplifier. These amplifiers, in conjunction with the prescription-set transmit and receive attenuators on the module's terminal side, provide for full coordination between

figure 2. Typical application of 6173 module
facility-side and terminal-side levels (see figure 3). In the receive channel, the facility-side amplifier is set to provide the gain or loss necessary to derive a +7 transmission level point (TLP) within the module. This internal TLP is then used as a reference as the module's terminal-side receive attenuator is set to provide the loss necessary to derive the required terminal-side receive output level. In the transmit channel, the terminal-side attenuator is set to provide the loss necessary to derive a $-16 T L P$ within the module. This internal TLP is then used as a reference as the module's facility-side transmit amplifier is set to provide the gain or loss necessary to derive the required facility-side transmit output level. Both facility-side amplifiers in the 6173 provide from 0 to 24 dB of gain or 0 to 24 dB of loss in switch-selectable 0.1 dB increments. Both terminalside attenuators provide from 0 to 24 dB of loss in switch-selectable 0.1 dB increments. Thus, receive input TLP's from -17 to +7 can be accommodated and receive output TLP's from +7 to -17 can be derived. In a similar manner, transmit input TLP's from -16 to +8 can be accommodated and transmit output TLP's from +8 to -16 can be derived. Total facility-side gain or loss and total terminal-side loss introduced into a channel are the respective sums of that channel's front-panel fac level and term loss switches set to $I N$. The overload point for the receive input and receive output ports is OdBmo. The overload point for the transmit input and transmit output ports is +3 dBmo .

receive-channel amplitude equalization

2.05 Active prescription amplitude equalization functionally equivalent to that provided by the Western Electric 309B Prescription Equalizer is available in the receive channel of the 6173. This equalizer provides low-end slope equalization down to 404 Hz and high-end bump equalization centered at

3250 Hz for loaded or nonloaded cable, as selected via switch option. Degree of slope, height of bump, and affected bandwidth are also controlled by option switches on the module. An additional switch option conditions the equalizer to provide either post-equalization of the receive input pair or preequalization of the receive output pair, as required. For post-equalization, the equalizer is inserted before the receive-channel band-elimination filter (see paragraph 2.11). For pre-equalization, the equalizer is inserted after the band-elimination filter. If no equalization is required, the equalizer can be electrically bypassed by means of another switch option.
2.06 Figures 4 and 5 show typical response curves for the 309B-equivalent equalizer in the slope mode. Figure 4 shows the curves for nonloaded cable, while figure 5 shows the curves for loaded cable. For comparison purposes, all fre-quency-response curves in both figures are drawn with the same OdB-gain reference point (1004 Hz). Actually, all of these curves except those for a SLOPE switch setting of 0 are raised above the OdB level at 1004 Hz by as much as 11.4 dB . The exact amount by which a particular curve is raised depends upon the SLOPE and NL (nonloaded/ loaded) switch settings selected. These amounts are listed in table 1.
2.07 Figures 6 and 7 show typical response curves for the 309B-equivalent equalizer in the bump mode. Figure 6 shows the curves representing various height settings versus a wide bandwidth setting, while figure 7 shows the curves representing various height settings versus a narrow bandwidth setting. For comparison purposes, all frequency-response curves in both figures are drawn with the same OdB-gain reference point $(1004 \mathrm{~Hz})$. Actually, all of these curves except those

figure 3. Level coordination in 6173 module

figure 4. Typical response curves for receive and transmit equalizers in slope mode, nonloaded cable

figure 5. Typical response curves for receive and transmit equalizers in slope mode, loaded cable

SLOPE switch setting	$\mathrm{L} /$ NL (loaded/nonloaded) switch setting		
	L	NL	
0 (slope disabled)	0.0 dB	0.0 dB	
1	1.4	0.4	
2	2.6	0.9	
3	3.7	1.4	
4	4.7	1.8	
5	5.5	2.3	
6	6.3	2.8	
7	7.2	3.4	
8	7.8	3.7	
9	8.4	4.2	
10	9.0	4.6	
11	9.5	5.0	
12	10.0	5.4	
13	10.5	5.8	
14	11.0	6.2	
15	11.4	6.6	

table 1. Equalized gain (in dB) at 1004 Hz in slope mode
for a height $(H T)$ switch setting of 1 or 0 and/or for a bandwidth ($B W$) switch setting of 5 or less are raised above the $O d B$ level by as much as 3.9 dB . The exact amount by which a particular curve is raised depends upon the $H T$ and $B W$ switch settings selected. These amounts are listed in table 2.

figure 6. Typical response curves for receive and transmit equalizers in bump mode, BW switch $=14$

figure 7. Typical response curves for receive and transmit equalizers in bump mode, BW switch $=3$

transmit-channel amplitude equalization

2.08 Active 309B-equivalent prescription amplitude equalization identical to that provided in the receive channel is available in the 6173's transmit channel as well. A switch option conditions the transmit equalizer to provide either post-equalization of the transmit input pair or pre-equalization of the transmit output pair. For post-equalization, the equalizer is inserted into the transmit path before the transmit path cut (see paragraph 2.15). For preequalization, the equalizer is inserted into the transmit path after the point at which SF tone is inserted (see the 6173 block diagram, section 5 of this practice). If no equalization is required, the equalizer can be electrically bypassed by means of another switch option.

signaling-tone states

2.09 In a typical application, received SF tone indicates an idle (on-hook) condition at the distant end of the 4wire facility, and SF tone transmitted by the 6173 indicates an idle condition at the $D X$ port. Absence of SF tone indicates a busy condition at

HT switch setting*	BW switch setting**									
	6	7	8	9	10	11	12	13	14	15
2	0.0 dB	0.1 dB	0.1 dB	0.2 dB						
3	0.0	0.0	0.0	0.0	0.0	0.0	0.1	01	01	0.3
4	0.0	0.0	0.0	0.0	0.0	0.1	01	0.1	02	0.4
5	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	03	05
6	00	00	01	01	0.1	0.1	0.2	0.2	0.4	07
7	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.5	0.9
8	0.0	0.1	0.1	0.1	02	02	0.3	0.4	0.7	12
9	0.0	01	0.1	0.2	0.2	0.3	0.4	0.5	0.8	15
10	0.1	01	0.2	0.2	0.2	0.3	0.4	0.6	10	17
11	01	0.1	0.2	0.2	0.3	0.4	0.5	0.7	12	2.0
12	01	0.1	02	0.3	03	0.4	0.6	09	14	24
13	0.1	0.2	0.3	0.3	04	0.6	0.8	11	17	28
14	01	0.2	0.3	0.4	0.5	0.7	0.9	1.3	2.0	3.3
15	0.2	0.3	0.4	0.5	0.7	0.9	12	17	2.5	3.9

* An HT switch settıng of 0 disables the bump function. An HT switch setting of 1 introduces 0.1 dB of gain or less at 1004 Hz . ** A BW switch setting of 0 through 5 introduces 0.1 dB of gain or less for all HT switch settings.
table 2. Equalized gain (in dB) at 1004 Hz in bump mode
either end. Dial pulses are transmitted as a sequence of SF tone bursts. The module is designed for simultaneous bidirectional signaling operation, which means that it can receive and transmit signaling and supervisory information regardless of the supervisory states at the two ends of the facility. Tables 3 and 4 list signaling tone states (as well as band-elimination-filter and transmit-path-cut states) for local and distant call origination, respectively.

incoming SF tone detection

2.10 The 6173 is designed to interface the receive path on the facility side at any TLP from -17 to +7 . Idle-state SF tone is received at a level of -20 dBmo . A higher level of -8 dBmO is received during break portions of dial pulses and for about 400 ms at the beginning of each tone interval. The 6173 's SF tone detector reliably detects tone levels as low as -27 dBmO , provided that the SF tone energy is approximately 12 dB above the level of all other signals simultaneously present at the receive input port. The SF tone detector is actually a signal-to-guard ratio comparator that compares energy in a narrow band of frequencies centered at the SF tone frequency with energy in the entire voice band. This detection arrangement aids significantly in prevention of talk-off, but it places an upper bound on allowable circuit noise. In general, received noise in excess of $51 \mathrm{dBrnC0}$ may interfere with detection of low-level signaling tones.
2.11 The 6173's SF tone detector is designed to ignore momentary losses of SF tone during periods of otherwise continuous receipt of tone and to ignore momentary tone bursts to prevent false signaling. Within approximately 13 ms of detection of incoming SF tone, a band-elimination filter (BEF) is inserted into the receive transmission path to prevent propagation of SF tone beyond the module. An internal timing circuit ensures that the filter remains inserted during dial pulsing and during momentary
losses of tone continuity. See tables 3 and 4 for details concerning BEF insertion.

receive pulse correction

2.12 To ensure optimum pulsing toward the local termination, the 6173's full precision receive pulse corrector corrects incoming pulsing (tone bursts) at 8 to 12 pulses per second to provide outgoing pulsing at a nominal 58 ± 4 percent break. The 6173 recognizes signaling-state changes in the receive path regardless of the local transmit-path signaling state.

outgoing SF tone transmission

2.13 The 6173 is designed to interface the transmit path on the facility side at any TLP from +8 to -16 . During the idle state, the module transmits SF tone at -20 dBm 0 . During dial pulsing and also for the first 400 ms each time it applies tone to the facility, the module transmits SF tone at a higher level of $-8 \mathrm{dBm0}$. This momentarily increased tone level aids in detection of supervisory-state changes and incoming dial pulsing.

delay circuit and transmit pulse correction

2.14 The 6173 contains a delay circuit to delay detection of on-hook-to-off-hook and off-hook-to-on-hook transitions by about 18 ms to prevent inadvertent transmission or interruption of SF tone and to ensure that transients associated with signalingstate changes in the local terminal equipment do not affect SF tone transmission. A minimum-break pulse corrector in the transmit path ensures a 50 ms minimum break duration and a 25 ms minimum make duration during dialing, regardless of input break or pulsing rate. The minimum-break pulse corrector has no effect upon pulsing breaks longer than 50 ms .

transmit path cut

2.15 To prevent speech and transient energy from interfering with detection of SF signaling tone at the distant end of the circuit, the voice path

circuit condition	SF tone states		local condition of xmt path cut			local rev-path band-elimination-filter (BEF) insertion
	$x m t$	$r \mathrm{cv}$	before	change	after	
idle	on	on	cut	none	cut	inserted
seizure	on/off transition	on	cut	stays cut $125 \pm 50 \mathrm{~ms}$ after seizure	not cut	inserted
distant end returns delay-dial signal	off	on/off transition	not cut	none	not cut	removed $50 \pm 5 \mathrm{~ms}$ after cessation of SF tone
distant end sends start-dial signal	off	off/on transition	not cut	none	not cut	inserted $13 \pm 7 \mathrm{~ms}$ after receipt of SF tone
local-end dialing	off/on and on/off transitions, ending with on/off transition	on	not cut	precut $15 \pm 7 \mathrm{~ms}$; remains cut as long as incoming DX make/ break transitions are less than $125 \pm 25 \mathrm{~ms}$ apart; remains cut $125 \pm 50 \mathrm{~ms}$ after last break/make transition	not cut	inserted
distant end answers (free call)	off	on	not cut	none	not cut	inserted
distant end answers (toll call)	off	on/ofi transition	not cut	none	not cut	removed $50 \pm 5 \mathrm{~ms}$ after cessation of SF tone
talking	off	off	not cut	none	not cut	out of circuit
disconnect, local end first	oft/on transition	off	not cut	precut $15 \pm 7 \mathrm{~ms}$; cut $625 \pm 125 \mathrm{~ms}$ after incoming DX transition from busy to idle	not cut	out of circuit
disconnect, distant end	on	off/on transition	not cut	cut within 35 ms	cut	inserted $13 \pm 7 \mathrm{~ms}$ after receipt of SF tone
idle	on	on	cut	none	cut	inserted

table 3. SF tone states and status of transmit path cut and receive BEF for local call origination

circuit condition	SF tone states		local condition of xmt path cut			local rev-path band-elimination-filter (BEF) insertion
	$x m t$	rcv	before	change	after	
idle	on	on	cut	none	cut	inserted
seizure, distant end	on	on/off transition	cut	remains cut 625土 125 ms after cessation of SF tone	not cut	removed $50 \pm 5 \mathrm{~ms}$ after cessation of SF tone
distant end returns delay-dialsignal	on/off transition	off	not cut	cut $125 \pm 50 \mathrm{~ms}$ after incoming DX transition from idle to busy	not cut	out of circuit
local end returns start-dial signal	off/on transition	off	not cut	precut $15 \pm 7 \mathrm{~ms}$; remains cut $625 \pm 125 \mathrm{~ms}$ after incoming $D X$ transition from busy to idle	not cut	out of circuit
distant end transmits dial pulses	on	off/on and on/off transitions, ending with on/off transition	not cut	cut within 7 ms of receipt of first tone pulse; remains cut as long as incoming break/ make transitions are less than $625 \pm 125 \mathrm{~ms}$ after last incoming on/ off transition	not cut	inserted $13 \pm 7 \mathrm{~ms}$ after receipt of first tone pulse; remains in circuit until 50土 5 ms after last incoming on/ off transition or $225 \pm 50 \mathrm{~ms}$, whichever is longer
local-end answers (free call)	on	oft	not cut	none	not cut	out of circuit
local end answers (toll call)	on/off transition	off	not cut	cut $125 \pm 50 \mathrm{~ms}$ after in coming DX transition from idle to busy	not cut	out of circuit
talking	off	Off	not cut	none	not cut	out of circuit
disconnect distant end	off	off/on transition	not cut	none	not cut	inserted $13 \pm 7 \mathrm{~ms}$ after receipt of SF tone
disconnect. local end	off/on transition	on	not cut	precut $15 \pm 7 \mathrm{~ms}$; then continuously cut	cut	inserted
idle		on	cut	none	cut	inserted

table 4. SF tone states and status of transmit path cut and receive BEF for distant-location call origination
through the transmit portion of the 6173 is cut (opened) during dialing and whenever SF tone is transmitted or received. Details concerning insertion and removal of the transmit path cut are provided in tables 3 and 4.

SF tone source

2.16 The module is equipped with an integral 2600 Hz SF tone oscillator and therefore does not require an associated master SF tone supply.

DX signaling loop limits

2.17 For proper $D X$ signaling operation, total resistance of the DX signaling loop between the 6173 and the DX unit associated with the local terminal equipment must not exceed 5000 ohms. In 4 wire applications, total DX signaling loop resistance equals one-half of the loop resistance of the transmit input pair plus one-half of the loop resistance of the receive output pair.

signaling-lead midpoint capacitance

2.18 To prevent unwanted signaling-state changes toward the terminal-side termination, a switch option on the 6173 allows $4 \mu \mathrm{~F}$ of capacitance to be placed across the midpoint of the 6173's DX signaling leads. This midpoint capacitance is necessary in all 4wire applications except those involving an unusually short DX signaling link. In short-link applications, the midpoint capacitor is switchoptioned out of the circuit for $0 \mu \mathrm{~F}$ of midpoint capacitance, which allows easier alignment of the 6173's integral DX balance network than would otherwise be possible with a short DX link.

DX balancing

2.19 A resistive and capacitive DX balance network in the 6173 is used to balance the module's internal DX impedance against that of the external DX signaling link. Proper balance ensures optimum performance of the 6173's DX unit for the specific length (in ohms) of the DX signaling link and also minimizes pulse distortion.
2.20 Resistive Balance. The amount of resistance required in the balance network is simply the total resistance of the external 4wire DX signaling link (see paragraph 2.17). This is because a 1260ohm resistive component integral to the 6173's balance network automatically compensates for the resistance of the $D X$ unit associated with the terminal equipment at the opposite end of the $D X$ signaling link. The five KILOHMS positions of the 6173's DX-balance-network DIP switch introduce from 0 to 6750 ohms of resistance, in 250 -ohm increments, to permit matching (within 125 ohms) of DX-link resistance up to 5000 ohms.
2.21 Capacitive Balance. No specific formula exists for calculating the amount of capacitance required to properly balance the circuit. This amount depends upon a variety of factors. For example, little capacitive balance is required in most 4wire DX circuits because the signaling pairs are separated by substantial relative distances and are therefore coupled by very little mutual capacitance. Numerous other factors, including cable
gauge and splicing format, also affect the DX signaling link. The cumulative effect of these factors makes prediction of the required amount of balancing capacitance difficult. A trial-and-error procedure is therefore necessary to achieve proper capacitive balance. The three μ F positions of the 6173's DX-balance-network DIP switch allow from 0 to $7 \mu \mathrm{~F}$ of capacitance to be introduced into the circuit in $1 \mu \mathrm{~F}$ increments.

power

2.22 The 6173 is designed to operate on filtered, ground-referenced input potentials between -42 and -54 Vdc . The positive side of the dc power supply should be connected to earth ground. Maximum current required at -54 Vdc is 100 mA .

3. installation

inspection

3.01 The 6173 4Wire-to-4Wire SF-to-DX Intermediate Repeater module should be visually inspected upon arrival to find any damage incurred during shipment. If damage is noted, a claim should immediately be filed with the carrier. If stored, the module should be visually inspected again prior to installation.

mounting

3.02 The 6173 mounts in one position of a Tellabs Type 10 Mounting Shelf. The module plugs physically and electrically into a 56-pin connector at the rear of its shelf position.

installer connections

3.03 When a 6173 module is to be installed in a non-prewired Type 10 Shelf, external connections to the module must be made. Before making any connections to the shelf, ensure that power is off and modules are removed. Modules should be put into place only after they are properly optioned and after wiring is completed.
3.04 Table 5 lists external connections to the 6173. All connections to non-prewired mountings are made via wire-wrapping to the 56 -pin connector at the rear of the module's shelf position. Pin numbers are found on the body of the connector.

connect:	to pin:
RCV IN TIP	7
RCVIN RING	. 13
XMT OUT TIP	41
XMT OUT RING	47
RCV OUT TIP	5
RCV OUT RING	15
XMT IN TIP	55
XMT IN RING	49
RCV IN SX (simplex, facility side)	9
XMT OUT SX (simplex, facility side)	43
RCV OUT SX (simplex, terminal side)	3
XMT IN SX (simplex, terminal side)	51
-BATT (-42 to -54 Vdc filtered input)	35
GND (ground) 17

table 5. External connections to 6173

option selection

3.05 Several option switches must be set before the 6173 is placed into service. Locations of these switches and of certain alignment switches on the module's printed circuit board are shown in figure 8. Table 6 summarizes all switch options and provides a convenient checklist that can be filled out either prior to installation for prescription optioning or during installation to serve as a record for later reference. Refer to figure 8 and table 6, and set each option switch on the 6173 as required.
Note: Switch numbers on main printed circuit board may not be visible.

figure 8. 6173 option switch locations

alignment overview

3.06 Alignment of the 6173 comprises the following procedures (all option switches should already be properly set as described above):
A. Setting the receive-channel facility-side and terminal-side levels.
B. Introducing receive-channel equalization, if necessary.
C. Setting the transmit-channel terminal-side and facility-side levels.
D. Introducing transmit-channel equalization, if necessary.
E. Adjusting the integral resistive and capacitive DX balance network.

prescription alignment

3.07 The 6173 is primarily intended for prescription alignment. This involves setting all levelcontrol and equalization DIP switches in accordance with specifications on the circuit layout record (CLR) before plugging the module into its shelf position. Table 7 in this practice summarizes all alignment switches on the 6173 and provides a convenient checklist for prescription alignment. To
use this table, simply indicate all required alignmentswitch settings in the checklist column. Then, at installation time, align the 6173 by setting each switch as indicated in the table (or on the CLR, if preferred).

4. circuit description

4.01 To provide the clearest possible understanding of the operation of the 6173 4Wire-to4Wire SF-to-DX Intermediate Repeater module, function sequence flowcharts (figures 9 through 11) that illustrate operation of the module on incoming and outgoing calls are presented in lieu of a more conventional circuit description. Horizontal paths identify events occurring simultaneously, and vertical paths denote sequential events. Dotted lines indicate elapsed time. These flowcharts can be used to verify normal operation by observing the module's response and comparing it to that shown in the flowcharts. Reference to the 6173 block diagram (section 5 of this practice) will aid in understanding the flowcharts.
4.02 The flowcharts are intended to familiarize you with the operation of the 6173 for engineering, application, and troubleshooting purposes only. Attempts to test or troubleshoot this module internally are not recommended and may void its Tellabs warranty. Procedures for recommended testing and troubleshooting in the field should be limited to those prescribed in section 7 of this practice.

6. specifications

transmission

[^0]| option | switch | selection | setting | checklist |
| :---: | :---: | :---: | :---: | :---: |
| terminating impedance, receive input port (facility side) | RCV IMPEDANCE (S1) IN switches (lefthand 150 and 600 switches) on main board | 1200 ohms (for loaded cable) | 150 switch toward 1200, 600 switch toward 1200 | |
| | | 600 ohms (for nonloaded cable or carrier) | 150 switch toward 1200, 600 switch toward 600 | |
| | | 150 ohms (extra equalization for nonloaded cable) | 150 switch toward 150, 600 switch toward 1200 | |
| terminating impedance, receive output port (terminal side) | RCVIMPEDANCE (S1) OUT switches (righthand 150 and 600 switches) on main board | 1200 ohms (for loaded cable) | 150 switch toward 1200, 600 switch toward 1200 | |
| | | 600 ohms (for nonloaded cable or carrier) | 150 switch toward 1200, 600 switch toward 600 | |
| | | 150 ohms (extra equalization for nonloaded cable) | 150 switch toward 150, 600 switch toward 1200 | |
| terminating impedance, transmit input port (terminal side) | XMT IMPEDANCE (S3) IN switches (lefthand 150 and 600 switches) on main board | 1200 ohms (for loaded cable) | 150 switch toward 1200, 600 switch toward 1200 | |
| | | 600 ohms (for nonloaded cable or carrier) | 150 switch toward 1200, 600 switch toward 600 | |
| | | 150 ohms (extra equalization for nonloaded cable) | 150 switch toward 150, 600 switch toward 1200 | |
| terminating impedance, transmit output port (facility side) | XMT IMPEDANCE (S3) OUT switches (righthand 150 and 600 switches) on main board | 1200 ohms (for loaded cable) | 150 switch toward 1200, 600 switch toward 1200 | |
| | | 600 ohms (for nonloaded cable or carrier) | 150 switch toward 1200, 600 switch toward 600 | |
| | | 150 ohms (extra equalization for nonloaded cable) | 150 switch toward 150, 600 switch toward 1200 | |
| normal or reversed terminal-side SX leads | SIMPLEX NORM/REV switch (S7) on main board | normal (XMT IN SX associated with xmt input pair, RCV OUT SX associated with rcv output pair) | NORM | |
| | | reversed (XMT IN SX associated with rcv output pair, RCV OUT SX associated with xmt input pair) | REV | |
| midpoint capacitance on terminal-side SX leads* | MPC (S15) switch (righthand IN/OUT switch) on baby board | $4 \mu \mathrm{~F}^{*}$ | IN | |
| | | $0 \mu \mathrm{~F}^{*}$ | OUT | |
| * Normal applications require an $I N$ setting for the MPC switch, while short-loop applications require an OUT setting. | | | | |

table 6. Summary and checklist of 6173 switch options

alignment function	switch	selection	setting	checklist
selection of receive-channel facility-side flat gain or loss	GN and LS positions of front-panel rcv fac level DIP switch	gain	GN to IN LS to OUT	
		loss	GN to OUT LS to IN	
amount of receive-channel facility-side gain or loss, as selected above*	dB-value positions of front-panel rcv fac level DIP switch*	0.1 dB	. 1 to IN	
		0.2 dB	. 2 to IN	
		0.4 dB	. 4 to IN	
		0.8 dB	. 8 to IN	
		1.5 dB	1.5 to IN	
		3.0 dB	3 to IN	
		6.0 dB	6 to IN	
		12.0 dB	12 to IN	
receive-channel terminal-side flat loss*	front-panel rcv term loss DIP switch*	0.1 dB	. 1 to IN	
		0.2 dB	. 2 to IN	
		0.4 dB	. 4 to IN	
		0.8 dB	. 8 to IN	
		1.5 dB	1.5 to IN	
		3.0 dB	3 to IN	
		6.0 dB	6 to IN	
		12.0 dB	12 to IN	
inclusion or bypass (exclusion) of receive-channel equalizer	IN/OUT position of frontpanel rcv equalizer SLOPE DIP switch	equalizer included in circuit	IN	
		equalizer bypassed (excluded)	OUT	
post-equalization or pre-equalization operation for receive-channel equalizer	front-panel rov equalizer post/pre switch	post-equalization	post	
		pre-equalization	pre	
introduction of receivechannel 309B-equivalent equalization	SLOPE NL position of front-panel rcv equalizer SLOPE DIP switch	nonloaded cable	toward NL	
		loaded cable	away from NL	
	SLOPE 1, 2, 4, 8 positions of front-panel rcv equalizer SLOPE DIP switch**	degree of slope	SLOPE 1 to 1	
			SLOPE 2 to 2	
			SLOPE 4 to 4	
			SLOPE 8 to 8	
	HT 1, 2, 4, 8 positions of front-panel rcv equalizer HT/BW DIP switch**	height of bump	HT 1 to 1	
			HT 2 to 2	
			HT 4 to 4	
			HT 8 to 8	
	BW 1, 2, 4, 8 positions of front-panel rcv equalizer HT/BW DIP switch**	affected bandwidth	BW 1 to 1	
			BW 2 to 2	
			BW 4 to 4	
			BW 8 to 8	
selection of transmit-channel facility-side flat gain or loss	GN and $\angle S$ positions of front-panel xmt fac level DIP switch	gain	GN to IN	
			LS to OUT	
		loss	GN to OUT LS to IN	
amount of transmit-channel facility-side gain or loss, as selected above*	dB-value positions of front-panel xmt fac level DIP switch*	0.1 dB	. 1 to IN	
		0.2 dB	. 2 to IN	
		0.4 dB	4 to IN	
		0.8 dB	8 to IN	
		1.5 dB	1.5 to IN	
		3.0 dB	3 to IN	
		6.0 dB	6 to IN	
		12.0 dB	12 to IN	

alignment function	switch	selection	setting	checklist
transmit-channel terminal-side flat loss*	front-panel xmt term loss DIP switch*	0.1 dB	. 1 to IN	
		0.2 dB	. 2 to IN	
		0.4 dB	. 4 to IN	
		0.8 dB	. 8 to IN	
		1.5 dB	1.5 to IN	
		3.0 dB	3 to IN	
		6.0 dB	6 to IN	
		12.0 dB	12 to IN	
inclusion or bypass (exclusion) of transmit-channel equalizer	IN/OUT position of mainboard XMT EQUALIZER SLOPE DIP switch (S24)	equalizer included in circuit	IN	
		equalizer bypassed (excluded)	OUT	
post-equalization or pre-equalization operation for transmit-channel equalizer	POST/PRE EQ switch (S5) on main board	post-equalization	POST	
		pre-equalization	PRE	
introduction of transmit-channel 309B-equivalent equalization	SLOPE NL position of main-board XMT EQUALIZER SLOPE DIP switch (S24)	nonloaded cable	toward NL	
		loaded cable	away from NL	
	SLOPE 1, 2, 4, 8 positions of main-board XMT EQUALIZER SLOPE DIP switch (S24)**	degree of slope	SLOPE 1 to 1	
			SLOPE 2 to 2	
			SLOPE 4 to 4	
			SLOPE 8 to 8	
	HT 1, 2, 4, 8 positions of main-board XMT EQUALIZER HT/BW DIP switch (S25)**	height of bump	HT 1 to 1	
			HT 2 to 2	
			HT 4 to 4	
			HT 8 to 8	
	BW 1, 2, 4, 8 positions of main-board XMT EQUALIZER HT/BW DIP switch (S25)**	affected bandwidth	BW 1 to 1	
			BW 2 to 2	
			BW 4 to 4	
			BW 8 to 8	
DX bālance network resistance (0 to 6750 ohms) \dagger	KILOHMS positions of baby-board BAL/MPC DIP switch (S15) \dagger	250 ohms	toward 25	
		500 ohms	toward . 5	
		1000 ohms	toward 1	
		2000 ohms	toward 2	
		3000 ohms	toward 3	
DX balance network capacitance (0 to $7 \mu \mathrm{~F}$) \dagger	μ positions of babyboard BAL/MPC DIP switch (S15) \dagger	$1 \mu \mathrm{~F}$	toward 1	
		$2 \mu \mathrm{~F}$	toward 2	
		4μ	toward 4	
* The eight dB-value positions of the front-panel rcv fac level and $x m t$ fac level DIP switches are cumulative, as are all eight positions of the rcv term loss and xmt term loss DIP switches. Total facility-side gain or loss and total terminalside loss introduced into a channel are the sums of that channel's fac level and term loss switch positions set to $I N$. ** The $1,2,4$, and 8 positions of the SLOPE, $H T$, and $B W$ receive and transmit equalization DIP switches are cumulative. These switch positions may be set in any combination as required. \dagger The DX balance network's resistance and capacitance switches (KILOHMS and μF positions of the BAL/MPC DIP switch, S15) are cumulative. Total resistance and capacitance introduced are the sums of those KILOHMS and μF switch positions, respectively, set toward their respective values.				

table 7. Summary and checklist of 6173 alignment switches

figure 9. Function sequence flowchart, incoming call

figure 10. Function sequence flowchart, outgoing call

DISCONNECT SEQUENCE

figure 11. Function sequence flowchart, disconnect for incoming and outgoing calls

5. block diagram
terminating impedances, all four ports
1200, 600, or 150 ohms, balanced, individually switch-selectable at each port
frequency response, xmt and rcv channe/s, with no equalization and with receive-channel BEF removed $+0.0,-2.0 \mathrm{~dB}$ at 200 Hz , re 1004 Hz
$+0.3,-0.6 \mathrm{~dB}, 300$ to 3000 Hz , re 1004 Hz
$+0.0,-1.3 \mathrm{~dB}$ at 3400 Hz , re 1004 Hz
total harmonic distortion, all ports
less than 1\% at overload points
internal noise, xmt and rcv channels
17 dBrnCO maximum at maximum gain
longitudinal balance, all four ports greater than $60 \mathrm{~dB}, \mathbf{2 0 0}$ to $\mathbf{3 0 0 0 H z}$
echo return loss, terminal and facility greater than 23dB at all three impedance settings
peak-to-average ratio ($P / A R$),
receive-channel BEF removed
98 minimum, without equalization
crosstalk loss between xmt and rcv channels
75 dB minimum, 200 to $\mathbf{3 4 0 0 H z}$
crosstalk loss between adjacent modules in shelf 80 dB minimum, 200 to 3400 Hz

SF transmit section

internal SF tone oscillator frequency and stability $2600 \pm 5 \mathrm{~Hz}$ for life of unit
SF tone levels
low level: $-20 \mathrm{dBmO} \pm 1 \mathrm{~dB}$
high level: $-8 \mathrm{dBmO} \pm 1 \mathrm{~dB}$
high-level timing
high-level tone is transmitted for $400 \pm 100 \mathrm{~ms}$ when tone switches from off to on
outgoing SF tone states
see table 3 (local call origination) and table 4 (distant call origination) in section 2 of this practice
pulsing characteristics

- input breaks and makes shorter than the DX-port delay are not recognized
- input breaks of a duration between that of the DXport delay and 50 ms are transmitted as $50 \pm 2 \mathrm{~ms}$ tone bursts
- input makes of a duration between that of the DXport delay and 25 ms are repeated as $25 \pm 2 \mathrm{~ms}$ silent (no tone) intervals
- input breaks longer than 50ms are transmitted as tone bursts equal in duration to the input break duration $\pm 2 \mathrm{~ms}$
- input makes longer than 25 ms are repeated as silent (no tone) intervals equal in duration to the input make duration $\pm \mathbf{2 m s}$
transmit-path-cut insertion
transmit speech path is cut (opened) $15 \pm 7 \mathrm{~ms}$ before transmission of SF tone
transmit-path-cut removal
transmit speech path cut is removed $125 \pm 50 \mathrm{~ms}$ after detection of an off-hook condition if SF tone is being received

SF receive section

SF tone detection
frequency: $2600 \pm 15 \mathrm{~Hz}$
level range: 0 to -27 dBmO

SF tone rejection threshold $-37 \mathrm{dBmO}$
signal-to-guard ratio for signal detection 6 to 12 dB
incoming SF tone states
see table 3 (local call origination) and table 4 (distant call origination) in section 2 of this practice
maximum line noise
51 dBrnCO
guard circuit transition timing
high-to-low: $\mathbf{2 2 5} \pm 60 \mathrm{~ms}$
low-to-high: $\mathbf{5 0} \pm 10 \mathrm{~ms}$
band-elimination-filter timing

- insertion time: $13 \pm 7 \mathrm{~ms}$
- insertion duration for SF tones shorter than $175 \pm 60 \mathrm{~ms}$: $225 \pm 50 \mathrm{~ms}$ (with BEF insertion duration longer than tone duration in all cases)
- insertion duration for SF tones longer than $175 \pm 60 \mathrm{~ms}$: duration of SF tone plus $50 \pm 10 \mathrm{~ms}$
dial pulse characteristics (SF to $D X$) for rates of 8 to 12 pulses per second
input break: 50\% to 75\%
output break: 58 $\pm 4 \%$

DX signaling

DX loop resistance
5000 ohms maximum
dial-pulsing rate
7.5 to 12.5pps
dial-pulse distortion
3 percent maximum
balance network
resistance: $\mathbf{0}$ to 6750 ohms in switch-selectable 250-ohm increments
capacitance: 0 to $7 \mu \mathrm{~F}$ in switch-selectable
$1 \mu \mathrm{~F}$ increments
midpoint capacitance
$0 \mu \mathrm{~F}$ or $4 \mu \mathrm{~F}$, switch-selectable

common specifications

input power requirements
voltage: -42 to -54 Vdc , filtered, positive-ground referenced
idle current: 80 mA typical at -48 Vdc
busy current: 100 mA maximum at -54 Vdc
dc earth potential difference
greater than $\pm 45 \mathrm{Vdc}$
ac induction
greater than 35 Vrms
operating environment
32° to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $50^{\circ} \mathrm{C}$), humidity to 95% (no condensation)
dimensions
5.58 inches (14.17 cm) high
1.42 inches (3.61 cm) wide
5.96 inches (15.14 cm) deep
weight
11.5 ounces (326 grams)
mounting
relay rack or apparatus case via one position of a Tellabs Type 10 Mounting Shelf

troubleshooting guide

trouble condition	possible causes (check before assuming module is defective)
module completely inoperative	1) No input power. 2) Improper wiring.
cannot derive proper receive-channel transmission levels	1) Front-panel rcv fac level and/or rev term loss DIP switches improperly set. 2) Main-board receive impedance DIP switch (S1) improperly set. 3) Front-panel receive post-/pre-equalization switch and/or receive equalizer bypass switch improperly set. 4) Front-panel receive equalization DIP switches (SLOPE, HT, and BW) improperly set. 5) Circuit not seized. 6) Test-equipment impedance improperly set or test equipment not terminated.
cannot derive proper transmit-channel transmission levels	1) Front-panel $x m t$ fac level and/or $x m t$ term loss DIP switches improperly set. 2) Main-board transmit impedance DIP switch (S3) improperly set. 3) Main-board transmit post-/pre-equalization switch (S5) and/or transmit equalizer bypass switch (IN/OUT position of S24) improperly set. 4) Main-board transmit equalization DIP switches (S24 [SLOPE] and S25 [HT and BW]) improperly set. 5) Circuit not seized. 6) Test-equipment impedance improperly set or test equipment not terminated.
xmt busy or rcv busy LED on when circuit is idle or off when circuit is busy	1) Main-board normal/reversed SX-lead switch (S7) improperly set. 2) Inputs from near end or distant end not idle or busy at appropriate times. 3) Module's integral DX balance network improperly aligned. 4) Fault in cable.
improper dial pulsing	1) One or more option switches improperly set. 2) Module's integral $D X$ balance network improperly aligned. 3) improper supply voltage (should be between -42 and -54 Vdc). 4) Excessive cable leakage. 5) Excessive longitudinal voltage on facility.

[^0]: alignment level ranges, facility-side ports receive input port: $\mathbf{- 1 7}$ to +7TLP transmit output port: -16 to +8TLP alignment level ranges, terminal-side ports
 receive output port: +7 to -17 TLP
 transmit input port: +8 to -16 TLP
 overload points
 receive input and output ports: OdBmo
 transmit input and output ports: +3 dBmO
 facility-side gain or loss (xmt and rcv)
 0 to 24 dB of gain or 0 to 24 dB of loss in switchselectable 0.1 dB increments, with gain or loss selected via switch option
 terminal-side loss (xmt and rcv)
 0 to 24 dB of loss in switch-selectable 0.1dB increments
 insertion loss, xmt and rov channels
 (600 -ohm termination at all ports)
 $0 \pm 0.2 \mathrm{~dB}$ at 1004 Hz with all level-control switches set for no gain or loss
 amplitude equalization, xmt and rov channels
 active prescription slope or bump-type equalization for nonloaded or loaded cable, functionally equivalent to that provided by the WECo 309B Prescription Equalizer. Each channel's equalizer can be conditioned for post- or pre-equalization operation or electrically bypassed (excluded) via switch option

