9608 Program Amplifier and 9608A Program Distribution Amplifier

contents section 1
section 2
section 3
section 4
section 5
section 6
section 7

general description	page 1
application	page 2
installation	page 3
circuit description	page 7
block diagram	page 8
specifications	page 7
testing and troubleshooting	page 9

1. general description
1.01 Tellabs' 9608 Program Amplifier and 9608A Program Distribution Amplifier modules (figure 1) are wideband, low-distortion amplifiers designed for use in program transmission applications. The 9608 is a single-input, single-output amplifier, while the 9608 A is a single-input, five-output splitting amplifier. In all other respects, both modules are identical. An integral amplitude equalizer may be switched into the circuit to introduce up to 30 dB of adjustable precision slope equalization for 5,8 , or 15 kHz program applications. With the equalizer switched out of the circuit, amplifier response is essentially flat ($\pm 1 \mathrm{~dB}$) from 30 Hz to 15 kHz . As Metallic-Facility-Terminal (MFT)-configured modules, the 9608 and 9608A are designed for program transmission applications within the Western Electric MFT System family.
1.02 In the event that this practice section is reissued, the reason for reissue will be stated in this paragraph.
1.03 As stated above, the 9608 is a single-input, single-output Program Amplifier, while the 9608A is a single-input, five-output splitting Program Distribution Amplifier. The 9608A is arranged for one primary output channel and four auxiliary output channels. Gain control, equalization, and jack access for the auxiliary output channels of the 9608A are derived from the primary output channel controls.
1.04 Both 9608 and 9608A provide from 0 to 40 dB of adjustable gain in switch-selectable 10 dB increments $\{0$ to $10 \mathrm{~dB}, 10$ to $20 \mathrm{~dB}, 20$ to 30 dB , or 30 to 40 dB). Within each increment, gain is continuously adjustable to within $\pm 0.1 \mathrm{~dB}$ of the de sired level via a front-panel control. Maximum output level capability is +20 dBm .
1.05 An active amplitude equalizer may be used to compensate for the frequency response of nonloaded telephone cable, in 5,8 , or 15 kHz program applications. Equalization is controlled by adjustment of three potentiometers accessed through the modules' front panels. Two adjustments, one for high frequencies and one for low frequencies, establish the equalizer response shape. A third adjustment provides response trimming at very low fre-

quencies. The composite equalizer is capable of slope correction in excess of 30 dB for various lengths and gauges of nonloaded telephone cable. Equalization to within $\pm 1 \mathrm{~dB}$ is achievable for either 8 kHz or 15 kHz circuits. Adjustment is precise and can be accomplished with relative ease. Roll-off is provided at approximately 10 kHz in the lower of the two switch-selectable equalization bandwidth ranges, and above 19 kHz in the higher range.
1.06 The 9608 and 9608A are designed to operate between 600 -ohm balanced or 150 -ohm balanced or unbalanced source and load impedances. Input and output impedances are independently switch-selectable for 150 or 600 ohms. Input and output impedances are not affected by insertion of the active amplitude equalizer.
1.07 Secondary surge protection is provided at all Amplifier ports, including surge-current-limiting resistors in both input and output paths. Transient protection is also provided for the power regulating circuit in both modules.
1.08 The 9608 and 9608A are designed to operate on any filtered input voltage between -42 and -56 Vdc . Quiescent-state current requirement for both modules is 40 mA . At maximum output levels, the 9608 draws 60 mA and the 9608A (with all five outputs at maximum) draws 80 mA .
1.09 Use of tantalum capacitors and other carefully chosen components allows either module to operate within the temperature range of -40° to $+140^{\circ}$ Fahrenheit.
1.10 The front panels of the 9608 and 9608A are designed so that all adjustments can be made while the module is mounted in place. Front-panel gain and equalization controls are complemented by a full set of test jacks (input, output, input monitor, and output monitor) to facilitate alignment and testing of each module.
1.11 As MFT-configured modules, the 9608 and 9608A each mount in one position of a Western Electric MFT single-module (MTM-1), MFT doublemodule (MTM-2), or Customer-Premise Facility Terminal (CPFT) Shelf. The MTM-1 is a 12 -position central-office-type shelf that is factory-prewired to accept up to 12 MFT -configured transmission units such as the 9608 and 9608A. The MTM-2 is a 12 position central-office-type shelf that is factoryprewired to accept up to 6 MFT-configured transmission units such as the 9608 or 9608A and up to 6 MFT-configured companion signaling units. Both MTM-1 and MTM- 2 sheives are designed for 23 -inch relay rack installation. For customer-premise installation, a Western Electric CPFT mounting shelf is also available. Each module plugs physically and electrically into a 40 -pin connector at the rear of the mounting shelf position.

2. application

2.01 Tellabs' 9608 Program Amplifier and 9608A Program Distribution Amplifier modules provide the amplification, amplitude equalization, and linearity necessary for the transmission of highquality, wideband audio signals over nonloaded telephone cable. Both modules accommodate standard 5 kHz (am radio), 8 kHz (television audio), or 15 kHz (fm radio) bandwidth signals.
2.02 The 9608's primary application is conditioning the transmission facility (nonloaded telephone cable) from a radio or television station to a transmitter site, or from a remote pickup point to a studio or transmitter site. Switchable 150 or $600-$ ohm port impedances allow the 9608 to interface nonloaded cable (150 -ohm option) or broadcast equipment (600 -ohm option).
2.03 The 9608A is typically used in applications where up to five 150 or 600 -ohm outputs must be derived from a single input. Either impedance may be individually switch-selected for each output. This module may be used in a private wired music system, where program material is distributed to several locations from a telephone central office, or it may be used at a radio or television network branching point composed of either carrier-derived channels or very short cable distribution loops. Switchable 150 and 600 -ohm impedance options at all six ports allow the 9608A to interface nonloaded cable pairs (150 -ohm option), and carrier-derived channels or broadcast equipment (600 -ohm option).
2.04 The 0 to 40 dB gain range of the 9608 and 9608 A , in conjunction with the +20 dBm output
level capability, provides adequate amplification for applications within the limits of good transmission design. The four gain ranges (0 to $10 \mathrm{~dB}, 10$ to $20 \mathrm{~dB}, 20$ to 30 dB , and 30 to 40 dB) are selected via a DIP switch on the modules' printed circuit boards. Fine adjustment within each range is accomplished by means of a front-panel potentiometer. Levels may be accurately set to within $\pm 0.1 \mathrm{~dB}$ across the entire 0 to 40 dB gain range.
2.05 The active equalizer in both modules is capable of inversely matching the slope of nonloaded telephone cable from either 50 Hz to 15 kHz or from 100 Hz to 8 kHz , where the loss differential between the lowest and the highest frequencies of interest is between 0 and 31 dB . Equalizer response is independent of amplifier gain, permitting independent adjustment of facility frequency response and loss (or gain). Equalizer slope is matched to cable characteristics through adjustment of two potentiometers labeled HF (high frequency) and LF (low frequency) on the modules' front panels. A third front-panel potentiometer labeled $L F$ trim, is provided to trim low-frequency (below 200 Hz) response after primary equalization has been achieved. A composite frequency response for cable and amplifier that is flat within $\pm 1 \mathrm{~dB}$ from either 30 Hz to 15 kHz or from 50 Hz to 8 kHz can be achieved with the modules' equalizers.
2.06 Slope equalization provided by the active equalizer is limited to a loss differential of about 31 dB between lowest and highest frequencies of interest. This limit is translated to equivalent cable lengths in tables 1 and 2. Table 3 lists the loss per kilofoot of various gauges of cable at both 8 kHz and 15 kHz .

cable gauge	maximum length	cable loss at equalization limit 1 kHz	800Ω terminations) 8 kHz
19	61.5 kf	15.3 dB	41.5 dB
22	40	13.6	41.0
24	30	12.2	38.5
26	24	12.8	38.0

table 1. Approximate maximum equalization ranges 5 kHz and 8 kHz program circuits

cable gauge	maximum length	cable loss at equalization limit $\mathbf{1 k H z}$	(600Ω terminations) 15 kHz
19	46.0 kf	11.5 dB	42.5 dB
22	31.2	10.5	45.6
24	22.2	8.8	40.8
26	18.0	9.5	40.4

table 2. Approximate maximum equalization limits -
15 kHz program circuit

cable gauge	loss $/ \mathbf{k f}$ at $8 \mathbf{k H z}$	loss $/ \mathbf{k f}$ at $15 \mathbf{k H z}$
19	0.675 dB	0.924 dB
22	1.025	1.462
24	1.283	1.838
26	1.583	2.244

table 3. Loss per kilofoot of cable
2.07 When equalization is not required, the 9608 and 9608A's equalization circuitry may be electrically removed from the transmission path via switch option. In this mode, both 9608 and 9608A provide flat gain from 20 Hz to 15 kHz , with roll-off below 20 Hz and above 19 kHz .
2.08 Equalizer response is unaffected by choice of input and output impedance, but, in general, the 150 -ohm cable interface impedance permits equalization of longer cable sections than the $600-$ ohm impedance. The 150 -ohm impedance-matching option presents a deliberate impedance mismatch that provides nominal slope equalization for nonloaded telephone cable.
Note: When optioned for 600 -ohm impedance, the 9608 and 9608A must be used on balanced transmission facilities. Capacitors are connected between the midpoints of the input and output transformers and external connector pins. These pins may be grounded (either to power-supply ground or to local ground) to improve longitudinal balance. These capacitors will seriously degrade amplifier performance if either module is connected to an unbalanced 600 -ohm source or load. The capacitors are electrically removed from the circuit when the 9608 or $9608 A$ is optioned for 150 -ohm impedance, thus permitting use of either Amplifier in this mode with unbalanced source and/or load terminations.
2.09 A switch option provides somewhat closer adaption of both modules' equalization to long loops or short loops - long loops being those with greater than 17 dB loss at the highest frequency of interest. Considerable overlap in the two ranges is provided by the front-panel equalization controls.
2.10 Both modules' input and primary output channels may be accessed via front-panel-mounted input and output jacks. The input amp and output amp jacks directely access the primary amplifier ports. Input and output monitor jacks, (input mon and output mon), provide bridging access to the primary amplifier ports, and, with the second plug inserted into the access jack, the external facility leads may be accessed through the appropriate monitor jack. Individual jack access is not provided for the 9608A's four auxiliary output ports.
Note: When the input or output of either module is accessed through the input amp or output amp jacks, the current-limiting resistors are bypassed. This will cause input and output impedances to appear 11.2 ohms lower than will be measured at the input and output connector pins, creating a $0.1 d B$ - greater difference in insertion loss with a $600-\mathrm{ohm}$ termination and a $0.2 d B$ - greater difference with a 150 -ohm termination.

3. installation

inspection
3.01 The 9608 Program Amplifier and 9608A Program Distribution Amplifier modules should be visually inspected upon arrival in order to find possible damage incurred during shipment. If damage is noted, a claim should immediately be filed with
the carrier. If stored, the module should be visually inspected again prior to installation.

mounting

3.02 Each 9608 and 9608A module mounts in one position of a Western Electric MTM-1, MTM-2, or CPFT Shelf. The MTM-1 and MTM- 2 Shelves are designed for 23 -inch relay rack installation, while the CPFT Shelf is designed for customer-premise applications. Each module plugs physically and electrically into a 40 -pin connector at the rear of the Shelf.

installer connections

3.03 Before making any connections to the mounting shelf, make sure that power is off and modules are removed. Modules should be put into place only after they are properly optioned and after wiring is completed.
3.04 Table 4 lists external connections to the 9608 and 9608A modules. All connections are made via wire wrap at the 40 -pin connector at the rear of each module's mounting shelf position. Pin numbers are found on the body of the connector.

connect:	to pin:
AMPLIFIER INPUT	17 and 19
INPUT SIMPLEX	22
INPUT MIDPOINT CAPACITOR	21
SLEEVE GND (front-panel jacks).	
PRIMARY CHANNEL OUTPUT	13 and 14
OUTPUT SIMPLEX (primary channel)	
OUTPUT MIDPOINT CAPACITOR	7
-48V (-48 Vdc input)	11
GND (ground)	
AUX OUTPUT 1.	5 and $6 *$
AUX OUTPUT 2.	2 and 3*
AUX OUTPUT 3.	10 and 12*
AUX OUTPUT 4.	24 and $25 *$
*9608A module only	

table 4. Ex terna/ connections to 9608 and $9608 A$

ground connections

3.05 When the 9608 or 9608A is located in a central office or at a location with local power, best results will be achieved when the transformer shield grounds are connected to the power-supply ground. The jack sleeves may be grounded either to frame ground or to power ground. At remote locations, the jack sleeves may be connected to local ground or left open, and the other grounds should be connected either to local ground or to power ground, whichever minimizes introduction of 60 Hz noise.

option selection

3.06 All options on the 9608 and 9608A are selected via slide or DIP switches located as shown in the condensed alignment procedure, figure 2. Please note that switches $S 7, S 8, S 9$, and $S 10$ are not provided on the 9608 module; all other switches are in the locations shown. Switch designations are indicated on the printed circuit board adjacent to each switch.

impedance

3.07 Switch S1, labeled INPUT Z, is used to select either module's input impedance. Switch S6,
labeled OUTPUT Z, is used to select the 9608 's output impedance. (On the 9608A, switch S6 selects the impedance of the primary output channel.) Switches S7 through S10, which are included on the 9608A only, are used to select the impedance of that module's four auxiliary output channels, aux 1 through aux 4, respectively. These switches select either 150 -ohm or 600 -ohm impedance-matchoptions. In general, the 150 -ohm option is used to interface nonloaded cable, while the 600 ohm option is used to interface broadcast equipment.
Caution: If the 600 -ohm impedance option is selected, input and output connections to the 9608 and $9608 A$ must be balanced if midpoint capacitors are grounded. Response measurements made with unbalanced instruments will be in error. If $150-\mathrm{ohm}$ impedance is used, both modules may be connected to either balanced or unbalanced source and load terminations.

equalization

3.08 Switch $S 2$ is set to enable or disable the 9608 and $9608 A^{\prime}$ s integral equalization circuitry. In applications where equalization is required, set switch S2 to the EOL IN position to enable the equalizer. In applications where equalization is not required, set switch $S 2$ to the EOL OUT position.
3.09 Switch $S 4$, labeled $E Q L B W(K H Z)$, set to condition either module's equalizer for the program application in which the module is to be used. The 8 kHz -option is selected in standard am radio (5 kHz bandwidth) or television audio (8 kHz bandwidth) applications, while the 15 kHz -option is selected in fm radio (15 kHz bandwidth) applications.
3.10 If equalization is used, switch $S 3$ must also be set to configure the equalization shape for either long or short loops. Set this switch to the LONG LOOP position if the unequalized facility loss at the upper band edge (either 8 kHz or 15 kHz) exceeds 17 dB , or to the SHORT LOOP position if facility loss at 8 kHz or 15 kHz is less than 17 dB .

gain

3.11 Switch selection of either the 0 to 10 dB , 10 to $20 \mathrm{~dB}, 20$ to 30 dB , or 30 to 40 dB gain range is accomplished in both modules by setting threeposition DIP switch S5, labeled GAIN RANGE, as indicated in table 5. (Fine adjustment within the selected 10 dB range is made via the front-panel gain control during alignment of the module. This control is continuously adjustable over a range of approximately 11 dB to ensure overlap of the major gain increments.) Switch positions are identified as left, center, and right, rather than by number, because the numbering of switch positions by the various switch manufacturers is not consistent. The left position refers to the leftmost switch position as the module is viewed from the connector end; center refers to the next adjacent switch position, etc. If equalization is not used, refer to the circuit level record (CLR) card and set the GAIN RANGE switch for the 10 dB range that encompasses the required transmission level.

If equalization is used, initially set the GAIN RANGE switch for the 10 to 20 dB range, and reset the switch (if required) after equalization is completed. (Selection of the 10 to 20 dB range will introduce sufficient gain to overcome the loss inherent in the equalizer, thus ensuring accurate equalization.) Again, precise level adjustment will be made via the gain control.
special note: In some rare applications, it may be necessary to operate or test a circuit with a 9608 or 9608 A at very high input levels - beyond the specified $+10 d B m$ maximum input. IThis may be the case when a radio station performs deviation and modulation tests or frequency runs.) While input levels below +10 dBm will not produce distortion through either module, input signals between +10 dBm and +20 dBm may produce overload distortion unless the following precautions are taken:

1) Use the SHORT LOOP option for all loops with 1000 Hz insertion loss below about $5 d B$ (measured between 600 -ohm source and load impedances).
2) If compatible with system levels, set the GAIN RANGE switch for the $10-t o-20 \mathrm{~dB}$ range whenever the 9608 or 9608A is operated in the SHORT LOOP mode. This gain step overcomes loss inherent in the equalizer in the SHORT LOOP mode.
3) Whenever practical, attempt to arrange signal levels and amplifier gain so that gain introduced by the front-panel $10 d B$ gain control is minimized (fully counterclockwise). This means that gain should be introduced via the $10 d B$ GAIN RANGE switch, especially in relatively short loop applications.

gain range	right*	center*	left*
0 to 10 dB	on/closed	on/closed	on/closed
10 to 20 dB	off/open	on/closed	on/closed
20 to 30 dB	off/open	off/open	on/closed
30 to 40 dB	off/open	off/open	off/open
${ }^{*}$ as viewed from connector end of module			

table 5 . Switch selection of gain ranges

alignment

3.12 Alignment consists of sending test tones from the originating end of the circuit to the 9608 or 9608A, measuring the level of each tone at the module with a test set, and adjusting the module's equalizer and amplifier appropriately. In tandem applications (i.e., more than one Amplifier module in the circuit), there are two accepted methods of alignment. In the first method, each Amplifier module is isolated and aligned individually. Test tones are sent from the originating end of the circuit to the first Amplifier, and that module is aligned. The next Amplifier is aligned to test tones sent from the site of the first Amplifier. Subsequent Amplifier modules are aligned in similar fashion. In the second method of alignment, test tones are sent only from the originating end of the circuit and each Amplifier is aligned to those tones, beginning
with the Amplifier closest to the originating end of the circuit. In both methods, alignment of the composite circuit should be verified via end-toend measurements.
Note: A condensed alignment procedure (figure 2) is included to facilitate alignment of the 9608 and 9608A.

alignment - without equalization

3.13 After all options (including gain range) have been selected, insert the 9608 or 9608A into its mounting, adjust the gain control fully counterclockwise, and apply power. Adjust the gain of the Amplifier as described in paragraph 3.16.

alignment - with equalization

3.14 After all options have been selected, insert the 9608 or 9608A into its mounting position. Adjust the $H F, L F$, and gain controls fully counterclockwise and adjust the LF trim control to the approximate midpoint of its range. Apply power and perform the equalization and gain procedures in paragraphs 3.15 through 3.17.
Note: For convenience, the following equalization procedure is based on either module's use in 15 kHz applications. In 5 kHz and 8 kHz applications, the equalization procedure is identical, except for the frequencies at which level measurements are made. In 15 kHz applications, measurements are made at $15 \mathrm{kHz}, 10 \mathrm{kHz}, 1000 \mathrm{~Hz}$, and 100 Hz . In both 5 kHz and 8 kHz , applications, measurements are made at $8 \mathrm{kHz}, 5 \mathrm{kHz}, 1000 \mathrm{~Hz}$, and 100 Hz .
3.15 To align the 9608 or $9608 A^{\prime}$'s equalizer, it is essential that the procedures be followed precisely and in the order presented. Other procedures will result in failure to converge on the desired equalization characteristics.
A. Connect a properly terminated transmission measuring set (TMS) arranged for receive to the module's output amp jack, and request that personnel at the originating end of the circuit send 15 kHz tone at the level specified on their circuit level record (CLR). Verify the frequency and record the received level.
B. Request that personnel at the originating end send 10 kHz tone at the CLR-specified level. Verify the frequency and adjust the $H F$ control clockwise until the 10 kHz level is equal to the 15 kHz level recorded in step A.
C. Request that the originating end again send 15 kHz tone at the specified level. Verify the frequency and record the received level. Request that personnel at the originating end send 10 kHz at the specified level and adjust the HF control until the 10 kHz level is equal to the new 15 kHz level measured in this step. Repeat this step until the 15 kHz and 10 kHz levels are equal. Be sure to record each level. (As the HF control is adjusted clockwise, both the 10 kHz and 15 kHz levels will change. Therefore, several
repetitions of adjustment and measurement between 15 kHz and 10 kHz will probably be required to achieve the desired flat response between the two frequencies.)
D. Request that personnel at the originating end send 1000 Hz tone at the CLR-specified level. Verify the frequency and adjust the $L F$ control clockwise until the 1000 Hz level is equal to the 10 kHz level achieved in step C .
E. Request that the originating end send 10 kHz tone at the CLR-specified level. Verify the frequency and record the level. If the 10 kHz level is different from the 10 kHz level achieved in step C , request that the originating end send 1000 Hz at the CLR-specified level and adjust the LF control until the 1000 Hz level is equal to the 10 kHz level measured in this step. Repeat this step until the 1000 Hz and 10 kHz levels are equal. Be sure to record each level.
F. Request that the originating end send 15 kHz tone at the CLR-specified level. Verify the frequency and record the level. Request that the originating end send 10 kHz at the CLR-specified level and trim the HF control until the 10 kHz level is equal to the 15 kHz level measured in this step.
G. Request that personnel at the originating end send 1000 Hz tone at the CLR-specified level. Verify the frequency and adjust the $\angle F$ control until the 1000 Hz level is equal to the 10 kHz level achieved in step F. Record this new 1000 Hz level.
H. Request that the originating end send 100 Hz tone at the CLR-specified level. Verify the frequency, and adjust the $L F$ trim control until the 100 Hz level is equal to the 1000 Hz level recorded in step G.
I. Request that personnel at the originating end send 100 Hz and 15 kHz tones at the CLRspecified level. Verify the frequencies and verify that both levels are within $\pm 1 \mathrm{~dB}$ of the 1000 Hz level recorded in step G.
3.16 To adjust the gain of either module, refer to the CLR card for the required transmission level and reset the GAIN RANGE DIP switch (if necessary) for the appropriate 10 dB range. With a próperly terminated TMS (receive) connected to the module's output amp jack, request that personnel at the originating end of the circuit send 1000 Hz tone at the level specified on their CLR card. Verify the frequency and adjust the gain control clockwise until the transmission level specified on the CLR card is achieved.
Note: The active equalizer used in the 9608 and 9608A is an absorption-type equalizer that functions by reducing insertion gain of the amplifier/ equalizer combination below either 8 or 15 kHz . Thus, with the equalizer in the circuit, maximum

This condensed procedure is included to facilitate alignment of the 9608 and 9608 A . The alignment procedure is based on either modules' use in 15 kHz applications. In both 5 kHz and 8 kHz applications, the procedure is essentially the same except for the frequencies at which level measurements are made. When aligning for both 5 kHz and 8 kHz applications (am radio or television audio), level measurements are made at $8 \mathrm{kHz}, 5 \mathrm{kHz}$, 1000 Hz , and 100 Hz . Refer to the CLR card for the required input and output impedances and the required transmission level. After all options have been selected (paragraphs 3.06 through 3.11), perform each step in numeric order. Detailed alignment instructions are provided in paragraphs 3.12 through 3.17.

1 Gain switches set to 10 to 20 dB range. See paragraph 3.11 and table 5.

2 HF , LF, and GAIN controls fully counterclockwise.

3LF TRIM control to middle.

4 Connect test set to output amp jack. Use a properly terminated TMS set for receive.

5 Send 15 kHz tone. Request the originating end of the circuit to send 15 kHz test tone at the level specified in the CLR.

GRecord 15 kHz level. Verify that 15 kHz tone is being sent and record the received level.

7 Send 10 kHz tone. Verify that 10 kHz tone is being sent, and. . .

8 Adjust 10 kHz level to 15 kHz level via HF control. Adjust the HF control clockwise until level at 10 kHz is equal to 15 kHz level recorded in step 6 .
9 Recheck 15 kHz level. Have 15 kHz tone sent again and record the level. If 15 kHz level has changed, have 10 kHz tone sent again and adjust the $H F$ control until the 10 kHz level is equal to the new 15 kHz level.
10 Repeat procedure until 10 KHz and 15 kHz levels match. Repeat step 9. Several rounds of measurement and adjustment may be required to match the 10 kHz and 15 kHz levels.

11 Send 1000 Hz tone. Verify that 1000 Hz is being sent, and. . .

12 Adjust 1000 Hz level to 10 kHz level via LF control. Adjust the $L F$ control clockwise until the 1000 Hz level is equal to the 10 kHz level achieved in step 10.

13 Repeat until 1000 Hz level equals 10 kHz . Have 10 kHz tone sent again, verify the frequency, and record the level. Have 1000 Hz tone sent. Verify
the frequency and adjust the LF control until the 1000 Hz level is equal to the 10 kHz level. Several rounds of measurement and adjustment may be required.
14 Readjust 10 kHz and 15 kHz levels. Have 15 kHz tone sent. Verify the frequency and record the level. Have 10 kHz tone sent. Verify the frequency and record the level. If the levels are different, adjust the HF control until the 10 kHz level is equal to the 15 kHz level.

15Readjust 1000 Hz level. Have 1000 Hz tone sent and verify the frequency. If the 1000 Hz level is not equal to the 10 kHz level achieved in step 14, adjust the LF control until the 1000 Hz level is equal to the 10 kHz level. Record this 1000 Hz level.

16 Send 100 Hz tone. Have 100 Hz tone sent. Verify that 100 Hz tone is being sent, and. . .
17 Adjust 100 Hz level to 1000 Hz level via LF trim. Adjust the LF trim control until the 100 Hz level is equal to the 1000 Hz level achieved in step 15 .
18 Compare 100 Hz and 15 kHz levels. Have 100 Hz and 15 kHz tones sent. If these levels are within $\pm 1 \mathrm{~dB}$ of the 1000 Hz level recorded in step 15 , the equalizer is correctly adjusted.
19 set 1000 Hz level via gain switches and control. Refer to the CLR card for the required transmission level. Reset the GAIN RANGE switch (if necessary) for the appropriate 10 dB range (see table 5). Have 1000 Hz tone sent. Verify the frequency and adjust the gain control clockwise until the required transmission level is achieved.

20 Check 50 Hz and 15 kHz levels. Recheck the equalization characteristic. Have 50 Hz and 15 kHz tones sent. Verify the frequencies and record each level. If these levels match within $\pm 1 \mathrm{~dB}$, the equalizer is correctly aligned.
21 Frequency Run. Have test tones sent from 50 Hz to 15 kHz at 100 Hz intervals. Levels should be within $\pm 1 \mathrm{~dB}$ of the 1000 Hz level. Remove all test connections; alignment is completed.
amplifier gain (40dB) is realized only at frequencies near either 8 or 15 kHz .
3.17 After completing the gain adjustment, request that personnel at the originating end of the circuit send 50 Hz and 15 kHz tones at the level specified on their CLR card. Verify the frequencies and verify that the 50 Hz level is within $\pm 1 \mathrm{~dB}$ of the 15 kHz level. Make a frequency run, checking levels at 100 Hz intervals from 50 Hz to 15 kHz . Levels should be within $\pm 1 \mathrm{~dB}$ of the 1000 Hz level.

4. circuit description

4.01 This circuit description is intended to familiarize you with the 9608 Program Amplifier and 9608A Program Distribution Amplifier modules for engineering and application purposes only. Attempts to test or troubleshoot the 9608 or 9608A internally are not recommended. Procedures for recommended testing and troubleshooting in the field are limited to those prescribed in section 7 of this Practice. Please refer to the 9608-9608A block diagram, section 5 , as an aid in following this circuit description.
4.02 The input section of both modules consists of a wideband input transformer with a split primary winding, and a variable-gain preamplifier. The input transformer derives switch-selectable 600 or 150 -ohm input impedance and, when optioned for 600 ohms, provides a center tap for derivation of two input simplex leads. The transformer secondary provides input to a variable-gain preamplifier that supplies adjustable gain (0 to 10 dB) and prevents the equalizer input from affecting the amplifier input impedance.
4.03 With switch $S 2$ in the EOL OUT position, the preamplifier output is connected directly to the input of a voltage amplifier whose gain is incremented in 10 dB increments from 0 to 40 dB in response to switch settings of a three-position DIP switch. In the 9608A only, a distributive power amplifier following the voltage amplifier stage drives a distribution bus from which four resistively coupled outputs are derived. Individual auxiliary output ports are connected to the transformer secondary through precision resistors, which are switch-optioned to derive either 150 or 600 -ohm impedance. A power amplifier stage following the voltage amplifier stage drives an output transformer with a split primary winding. The output transformer provides switch-selectable 600 -ohm or 150 ohm output impedance. Output simplex leads are derived when the transformer is optioned for 600 -ohm output impedance.
4.04 When switch $S 2$ is set to the $E Q L I N$ position, an active slope equalizer is inserted between the preamplifier and the voltage amplifier gain stage. The equalizer response is determined by the location of a pair of complex conjugate poles derived through use of controlled positive feedback around an operational amplifier. Network quality factor (Q), damping factor, and natural resonance are varied to control the response shape.
6. specifications
amplifier section
amplifier type
9608: single-input, single output amplifier
9608A: single-input, five output splitting amplifier (arranged for one primary output channel and four auxiliary output channels)
gain range
0 to 40 dB in increments of 10 dB , gain continuously adjustable within each 10 dB range
frequency response (any gain setting, no equalization)
$\pm 1.2 \mathrm{~dB}$, re $1000 \mathrm{~Hz}, 20 \mathrm{~Hz}$ to 15 kHz
gain stability
maximum deviation from gain at $70^{\circ} \mathrm{F}$ is $\pm 0.7 \mathrm{~dB}$, -40° to $+140^{\circ} \mathrm{F}, 20 \mathrm{~Hz}$ to 20 kHz
maximum output level
$+20 \mathrm{dBm}, 30 \mathrm{~Hz}$ to $15 \mathrm{kHz} ;+18 \mathrm{dBm}, 20 \mathrm{~Hz}$ to 20 kHz
maximum output level (9608A auxiliary ports)
+15 dBm , all ports terminated
gain offset (main output port to auxiliary output ports, 9608A only)
$-5 \pm 0.5 \mathrm{~dB}$, with all auxiliary ports terminated
maximum input level (input stage overload point)
$+10 \mathrm{dBm}, 30 \mathrm{~Hz}$ to 20 kHz (see note, page 4)
distortion
less than $0.25 \% \mathrm{THD}, 50 \mathrm{~Hz}$ to 15 kHz , measured at +18 dBm output level;
less than 1% THD, 20 Hz to 20 kHz , measured at +18 dBm output level
gain linearity
less than 0.1 dB compression, 20 Hz to 15 kHz , any output level below +18 dBm
envelope delay
less than $15 \mu \mathrm{~s}, 200 \mathrm{~Hz}$ to 20 kHz
less than $70 \mu \mathrm{~s}, 100 \mathrm{~Hz}$ to 20 kHz
noise
maximum output noise measured with input terminated, flat weighting, 40 Hz to 15 kHz , is dependent upon amplifier gain as follows:
gain 8 kHz channel $\quad 15 \mathrm{kHz}$ channel
$10 \mathrm{~dB} \quad 5 \mathrm{dBrN} \quad 5 \mathrm{dBrN}$
$20 \mathrm{~dB} \quad 10 \quad 12$

30dB 2022
40 dB 2024
equalizer section
8 kHz equalization
$\pm 1.0 \mathrm{~dB}$ maximum deviation from flat response, 50 Hz to $8 \mathbf{k H z}$, for nonloaded cable with up to 30 dB loss differential between 100 Hz and 8 kHz

15 kHz equalization

$\pm 1.0 \mathrm{~dB}$ maximum deviation from flat response, 30 Hz to 15 kHz , for nonloaded cable with up to $\mathbf{3 0 d B}$ loss differential between 50 Hz and 15 kHz
adjustments (8 and 15 kHz equalizers)
high frequency
low frequency
low frequency trim
equalizer response stability
$\pm 0.5 \mathrm{~dB}$ maximum variation, -40° to $+140^{\circ} \mathrm{F}$

common specifications (with or without equalizer)
input impedance
600 ohms $\pm 5 \%$, balanced, 20 Hz to 15 kHz
150 ohms $\pm 15 \%$, balanced, 20 Hz to 15 kHz
output impedance
600 ohms $\pm 5 \%$, balanced, 20 Hz to 15 kHz
150 ohms $\pm 15 \%$, balanced, 20 Hz to 15 kHz
9608A auxiliary port impedance
600 ohms $\pm 5 \%, 100 \mathrm{~Hz}$ to 15 kHz
150 ohms $\pm \mathbf{2 0 \%}, 100 \mathrm{~Hz}$ to 15 kHz
longitudinal balance (input and output)
greater than $\mathbf{6 5 d B}, \mathbf{2 0 H z}$ to $\mathbf{2 0 k H z}$
maximum input voltage
$-56 \mathrm{Vdc}$
minimum input voltage (for +20 dBm output level)
$-42 \mathrm{Vdc}$
current (quiescent)
40 mA at 48 Vdc
current (+20 dBm output level)
60 mA at 48 Vdc (9608)
80 mA (9608A only, all five ports at maximum output level)
operating environment
-40° to $+140^{\circ} \mathrm{F}\left(-49^{\circ}\right.$ to $+60^{\circ} \mathrm{C}$), humidity to 95% (no condensation)
dimensions
7.91 inches (20.1 cm) high
1.70 inches (4.32 cm) wide
9.76 inches $(24.8 \mathrm{~cm})$ deep (excludes locking catch)
weight
9608: 17 ounces (481.9 grams)
9608A: 25 ounces (708 grams)
mounting
relay rack via one position of a Western Electric MTM-1, MTM-2, or CPFT Shelf

7. testing and troubleshooting

7.01 The Testing Guide Checklist in this section may be used to assist in the installation, testing, or troubleshooting of the 9608 Program Amplifier or 9608A Program Distribution Amplifier module. The Checklist is intended as an aid in the localization of trouble to a specific module. If a module is suspected of being defective, a new one should be substituted and the test conducted again. If the substitute module operates correctly, the original module should be considered defective and returned to Tellabs for repair or replacement. We strongly recommend that no internal (component-level) testing or repairs be attempted on the 9608 or 9608A module. Unauthorized testing or repairs may void the module's warranty.
Note: Warranty service does not include removal of permanent customer markings on the front pane/s
of Tellabs modules, although an attempt will be made to do so. If a module must be marked defective, we recommend that it be done on a piece of tape or on a removable stick-on label.
7.02 If a situation arises that is not covered in the Checklist, contact Tellabs Customer Service at your Tellabs Regional Office or at our Lisle, Illinois, or Mississauga, Ontario, Headquarters. Telephone numbers are as follows:

US central region: (312) 969-8800
US northeast region: (412) 787-7860
US southeast region: (305) 645-5888 US western region: (702) 827-3400 Lisle Headquarters: (312) 969-8800 Mississauga Headquarters: (416) 624-0052
7.03 If a 9608 or 9608 A is diagnosed as defective, the situation may be remedied by either replacement or repair and return. Because it is more expedient, the replacement procedure should be followed whenever time is a critical factor (e.g., service outages, etc.).

replacement

7.04 To obtain a replacement 9608 or 9608A module, notify Tellabs via letter (see addresses below), telephone (see numbers above), or ${ }^{+} w x$ (910-695-3530 in the USA, 610-492-4387 in Canada). Be sure to provide all relevant information, including the 8 X9608 or 8X9608A part number that indicates the issue of the module in question. Upon notification, we shall ship a replacement module to you. If the module in question is in warranty, the replacement will be shipped at no charge. Pack the defective 9608 or 9608A in the replacement module's carton, sign the packing slip included with the replacement, and enclose it with the defective module (this is your return authorization). Affix the preaddressed label provided with the replacement module to the carton being returned, and ship the module prepaid to Tellabs.
repair and return
7.05 Return the defective 9608 or 9608 A module, shipment prepaid, to Tellabs (attn: repair and return).
in the USA: Tellabs Incorporated 4951 Indiana Avenue Lisle, Illinois 60532
in Canada: Tellabs Communications Canada, Ltd. 1200 Aerowood Drive, Unit 11 Mississauga, Ontario, Canada L4W 2S7
Enclose an explanation of the module's malfunction. Follow your company's standard procedure with regard to administrative paperwork. Tellabs will repair the module and ship it back to you. If the module is in warranty, no invoice will be issued.

testing guide checklist

trouble condition	possible cause (in order of likelihood)
no gain	1) Incorrect setting of GAIN RANGE switch (see paragraph 3.11) \square. 2) Power input polarity \square.
excessive high-frequency roll-off	1) Use of unbalanced source or terminating meter with simplex leads or simplex capacitors grounded \square.
excessive low-frequency loss	1) Improper equalizer adjustment \square. 2) Use of capacitively coupled meter \square.
inability to properly equalize facility	1) Loss in excess of 31 dB between highest frequency of interest and $100 \mathrm{~Hz} \square$ 2) Incorrect equalization adjustment (see 3.14 and 3.15 , or figure 2) \square. 3) Non-uniform cable frequency response, including presence of load coils, build-out capacitors, or impedance compensators \square. 4) Presence of cable bridge tap, especially at point of connection of repeater \square. 5) Split cable pairs in the program circuit \square.
audible pick up of radio station	1) Unbalanced cable pairs on input side of amplifier \square. 2) Improper power-supply grounding \square. 3) Enclosure covers not in place \square. 4) Improper grounding and shielding of leads \square.
distortion at amplifier output	1) Excessive output signal level \square. 2) Input signal level too high, especially at low frequencies (input signals above +10 dBm may overload first equalizer stage) (see note, page 4) \square.

