6161, 6161A, 6161B, and 6161C 4Wire-to-4Wire SF-to-E\&M Terminal Repeaters

contents
section 1 general description
section 2 application
section 3 installation
section 4 circuit description
section 5 block diagram
section 6 specifications
section 7 testing and troubleshooting
page 1
page 2
page 5
page 9
page 14
page 15
page 15

1. general description
1.01 The 6161, 6161A, 6161B, and 6161C 4Wire-to-4Wire SF-to-E\&M Terminal Repeaters (figure 1) are Tellabs Type 10 plug-in modules that provide both active transmission interface and fullduplex SF-to-E\&M signaling conversion between a 4wire PBX trunk or 4wire line that uses E\&M signaling, and a 4wire metallic facility that uses 2600 Hz single-frequency (SF) signaling. All four 6161X modules meet the specifications given in AT\&T Technical Reference Pub 43002 for Network Channel Terminating Equipment (NCTE) Criteria, and, in addition, the 6161A and 6161C meet the specifications given in Pub 43004 for Transmission and Signaling Loopback Criteria.
1.02 In the event that this practice section is reissued, the reason for reissue will be stated in this paragraph.
1.03 While all four 6161X NCTE modules share the same basic transmission-interface and signalingconversion circuitry, some are without loopback or front-panel jacks. The differences between the four 6161-family modules are listed in table 1.

module	front-panel jacks	loopback
6161	yes	no
6161 A	yes	yes
6161 B	no	no
6161 C	no	yes

table 1. 6161 X-family module selection guide
1.04 The 6161X-family modules offer the following features:

- From -24 to +24 dB of prescription-set gain in both the transmit and receive channels at the facility-side ports.
- From 0 to 24 dB of prescription-set loss in both the transmit and receive channels at the terminal-side ports.
- Prescription receive-channel amplitude equalization equivalent to that provided by the Western Electric 309B Prescription Equalizer.
- Isolation transformers at both terminal-side and both facility-side ports.
- Independently switch-selectable 600- or 1200ohm terminating impedance at all four ports.

figure 1. 6161A 4 Wire-to-4 Wire SF-to-E\&M Terminal Repeater module
- Switch-selectable Type I, II, or III E\&M interface.
- Switch-selectable A-side or B-side E\&M signaling.
- Integral 2600 Hz SF tone oscillator.
- Front-panel LED's that light to indicate local Elead and M-lead busy.
- Reverse-voltage and overvoltage protection.
- Opening and monitoring bantam-type jacks at the input ports and opening bantam-type jacks at the output ports (6161 and 6161A only).
- Local or remote signaling and equal-level transmission loopback (6161 A and 6161C only).
1.05 The loopback circuitry on the 6161A and 6161 C provides the following features:
- Ability to remotely perform facility, level, and equalization transmission tests.
- Ability to remotely test the following signaling circuitry:

1) $S F$ detector.
2) SF transmitter (both augmented and normal levels).
3) Transmit path cut.
4) E\&M detectors and signaling relay.
5) Signaling logic.

- Manually activated (local) loopback via switch option.
- Manually activated (local) loopback via ground on the MLB lead or contact closure between the MLB and MLBG leads.
- Tone-activated (remote) loopback (2713 Hz) with second-tone or automatic timeout (see below) loopback deactivation.
- Automatic deactivation of tone loopback after switch-selectable 4-minute or 20-minute timeout interval if desired.
- From -23 to +24 dB of prescription-set gain (in switch-selectable 1 dB increments) for true equal-level loopback.
- Option switch for busying out the module's terminal side during loopback, if desired.
- Front-panel status-indicating LED that lights when the module is in loopback.

2. application

2.01 The 6161X-family 4Wire-to-4Wire SF-to-E\&M Terminal Repeater modules are typically used to interface a 4wire SF transmission facility with a 4 wire E\&M trunk or line associated with a two-way dial/supervisory telephone circuit. No external transmission interface circuitry is needed because the 6161X-family modules combine the functions of a 4 wire line amplifier, an SF transceiver, an SF-to-E\&M signaling converter and a 4 wire pad/transformer module. Figures 2 through 4 show three typical applications.
2.02 All 6161X-family modules provide from 0 to 24 dB of prescription gain or loss in 0.1 dB increments at each facility-side port, and from 0 to 24 dB of prescription loss in 0.1 dB increments at each terminal-side port (see block diagram). Prescription receive equalization is provided by a circuit equivalent to the WECo 309 B , and the terminating impedance at each port can be independently switch-selected for 600 or 1200 ohms for a variety of facilities and equipment.
2.03 Table 1 in section 1 of this practice will aid in determining which module is best suited for a particular application. Typically, if loopback is required, it need only be provided by one module of a loop-extending pair of 6161X's (usually at the terminal end). Front-panel jacks may be unnecessary if prescription alignment is to be used exclusively.
2.04 In applications where the serving telephone company uses facility-side SF signaling, the 6161X-
family modules fulfill the signaling-application requirements listed in table 2. Please note that in this table, A-side and B-side are the E\&M signaling arrangements of the port that the 6161 X interfaces.

Registered				
Facility Interface Code	E\&M interface	E\&M signaling arrangement*	$\mathbf{6 1 6 1 X}$ signaling directions	
TL31M or TC31M	Type I	A side	out	M lead
TL31E or TC31E	Type I	B side	in	out
TL32M or TC32M	Type II	A side	out	in
TL32E or TC32E	Type II	B side	in	out
-	Type III	A side	out	in
* Of port that 6161 X in interfacing.				

table 2. SF signaling and E\&M interface optioning for Registered Facility Interface Codes
2.05 The 6161X-family modules can be optioned to provide either A-side E\&M signaling (where Mlead signals are incoming to and E-lead signais are outgoing from the module) or B-side E\&M signaling (where E-lead signals are incoming to and M-lead signals are outgoing from the module) on the terminal side.
2.06 In typical A-side E\&M signaling with Type I interface, the 6161X provides an E-lead output that is open when SF tone is detected and that is at ground otherwise. In the transmit channel, SF tone is transmitted when the M lead is either open or at ground, and ceases when the M lead goes negative. The E-lead output from the 6161 X is derived via relay contacts, which can be externally wired to accommodate any E-lead interface (Type I, II or III). The relay is energized when the module detects no SF tone at the receive input and is de-energized when the SF tone is detected. The 6161X's full precision receive pulse corrector restricts the pulsing relay to nominal 58\% break.
2.07 In typical B-side E\&M signaling with Type I interface, the 6161X provides an M-lead output that is at ground when SF tone is detected and is at battery potential otherwise. In the transmit channel, SF tone is transmitted when the E lead is open

figure 2. Typical short-haul tie-trunk circuit using 6161X-family NCTE modules

figure 3. Typical long-haul analog tie-trunk circuit using 6161X-family NCTE modules

figure 4. Typical long-haul digital tie-trunk circuit using 6161 X -family NCTE modules
and ceases when the E lead goes to ground. The Elead output from the 6161X is derived via relay contacts, which can be externally wired to accommodate either Type I or Type II E\&M-lead interface (Type III interface cannot be used with B-side signaling). The relay is de-energized when the module detects no SF tone at the receive input and is energized when the SF tone is detected.
2.08 The 6161X interfaces the receive path on the facility side at any TLP from -17 to +7 . Idlestate SF tone is received at a level of -20 dBmO . A higher level of -8 dBmO is received during break portions of dial pulses and for about 400ms at the beginning of each tone interval. Within approximately 13 ms of detection, a band-elimination filter (BEF) is inserted into the receive transmission path to prevent propagation of SF tone beyond the module. See tables 3 and 4 for details concerning BEF insertion.
2.09 The 6161X interfaces the transmit path on the facility side at any TLP from +8 to -16 and transmits tones at either of two levels. During the idle state, the module transmits SF tone at -20 dBmO . During dial pulsing and also for the first 400 ms each time it applies tone to the facility, the 6161X transmits SF tone at a higher level of -8 dBmO . This momeritarily increased tone level aids in detection of supervisory-state changes and incoming dial pulsing.
2.10 The transmit voice path through the 6161X is cut (opened) during idle circuit conditions and is restored when the M lead (A-side signaling) or the E lead (B-side signaling) is in the busy condition. The path is also cut during dialing in either direction and is momentarily cut in response to any transition of the M lead while the E lead is in the off-hook state (A-side signaling) or in response to any transition of the E lead while the M lead is in the off-hook state (B-side signaling). These path
cuts prevent transmission of noise, transients, speech, and other interfering signals during critical signaling intervals.
2.11 Figures 5 through 9 show the various E\&M signaling interfaces listed in table 2. Either Type I, II, or III E\&M signaling interface can be selected via switch. Type I is often used with electromechanical switching systems, while Types II and III are often used in electronic switching environments.
2.12 The 6161X-family modules use relay contacts to derive E -lead and M -lead signaling. This facilitates interfacing with nonstandard E-lead and M -lead voltage levels and polarities. When these modules are used with Type II E\&M interface, terminal-side equipment can use any convenient voltage or polarity.
2.13 Generally, if loopback is to be used, the terminal-end module will be the one requiring loopback capabilities (6161A or 6161C). Equal-level transmission loopback is made possible via the loopback level switches, which provide from -23 to +24 dB of gain in 1 dB increments. The loopback circuitry also provides signaling loopback functions for remote testing of the SF and E\&M signaling circuitry. Some examples of signaling loopback use are as follows:
A. After loopback is initiated, 2600 Hz tone is transmitted toward the terminal end at -10 dBmO and again at -20 dBmO . In both cases, the receive channel should echo back an SF tone at -20 dBmO after an initial 400 ms tone burst at an augmented level of -8 dBmO .
B. Pulsed SF tone is transmitted toward the terminal end. The receive channel should echo back pulsed SF tone at a nominal 58% break.
2.14 Several modes of loopback initiation and removal are available; all are selected via option switches. These modes are described in section 3 of this practice.
practice section $816161 / 816161 \mathrm{~A} / 816161 \mathrm{~B} / 816161 \mathrm{C}$

table 3. SF tone states and status of transmit path cut and receive BEF for local call origination

circuit condition	SF tone states		local condition of xmt path cut			local rev-path band-elimination-filter (BEF) insertion
	$x m t$	rcv	before	change	after	
Idte	on	on	cut	none	cut	inserted
seizure, distant end	on	on/off transition	cut	remains cut $625 \pm 125 \mathrm{~ms}$ after cessation of SF tone	not cut	removed $50 \pm 5 \mathrm{~ms}$ after cessation of SF tone
local end returns delay-dial signal	on/off transition	off	not cut	cut $125 \pm 50 \mathrm{~ms}$ after M-lead transition from ground to battery*	not cut	out of circuit
local end returns start-dial signal	off/on transition	off	not cut	precut $15 \pm 7 \mathrm{~ms}$; remains cut $625 \pm 125 \mathrm{~ms}$ after M-Lead transition from battery to ground*	not cut	out of circuit
distant end transmits dial pulses	on	off/on and on/off transitions, ending with on/ off transition	not cut	cut within 7 ms of receipt of first tone pulse; remains cut as long as incoming break/make transitions are less than $625 \pm 125 \mathrm{~ms}$ after last incoming on/off transition	not cut	inserted $13 \pm 7 \mathrm{~ms}$ after receipt of first tone pulse: remains in circuit until $50 \pm 5 \mathrm{~ms}$ after last incoming on/off transition or $225 \pm 50 \mathrm{~ms}$, whichever is longer
local end answers (free call)	on	off	not cut	none	not cut	out of circuit
local end answers (toll call)	on/off transition	off	not cut	cut $125+50 \mathrm{~ms}$ after M -lead transition from ground to battery*	not cut	out of circuit
talking	off	off	not cut	none	not cut	out of circuit
disconnect, distant end	off	off/on transition	not cut	none	notcut	inserted $13 \pm 7 \mathrm{~ms}$ after receipt of SF tone
disconnect, local end	off/on transition	on	not cut	precut $15 \pm 7 \mathrm{~ms}$; then continuously cut	cut	inserted
idie	on	on	cut	none	cut	inserted

table 4. SF tone states and status of transmit path cut and receive BEF for distant-location call origination

figure 5. Type I E\&M interface (TL31M or TC31M); A side

figure 6. Type // E\&M interface (TL32M or TC32M); A side

figure 7. Type III E\&M interface; A side

figure 8. Type I E\&M interface (TL31E or TC31E); B side

figure 9. Type II E\&M interface (TL32E or TC32E); B side

3. installation
 inspection

3.01 The 6161X 4Wire-to-4Wire SF-to-E\&M Terminal Repeater module should be visually inspected upon arrival to find any damage incurred during shipment. If damage is noted, a claim should immediately be filed with the carrier. If stored, the module should be visually inspected again prior to installation.

mounting

3.02 The 6161X mounts in one position of a Tellabs Type 10 Mounting Shelf, in one position of a Tellabs 262 U Universal Network Terminating System Assembly, or in one position of a Tellabs 260A Signaling and Terminating System Assembly, all of which are available in configurations for relay-rack and apparatus-case installation. The module plugs physically and electrically into a 56-pin connector at the rear of its shelf or assembly position.
3.03 In applications where a 6161 X module is to be installed in a 262 U Assembly, no additional connections need be made. This is because all of the Assembly's internal connections are factory-prewired and because external wiring is simplified through the use of female 25 -pair connector-ended cables arranged in accordance with Universal Service Order Code (USOC) RJ2HX. If the customer's ter-
minal equipment is cabled in accordance with USOC RJ2HX, direct connection between the 262 U System Assembly and the customer's equipment is possible. If not, cross-connections between the 262 U Assembly and the local terminal equipment must be made at an intermediate connectorized terminal block or by means of an optional adapter cable available as a list number for the 262 U Assembly.

installer connections

3.04 When a 6161 X module is to be installed in a conventional Type 10 Shelf, external connections to the module must be made. Before making any connections to the mounting shelf, case, or assembly, make sure that power is off and modules are removed Modules should be put into place only after they are properly optioned and after wiring is completed.
3.05 Table 5 lists external connections to the 6161X module. All connections to non-prewired mountings are made via wire-wrapping to the 56pin connector at the rear of the module's shelf, case, or assembly position. Pin numbers are found on the body of the connector.

connect:	to pin:
RCV IN TIP	. 7
RCV IN RING	13
RCV OUT TIP.	5
RCV OUT RING	15
XMT OUT TIP	41
XMT OUT RING	. . 47
XMT IN TIP	55
XMTIN RING 49
RCV SXIN	. 9
RCV SX OUT	3
XMT SXIN.	. 51
XMT SX OUT.	45
Elead	23
M lead.	21
SB lead	. 1
SG lead	19
MLB (manual loopback)	18
MLBG (manual loopback ground)	37
-BATT (-42 to -54 Vdc filtered input)	35
GND (ground) .	. 17

table 5. External connections to 6161 X

option selection

3.06 A number of option switches must be set before the 6161X can be placed into service. These switches and their functions are described in paragraphs 3.07 through 3.10. The locations of the switches on the module's printed circuit board are shown in figure 10. Table 6 provides a convenient checklist for optioning the module.

impedance matching

3.07 Two-position DIP switches S1 and S2 on the main board select balanced terminating impedance of either 600 ohms in the up position or 1200 ohms in the down position for each of the module's four ports as follows:

switch	port
S1-1	receive input (facility side)
S1-2	receive output (terminal side)
S2-1	transmit input (terminal side)
S2-2	transmit output (facility side)

E\&M signaling interface

3.08 Switch S10 selects Type I, Type II, or Type III E\&M interface. Determine the E\&M interface of the terminal equipment interfaced by the 6161X and set S10 to either I/III (Type I or Type III) or II (Type II), as appropriate.
3.09 Switch S11 should be set according to which E\&M signaling arrangement the terminal equipment uses (A-side or B-side). If the 6161 X is to receive M -lead signals and send E -lead signals,
set S11 to A. If the module is to send M-lead signals and receive E-lead signals, set S11 to B. See table 7 for Registered Facility Interface Code cross-references.

loopback optioning (6161A and 6161C only)

3.10 The five-position LPBK DIP switch on the module's subassembly is used to select several loopback functions as follows:
$B O$, busy out terminal side:
Set the $B O$ switch toward $B O$ if the terminal side is to be busied out during loopback or away from $B O$ if not.
ML, manual loopback:
Set the $M L$ switch toward $M L$ to manually place the module into loopback. Please note that when manual loopback is in effect, loopback cannot be deactivated by 2713 Hz tone. Set the $M L$ switch away from $M L$ to deactivate manual loopback.
$T L$, tone loopback:
Set the $T L$ switch toward $T L$ to enable toneactivated loopback. In this mode, loopback is activated when a 2713 Hz tone burst is applied to the facility-side receive input pair (pins 7 and 13) for a minimum of 2.5 seconds and then removed. When loopback is activated in this manner, it can be deactivated in either of two ways. One is application of a second 2713 Hz tone for a minimum of 1.2 seconds; the other is automatic timeout deactivation after a selected length of time (see below).
TO, loopback timeout:
If automatic deactivation of tone-activated loopback after a timeout period is desired, set the TO

option	paragraph	switch	selection	settings	checklist
facility-side transmit out impedance	3.07	S2-2	600 ohms	600	
			1200 ohms	1200	
terminal-side transmit in impedance	3.07	S2-1	600 ohms	600	
			1200 ohms	1200	
facility-side receive in impedance	3.07	S1-1	600 ohms	600	
			1200 ohms	1200	
terminal-side receive out impedance	3.07	S1-2	600 ohms	600	
			1200 ohms	1200	
Type I, Type II or Type III E\&M interface	3.08	S10	Type I or III	1/111	
			Type II	II	
A-side or B-side E\&M signaling	3.09	S11	A-side int.	A	
			B-side int.	B	
Note: The following options are on the 6161A and 6161C only.					
busy out terminal side during loopback	3.10	$\begin{aligned} & \text { LPBK } \\ & \text { BO } \end{aligned}$	no busy out	(up)	
			busy out	BO	
manual loopback activation	3.15	$\begin{aligned} & \text { LPBK } \\ & \mathrm{ML} \\ & \hline \end{aligned}$	loopback off	(up)	
			loopback on	ML	
Note: The following options are on the 6161A and 6161C only.					
tone loopback activation	3.10	$\begin{aligned} & \text { LPBK } \\ & \mathrm{TL} \\ & \hline \end{aligned}$	disabled	(up)	
			enabled	TL	
tone loopback automatic timeout	3.10	$\begin{aligned} & \text { LPBK } \\ & \text { TO } \\ & \hline \end{aligned}$	disabled	(up)	
			enabled	TO	
automatic timeout duration	3.10	$\begin{aligned} & \text { LPBK } \\ & 4 / 20 \\ & \hline \end{aligned}$	4 minutes	4	
			20 minutes	20	

table 6. 6161X option switch summary and checklist

RegisteredFacilityInterface Code	E\&Msignalinginterface	terminalequipment E\&M signaling	switch settings	
			S10	S11
TL31M or TC31M	Type I	A side	I/III	A
TL31E or TC31E	Type I	B side	1/III	B
TL32M or TC32M	Type II	A side	11	A
TL32E or TC32E	Type II	B side	11	B
N/A	Type III	A side	1/III	A

table 7. A-side/B-side and Type $1 / 11 / I I I$ optioning for various Registered Facility Interface Codes
switch toward $T O$; otherwise, tone-activated loopback can only be deactivated by a second tone burst.

4/20, loopback timeout duration:
The 4/20 switch selects the timeout period for automatic deactivation of tone-activated loopback Set this switch to 4 if a 4-minute timeout period is desired or to 20 if a 20-minute timeout is desired. (This switch is anabled only when loopback timeout is selected via the TO switch.)

alignment

3.11 Alignment of the 6161X-family modules comprises the following individual procedures performed in sequence (all option switches should already be properly set as described above):
A. Setting the receive-channel levels.
B. Introducing receive-channel equalization, if necessary.
C. Setting the transmit-channel levels.
D. Setting the loopback-path level (6161A and 6161C only).
3.12 Because internal TLP levels of +7 TLP in the receive path and -16 TLP in the transmit path must be maintained regardless of external levels, two level control circuits are present in each path. This is shown in figure 11.
3.13 The 6161X-family modules are primarily intended for prescription alignment. This involves setting all gain and equalization switches according to specifications on the circuit layout record (CLR) prior to installation of the module. Simply
indicate the proper settings in the checklist column of table 8; then refer to the table while performing the alignment procedure. In cases where CLR specifications are unavailable or inadequate, the non-prescription method is necessary. This is covered in paragraphs 3.14 through 3.17.
Note: Because the 6161B and 6161C do not contain test jacks, non-prescription alignment of these modules is not recommended. If, however, nonprescription alignment is necessary, the use of a Tellabs 9801 or 9802 Card Extender or an external jackfield is strongly recommended to simplify alignment. The $6161 B / C$ can also be aligned if measurements are made at the numbered pins at the rear of the module's mounting position and care is taken to avoid double terminations. In some instances, it may be necessary to remove some wire-wrapping connections at the module's mounting-shelf connector before tone can be applied or measured.

non-prescription alignment

3.14 Initial settings:
A. Ensure that all impedance options are properly set.
B. Set all positions of the front-panel xmt fac level, xmt term loss, rav fac level, and rcv term loss DIP switches to the out position for no gain or loss.
C. Set all receive equalization DIP switches (SLOPE, HT and BW) to the out position for no equalization.
D. Set all loopback level DIP switches to the up position (6161A and 6161C only) for no loopback path gain or loss.
3.15 Receive-channel level adjustment:
A. Connect the receive portion (properly terminated) of a transmission measuring set (TMS) to the rov out jack. Request the distant location to send 1004 Hz at 0.0 dBmO . Verify that tone is present and measure its level.
B. Determine whether the measured level is higher or lower than +7 dBm .

figure 11. Level coordination in the 6161X

alignment function	switch	selections	settings	checklist
transmit-channel loss or gain	front-panel xmt fac level loss/gain	loss	Is	
		gain	gn	
transmit-channel facility-side level adjustment	front-panel xmt fac level DIP switch*	0.1 dB (gain or loss)	0.1 to IN	
		0.2 dB (gain or loss)	0.2 to IN	
		0.4 dB (gain or loss)	0.4 to IN	
		0.8 dB (gain or loss)	0.8 to IN	
		1.5 dB (gain or loss)	1.5 to IN	
		3.0 dB (gain or loss)	3.0 to IN	
		6.0 dB (gain or loss)	6.0 to IN	
		12.0 dB (gain or loss)	12.0 to IN	
transmit-channel terminal-side flat loss	front-panel xmt term loss DIP switch*	0.1 dB loss	0.1 to IN	
		0.2 dB loss	0.2 to IN	
		0.4 dB loss	0.4 to IN	
		0.8 dB loss	0.8 to IN	
		1.5 dB loss	1.5 to IN	
		3.0 dB loss	3.0 to IN	
		6.0 dB loss	6.0 to IN	
		12.0 dB loss	12.0 to N	
receive-channel loss or gain	front-panel rcv fac level loss/gain	loss	Is	
		gain	gn	
receive-channel facility-side level adjustment	front-panel rcv fac level DIP switch*	0.1 dB (gain or loss)	0.1 to IN	
		0.2 dB (gain or loss)	0.2 to IN	
		0.4 dB (gain or loss)	0.4 to IN	
		0.8 dB (gain or loss)	0.8 to IN	
		1.5 dB (gain or loss)	1.5 to iN	
		3.0 dB (gain or loss)	3.0 to IN	
		6.0 dB (gain or loss)	6.0 to IN	
		12.0 dB (gain or loss)	12.0 to IN	
receive-channe terminal-side flat loss	front-panel revterm loss DIP switch*	0.1 dB loss	0.1 to IN	
		0.2 dB loss	0.2 to IN	
		0.4 dB loss	0.4 to IN	
		0.8 dB loss	0.8 to IN	
		1.5 dB loss	1.5 to IN	
		3.0 dB loss	3.0 to IN	
		6.0 dB loss	6.0 to IN	
		12.0 dB loss	12.0 to IN	
receive-channel equalization	slope	loaded or nonloaded cable	down for loaded, up for nonloaded	
		1	1 to IN	
		2	2 to IN	
		4	4 to IN	
		8	8 to IN	
	HT	1	1 to IN	
		2	2 to IN	
		4	4 to IN	
		8	8 to IN	
	BW	1	1 to IN	
		2	2 to IN	
		4	4 to IN	
		8	8 to IN	
loopback gain/loss	LPBK LVL S16-1 through S16-6*	23 dB loss	S16-1 to IN	
		0.5 dB gain	S16-2 to IN	
		1.5 dB gain	St6-3 to IN	
		3 dB gain	S16-4 to IN	
		6 dB gain	S16-5 to IN	
		12 dB gain	S16-6 to IN	
* All level switches are cumulative. Total flat gain introduced is the sum of all DIP-switch positions set to IN. For zero gain or loss, set all DIP-switch positions to OUT.				

table 8. 6161 X alignment-switch summary and checklist

1. If the measured level is lower than +7 dBm , set the front-panel rcv fac level gn/ls switch to $g n$. Then set to $I N$ the proper combination of front-panel rov fac level switches that equals the required gain.
2. If the measured terminal-side level is higher than +7 dBm , set the front-panel rcv fac level $g n / / s$ switch to $/ \mathrm{s}$. Then set to $/ \mathrm{N}$ the proper combination of front-panel rcv fac level switches that equals the required amount of loss.
C. Refer to the CLR for the specified receive output level.
D. Calculate the difference between this specified output level and the internally derived +7 dBm level.
E. Set to in the proper combination of front-panel rev term loss DIP-switch positions that adds up to this difference.
3.16 Transmit-channel level adjustment:
A. Remove the transmit speech path cut by seizing the circuit from the terminal side.
B. Connect the transmit portion of the TMS (properly terminated) to the xmt in jack. Send 1004 Hz from the terminal-side location at 0.0 dBmO .
C. Connect the receive portion of the TMS (properly terminated) to the xmt out jack.
D. Set to $I N$ the proper combination of xmt term loss DIP-switch positions so that a -16 dBm level is acheived.
E. Refer to the CLR for the specified level at the distant end.
F. Request personnel at the distant end to measure their receive level.
G. Calculate the difference between this specified level and the measured level.
H. Determine whether the specified level is higher or lower than the measured level.
3. If the specified level is lower, then set the front-panel xmt fac level $g n / l s$ switch to $g n$. Then set to $I N$ the proper combination of front-panel xmt fac level switches that equals the calculated difference.
4. If the specified level is higher, then set the front-panel xmt fac level gn/ls switch to $/ \mathrm{s}$. Then set to $I N$ the proper combination of front-panel xmt fac level switches that equals the calculated difference.

receive-channel equalization alignment

3.17 The receive-channel equalizer on the 6161 X is functionally identical to the Western Electric 309B Prescription Equalizer. Prescription settings for the equalizer can be found in BSP (Bell System Practice) section 332-912-232, and manual alignment procedures for the equalizer can be found in BSP section 332-912-234.

loopback level adjustment

3.18 To adjust the 6161X's loopback-level-control circuitry to provide equal-level loopback, proceed as follows:
A From the CLR, determine the specified receive input and receive output levels.
B. Subtract the receive output level from the
receive input level. The result will be the amount of gain required in the loopback path.
C. On the 6161X's loopback subassembly, set to on that combination of LPBK LVL DIP-switch (S16) positions which most closely approximates the amount of gain determined in step B.

4. circuit description

4.01 This circuit description is intended to familiarize you with the operation of the 6161X 4Wire-to-4Wire SF-to-E\&M Terminal Repeater modules. Attempts to troubleshoot these modules internally are not recommended and may void your warranty. Please refer to the 6161X block diagram, section 5 of this practice, as an aid in following this circuit description.

receive path

4.02 A transformer at the 4wire receive input port interfaces the transmission facility and derives tip, ring, and simplex leads. The transformer's secondary windings are coupled to a resistive switchselectable 600 - or 1200 -ohm impedance-matching network and to a buffer.
4.03 Lightning protection is provided for the buffer by varistors. The output of the buffer is connected to prescription rev fac level circuitry for level coordination and thence to a series-connected active prescription amplitude equalizer that is equivalent to the Western Electric 309B Prescription Equalizer. The output of the amplitude equalizer is connected to a band-elimination filter ($B E F$), which, at the appropriate time, filters out 2600 Hz SF tone. The rcv term loss attenuating network provides the proper terminal equipment levels without affecting the levels of the signal that the SF detector receives. The driver drives the transformer-coupled receive output port via switch-selectable 600- or 1200 -ohm impedance-matching circuitry.

transmit path

4.04 The transmit input port is transformercoupled to a buffer which contains switchselectable 600- or 1200 -ohm impedance matching circuitry. The buffer, in turn, feeds the prescription xmt term loss circuitry for terminal-side level coordination, after which SF tones from the 2600 oscillator can be inserted via the SF tone control circuit. The transmit signal is then routed through the xmt fac level prescription level-control circuitry for facility-side level coordination and then is applied to a driver, which is protected from lightning by varistors. The driver, which contains switchselectable 600- or 1200 -ohm impedance-matching circuitry, drives the 4 wire transmit output port via a transformer that derives tip, ring, and simplex leads.

SF signaling

4.05 At the terminal end of the SF signaling path, the $E \& M$ signaling interface circuit determines the state of the local M lead (A-side signaling) or E lead (B-side signaling) and communicates with the control logic to initiate proper transmit path cut and SF tone transmission. The E\&M signaling interface also
performs the switching functions necessary for signaling-loopback operation. The control logic circuit receives an indication from the SF detector when tone is received and causes the E\&M signaling interface to output the proper E-lead or M-lead states. Figures 11, 12, and 13 are function sequence flowcharts that illustrate the signaling operation of the 6161X with A-side signaling. Horizontal paths identify events occuring simultaneously, and vertical paths denote sequential events. Dotted lines indicate elapsed time.

loopback (6161A and 6161C only)

4.06 Loopback of the module is activated when the LB relay operates. This relay is controlled by the loopback detector and control circuit, which operates the relay when any of three things happens:
A A 2713 Hz tone of correct level and duration is detected in the receive path.
B. The external loopback lead (pin 18) is grounded or connected to pin 37.
C. The ML DIP switch is closed.

In the first case (tone loopback), loopback can be deactivated by either a second 2713 Hz tone or by automatic timeout circuitry. In the second case, if the external loopback lead is grounded, the ground must be removed to deactivate loopback. In the third case, if the $M L$ switch is closed, it must be opened again to deactivate loopback.
4.07 When the module is in loopback, the LB relay contacts disconnect the terminal-side ports from the 6161 X circuitry and connect the output of the receive-path output driver to the input of the transmit-path buffer.

power supply

4.08 The power supply in the 6161X module is a series-regulated bipolar supply that uses a zener diode to derive a reference source. A diode in series with the negative input lead protects against reversed voltage connections.
6. specifications
transmission
maximum input and output level, transmit channel $+3.0 \mathrm{dBmO}$
maximum input and output level, receive channel $+0.0 \mathrm{dBmO}$
total harmonic distortion
less than $\mathbf{1 \%}$ at overload point
transmit-channel frequency response re 1004 Hz
300 to $500 \mathrm{~Hz} \pm 0.8 \mathrm{~dB}$
500 to $3400 \mathrm{~Hz} \pm 0.5 \mathrm{~dB}$
receive-channel frequency response re 1004 Hz
(BEF removed)
300 to $500 \mathrm{~Hz}+0.0,-1.7 \mathrm{~dB}$
500 to $3400 \mathrm{~Hz} \pm 0.7 \mathrm{~dB}$
terminating impedances (all four ports)
600 or 1200 ohms, balanced, individually switchselectable
insertion loss
$0 \pm 0.2 \mathrm{~dB}$ at 1004 Hz
internal noise
17 dBrnC maximum at maximum gain
longitudinal balance (all ports)
greater than $\mathbf{6 0 d B}, 200$ to $\mathbf{3 0 0 0 H z}$
echo return loss (all ports)
23 dB minimum vs. $\mathbf{6 0 0}$ or 1200 ohms
crosstalk between transmit and receive channels 80 dB minimum, 200 to $\mathbf{3 4 0 0 \mathrm { Hz }}$
crosstalk between adjacent modules
80 dB minimum, 200 to 3400 Hz
peak-to-average ratio ($P / A R$) (BEF removed)
98 minimum, without equalization

SF transmit section

internal SF tone oscillator frequency $2600 \pm 5 \mathrm{~Hz}$ for life of unit
SF tone levels
high (augmented) level: $-8 \mathrm{dBmO} \pm 1 \mathrm{~dB}$
low level: $-20 \mathrm{dBmO} \pm 1 \mathrm{~dB}$
SF tone states
idle: tone transmitted
busy: tone not transmitted
dialing: tone transmitted during the break portions of dial pulses
high-leve! timing
high-level tone is transmitted for $400 \pm 100 \mathrm{~ms}$
following each off-hook-to-on-hook transition of M lead (A-side signaling) or E lead (B-side signaling)
M-lead delay (A-side signaling) or E-lead delay (B-side signaling)
$18 \pm 5 \mathrm{~ms}$ delay between M-lead or E-lead state change and SF-tone state change
pulsing characteristics (M or E lead to SF)

- input breaks or makes shorter than M-lead or Elead delay are not recognized
- minimum break duration of $50 \mathrm{~ms} \pm 2 \mathrm{~ms}$
- minimum make duration of $25 \mathrm{~ms} \pm \mathbf{2 m s}$
transmit-path cut insertion
transmit speech path is cut (opened) $18 \pm 5 \mathrm{~ms}$
before transmission of SF tone
transmit-path cut removal
transmit speech path cut is removed $125 \pm 50 \mathrm{~ms}$
after detection of an off-hook condition

SF receive section

SF tone frequency
$2600 \pm 15 \mathrm{~Hz}$
SF tone detection range
0 to $\mathbf{- 2 7 d B m O}$
SF tone rejection
less than or equal to $\mathbf{- 3 7} \mathbf{d B m O}$
signal-to-guard ratio for signal detection
6 to 12 dB
maximum line noise
51dBrnCO
guard circuit transition timing
high-to-low: $225 \pm 60 \mathrm{~ms}$
low-to-high: $50 \pm 10 \mathrm{~ms}$
band-elimination-filter timing

- insertion time: $13 \pm \mathbf{7 m s}$
- insertion duration for SF tones shorter than $175 \pm$ 60 ms : $225 \pm 50 \mathrm{~ms}$ (with BEF insertion duration longer than tone duration in all cases)
- insertion duration for SF tones longer than $175 \pm$ 60 ms : duration of $S F$ tone plus $50 \pm 10 \mathrm{~ms}$

practice section $816161 / 816161 \mathrm{~A} / 816161 \mathrm{~B} / 816161 \mathrm{C}$

figure 13. Function sequence flowchart, outgoing call

figure 14. Function sequence flowchart, disconnect sequence for incoming and outgoing calls
page 13
practice section $816161 / 816161 \mathrm{~A} / 816161 \mathrm{~B} / 816161 \mathrm{C}$

dial pulse characteristics, SF to E lead (A side) or SF to M lead (B side) for pulse rates of 8,10 , and 12 pps input break: 50% to $\mathbf{7 5 \%}$
output break: $58 \% \pm 4 \%$
current limiting
provided for M (B side, Type l) and $S B$ (A side) leads
signaling relay (A-side E-lead, B-side M-lead) contact rating
maximum current: 1 ampere
maximum voltage: 200Vdc
contact resistance: 50 milliohms maximum contact protection: internal transient protection is provided

E\&M signaling, A side

E-lead current rating
500mA maximum
E-lead resistance
less than 0.5 ohms
M-lead sensitivity
-20Vdc minimum threshold; 500 ohms minimum external M-lead resistance from -48 Vdc , will not detect 20 kohms or greater external M-lead resistance

E\&M signaling, B side

M-lead current rating
500 mA maximum
M-lead current from battery (Type I interface only) 100 mA with less than $\mathbf{5}$-volt drop; current limiting above 200 mA
E-lead sensitivity
500 ohms minimum external M -lead resistance to ground, will not detect 20kohms or greater external E-lead resistance

transmission and signaling loopback (6161A and 6161C only)

tone-loopback frequency
$\mathbf{2 7 1 3 H z} \pm \mathbf{7 H z}$
tone-loopback activation/deactivation level
-30 to -3 dBm
tone-loopback activate time
2.5 seconds minimum (activates upon removal of tone)
tone-loopback deactivate time
1.2 seconds minimum (deactivates immediately thereafter)
automatic timeout (tone loopback only)
4 or $\mathbf{2 0}$ minutes, switch-selectable
signal-to-guard ratio
greater than 6 dB ; less than 18 dB
loopback-path gain
$\mathbf{- 2 3}$ to +24 dB in 1 dB increments
loopback level accuracy
$\pm 0.5 \mathrm{~dB}$

common specifications

input voltage
-42 to -54 Vdc , filtered, positive-ground referenced current requirements (0 -ohm loop)

6161 and 6161B		
condition	busy	idle
-48 Vdc	75 mA	60 mA
-52 Vdc		
(max. output)	100 mA	90 mA

6161A and 6161C			
condition	loopback	busy (OdBm)	idle
$-48 \mathrm{Vdc}$	on	85 mA	70 mA
	off	80 mA	65 mA
-52 Vdc (max. output)	on	110 mA	100 mA
	off	105 mA	95 mA

operating environment
32° to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $50^{\circ} \mathrm{C}$), humidity to 95%
(no condensation)
dimensions
5.58 inches (14.2 cm) high
1.42 inches (3.6 cm) wide
5.96 inches (15.1 cm) deep
weight
10 ounces (284 grams)
mounting
relay rack or apparatus case via one position of a Tellabs Type 10 Mounting Shelf. Can also be mounted in one position of a Tellabs 262U Universal Network Terminating System Assembly or in one position of a Tellabs 260A Signaling and Terminating System Assembly.

7. testing and troubleshooting

7.01 The troubleshooting guide in this section may be used to assist in the installation, testing, or troubleshooting of any of the 6161X 4Wire-to4Wire SF-to-E\&M Terminal Repeater modules. The guide is intended as an aid in the localization of trouble to a specific module. Proper operation of the module can be verified by observing its actual operation while referring to the function sequence flowcharts (figures 11, 12, and 13). If a module is suspected of being defective, a new one should be substituted and the test conducted again. If the substitute module operates correctly, the original module should be considered defective and returned to Tellabs for repair or replacement as directed below. We strongly recommend that no internal (component-level) testing or repairs be attempted on the 6161X module. Unauthorized testing or repairs may void the module's warranty. Also, if the module is part of a registered system, unauthorized repairs will result in noncompliance with Part 68 of the FCC Rules and Regulations.
Note: Warranty service does not include removal of permanent customer markings on the front of Tellabs modules, although an attempt will be made to do so. If a module must be marked defective, we recommend that it be done on a piece of tape or on a removable stick-on label.
7.02 If a situation arises that is not covered in the guide, contact Tellabs Customer Service as follows (telephone numbers are given below):

USA customers: Contact Tellabs Customer Service at your Tellabs Regional Office.
Canadian customers: Contact Tellabs Customer Service at our Canadian headquarters in Mississauga, Ontario.
International customers: Contact your Tellabs distributor.

US Atlantic region: (203) 798-0506
US central region: (312) 969-8800
US northeast region: (412) 787-7860
US southeast region: (305) 645-5888
US western region: (702) 827-3400
Canada: (416) 624-0052
7.03 If a module is diagnosed as defective, follow the replacement procedure in paragraph 7.04 when a critical service outage exists (e.g., when a system or a critical circuit is down and no spares are available). If the situation is not critical, follow the repair and return procedure in paragraph 7.05.

replacement

7.04 To obtain a replacement module, notify Tellabs via letter or telephone (see addresses and numbers below), or via TWX (910-695-3530 in the USA, 610-492-4387 in Canada). Be sure to provide all relevant information, including the 8X6161X part number that indicates the issue of the module in
question. Upon notification, we shall ship a replacement module to you. If the module in question is in warranty, the replacement will be shipped at no charge. Pack the defective module in the replacement module's carton, sign the packing slip included with the replacement, and enclose it with the defective module (this is your return authorization). Affix the preaddressed label provided with the replacement module to the carton being returned, and ship the module prepaid to Tellabs.

repair and return

7.05 Return the defective module, shipment prepaid, to Tellabs (attn: repair and return).
in the USA: Tellabs Incorporated 4951 Indiana Avenue Lisle, Illinois 60532 telephone (312) 969-8800
in Canada: Tellabs Communications Canada, Ltd. 1200 Aerowood Drive, Unit 39 Mississauga, Ontario, Canada L4W $2 S 7$
telephone (416) 624-0052
Enclose an explanation of the module's malfunction. Follow your company's standard procedure with regard to administrative paperwork Tellabs will repair the module and ship it back to you. If the module is in warranty, no invoice will be issued.

troubleshooting guide

Note: Because the 6161 X contains a mercury-wetted relay, this module should always be held in an upright position and tapped gently on a hard surface before installation. The module should then be kept in an upright position until installed. If trouble is encountered with an installed module, remove it from the mounting shelf and repeat this procedure before taking any further corrective action.

trouble condition	possible causes
module completely	1) No input power.
inoperative	2) Improper wiring.
cannot derive proper	1) Front panel gn/ls switches improperly set.
transmission levels	2) Impedance option switches improperly set.
	3) Receive equalization switches improperly set.
	4) TMS impedance improperly set or TMS not terminated.
	5) M lead not seized.
E-lead or M-lead LED	1) Switch S11 improperly set.
on when lead is idle	2) Inputs from near end or distant end not idle.
	3) Fault in cable.
E-lead or M-lead LED	1) Switch S10 or S11 improperly set.
off when lead is busy	2) Inputs from near end or distant end not busy.
	3) Fault in cable.
improper dial pulsing	1) Improperly set option switches.
	2) Improper supply voltage (should be between -42 and -54Vdc).
	3) Excessive cable leakage.
loopback not activating	4) Longitudinal voltage on facility greater than 25Vrms.
or not within 0.5dB of	1) Switch S17 improperly set.
correct level	2) Transmit or receive path not properly aligned.

Addendum: Issue 2 6161/X-Series 4Wire-to-4Wire SF-to-E\&M Terminal Repeaters

1.01 This addendum to practice section 816161/ $816161 \mathrm{~A} / 816161 \mathrm{~B} / 816161 \mathrm{C}$, revision A (dated 1 September 1984), covers changes to the 6161, 6161A, 6161B, and 6161C 4Wire-to-4Wire SF-toE\&M Terminal Repeater modules resulting in the Issue 2 version of these modules (Tellabs part numbers 826161, 826161A, 826161B, and 826161C). These modules differ from their Issue 1 counterparts as follows:

- At the facility-side ports (receive input and transmit output), a switch-selectable choice of 1200,600 , or 150 -ohm terminating impedance is now available at each port. (The Issue 1 modules offered 1200 or 600 ohms only.)
- At the terminal-side ports (transmit input and receive output), fixed, balanced 600 -ohm terminating impedance is now provided. (The Issue 1 modules offered a switch-selectable choice of 1200 or 600 ohms.)
- An option switch that allows the integral receivechannel equalizer to be electrically bypassed has been added to the Issue 2 modules.
- On the front-panel xmt level and rov level DIP switches, separate gain (GN) and loss (LS) switch positions are now provided for selection of transmission-path flat gain or flat loss. (The Issue 1 modules used a single gain/loss position on their front-panel xmt level and rov level DIP switches.)
1.02 In the event that this addendum section is revised, the reason for reissue will be stated in this paragraph.

impedance optioning information for Issue 2 6161 / X modules

1.03 When optioning the Issue 2 6161/X module, please disregard the terminating-impedance optioning information in paragraph 3.07 and table 6 of the attached practice. Instead, refer to figure 1 of this addendum and set the module's RCV IN IMPD and XMT OUT IMPD option switches (S1 and S2, respectively) as follows:

- To the 1200 position for interface with loaded cable.
- To the 600 position for interface with nonloaded cable or carrier.
- To the 150 position to provide a small amount of amplitude equalization for long sections of nonloaded cable through the deliberate impedance mismatch.

receive-equalizer bypass option on Issue 2 6161/X modules

1.04 When setting switch options on the Issue 2 6161X module, be certain to set the receiveequalizer bypass switch ($E Q$ IN/OUT, S3) as follows (see figure 1 of this addendum for the location of S3):

figure 1. Issue 2 6161/X option switch locations

- To the $I N$ position if the receive equalizer is to be included in the circuit.
- To the OUT position if the receive equalizer is to be excluded from the circuit, i.e., electrically bypassed.

level adjustment information for Issue 2 6161/X modules

1.05 When adjusting receive and transmit transmission levels on the Issue 2 6161/X module, please disregard the information concerning the rcv $g n / l s$ switch in paragraph 3.15 , step B, and the xmt gn/ls switch in paragraph 3.16, step H. Instead, select gain or loss for each channel as follows (see figure 2 of this addendum):

- To select gain in a channel, set the GN position of that channel's front-panel level DIP switch to $I N$ and the LS position of the same switch to OUT (away from $/ N$).
- To select loss in a channel, set the GN position of that channel's front-panel level DIP switch to OUT (away from $I N$) and the LS position of the same switch to $I N$.

For gain, set GN to $\mathbb{I N}$ and LS to OUT. For loss, set GN to OUT and LS to IN.
figure 2. Issue 2 6161/X front-panel level switch detail

