```
    COMMON SYSTEMS
MULTIFREQLENCY SIONAL
    gENERATOR CIRCUIT
```

changes

B．Changes in Apparativs

B． 01	Superseded	Superseded 3y
	（App Fig．1）	（App Fig．1）
	CO Capacitor 0.01 F	CO Capacitor $0.01 \div F$
	KS－13368 L26	KS－16742 L31
	Cl Capacitor	Cl Capacitor
	5900 i 5	5900 PF
	KS－13う68 L32	KS－16742 L32
	C2 Capacitor	C2 Capacitor
	7430 wnF	7410 PF
	KS－13368 L27	KS－16742 L32
	C4 Capacitor	C4 Capacitor
	5200 нuร	5170 PF
	KS－13368 L32	KS－16742 L32
	C7 Capacitor	C7 Capacitor
	5870 w	5830 Pr
	KS－13363 L32	KS－16742 L32
	Cl0 Capacitor	Cl0 Capacitor
	4500 uns	4480 PF
	KS－13368 L32	KS－16742 L32
	CAO Capacitor	Any below trimmer
	RS－14056 L34	values per Nore 105
		are typical：
		KS－16958 L34
	CAl Capacitor	Cal Capacitor
	51 unF	51.1 PF
	KS－14056 534	KS－16958 L34
	CA2 Capacitor	CA2 Capacitor
	100 mi	100 PF
	K5－14056 L34	KS－16958 L34

Superseded（Cont）Superseded Sy
（App Fig．1）（App Fig．i）

CA4 Capacitor	CA4 Capacitor
150 MAF	147 PF
$\mathrm{RS}-14056 \mathrm{~L} 34$	KS -16958 L 34

CA7 Capacitor CA7 Capacitor
$200 \mathrm{mF} \quad 196 \mathrm{PF}$
KS-14056 L34 KS-16958 L34

CA10 Capacitor	CA10 Capacitor
240 HLF	237 PF
$\mathrm{KS}-14056 \mathrm{~L} 34$	$\mathrm{KS}-16958 \mathrm{~L} 34$

CBO, CB1, CB2, CBO, CB1. CB2.
CB4, CB7, and CB4, CBT, and
CB10-0.01 aF CB10 - 0.01 m
all 594G all RS-20977 さ4
D5 Resistor D5 Resistor
$0.75 \mathrm{Ohm} \quad 0.75 \mathrm{Ohm}$
227 C KS-14603 L3A
D. Description of Changes
D. 01 Circuit Notes 104 and 105 are revised
and clarified so that they are in
closer agreement with BSP 179-603-501.
D. 02 Capacitor codes are changed to reduce
manufacturing costs. Because certain
values were not exactly available in Efe
new codes, Circuit Note 110 is adced to
record the insignificant difference, iz any,

MOTICE
This docement is elther
ATET．Propilotery，or WESTERN ELECTRIC－Propietery
Purument to Juoge Orbure＇s Order of Aupuat 5． 1983
beginning on denuary 1．1gan，ATAT will comen to use
＂Bell＂and the Betl symbol，with the exceptione to use set

BELL＂andior the BELL eymbol in thia document te hers－

Printed in U．S．A．

```
between the old and new replacement codes.
Because this circuit uses trammer capacitors
in frequency alignmert anyway, the slight
change in values is of no conseguence to the
frequency precision of this circuit.
D. 03 Informatic: Note 301 is added to ex-
    plain resistor, capacitor, and voltage
terminologies.
D. 04 Table A is corrected to inciude the
    SXS-OGT INCPT Circuit which is con-
nected to this circuit.
```

between the old and new replacement codes
Because this circuit uses trimmer capacitors change in values 15 of no consequence to the frequency precision of this circuit.
D. 03 Informatic: Note 301 is added to explain resistor, capacitor, and voltage terminologies.
D. 04 Table A is corrected to inciude the SXS-OGT INCPT EErcuit which is connected to this circuit.
F. Changes in CD SECTION III
F. 01 In 4. CONNECTINS CIRCUZES, undez 4.01
(b), add the foijowing conneะこえng e:z-
cuits:
SD-32375-01 (ANI-C), or
SD-35017-01 (ANI-D)
F. 02 Under 4.01 add the following:
(p) Outgoing Intercept Trunk - SD-35057-01.

BELI TELEPHONE LABORATORIES, INCORPORATED

DEPT 5242-DAJ
WE DEPT 45830-WCR-WEA-GLW

Page 2
2 -Pages

CHANGES

D. Description of Changes
D. 1 Table A is changed to delete reference to "SXS Intertoll Dialing with CAMA, Manual Test Circuit," since that circuit was never changed to connect to this circuit.
D. 2 The rating of this circuit is changed to rate it as A\&M Only for the SXS Automatic Outgoing Trunk Test (AOTT) Circuit, SD-32504-01.

BELL TELEPHONE LABORATORIES, INCORPORATED
F. Changes in CD Section III
F.1 In 4. CONNECTING CIRCUITS, add the following under Common Systems:
(b.1) Automatic Trunk Test Circuit - ANI-B SD-95889-01.
F. 2 In 4. CONNECTING CIRCUITS, add also under SXS Systems:
(p) ANI Outpulser Circuits, Type C -SD-32375-01, Type D - SD-35017-01.
(q) Automatic Trunk Test Circuit -SD-32315-01.
(r) Automatic Outgoing Trunk Test System -SD-32504-01 (A\&M Only).

DEPT 5245
WE DEPT 25830-WCR-GWC-VK

COMMON SYSTEMS
 MULTIFRERUENCY SIGNAL GENERATOR CIRCUIT

TAELE OF CONTENTS

PAGE

1. PURPOSE OF CIRCUIT\qquad 2. GENERAL \qquad OPERATION
1. START OF
2. GENERATION OF FREQUENCIES. . -
3. MULTIFREQUENCY PULSING
SECTION III - REF
1. WORKING LIMITS
FUNCTIONAL DESIGNATIONS. . . .
3. FUNCTIONS.
. CONNECTING CIRCUITS.
$2 \cdot$.
6. TAKING EQUIPMENT OUT OF SERVICE.
7. ALARM INFORMATION.
ON IV - REASONS EOR REISSU

SECTION I - GENERAL DESCRIPTION

1. PURPOSE OF CIRCUITT
1.01 This circuit provides connecting circuits with as many as six individual or multipled signal frequencies ranging from 700 to 1700 Hz upon application of a direct current voltage closure by a controlling circuit.

2. GENERAL DESCRIPTION OF OPERATION

2.01 The multifrequency signal generator circuit is a set of six transistor oscillators providing the signal frequencies for the transmission of MF signaling through a single signaling circuit such as an auxiliary sender, ANI outpulser, OGT test frame
or OGT testboard in a building not equipped with a MF current supply and distribution circuit.
2.02 Since the multifrequency signal generator is provided on a circuit per signal output basis it is not equipped with a frequency fallure alarm, reserve osciallator, or automatic oscillator transfer on failure. If 20 or more multifrequency signal generator circuits are required in one building the provision of an MF current supply and distribution circuit should be considered.
2.03 Six frequencies from 700 to 1700 kz are generated at a level of approximately 2.4 volts into an 1100 -ohm load at termal 5 of the oscillator transformer. The F - output resistors prevent overloading of the oscillators and limit the output level applied to a trunk (through an approved network) to $-3 \mathrm{dBm},-6 \mathrm{dBm}$ or -8 dBm per tone, $\pm 1 \mathrm{dBm}$ (45 to 50 volts) or $\pm 1-1 / 2 \mathrm{dBm}$ (42.75 to 52.5 volts).
SECTION II - DETAILED DESCRIPTION

1. START OF GENERATOR
1.01 The power for operating the six transistor oscillators of the MF signal generator circuit is derived from a single potentiometer circuit from 48-volt battery to ground. With the associated circuit normal the potentiometer is open between leads GS and GS-1. As the associated circuit moves from normal it closes a contact connecting lead GS to lead GS-1 and the six oscillators start. No warmup time is required and the output voltage and wave shape from each osciallator is normal in less than 0.3 millisecond.

2. GENERATION OF FREQUENCIES

2.01 The transistor operates as a current amplifier. A change is current in the emitter will cause a larger change in current in the collector when operating with the normal voltage between the collector and the base. Voltage amplification is also obtained since the emitter circuit is ruch lower in impedance than the
collector. The emitter current and the collector current are in phase with each other.

2.02 Sufficient amplification is obtained from a transistor for it to be used to

 drive a tuned circuit and therefore to act as an oscillator. In the arrangement used in this circuit, energy is fed from a winding inductively coupled to the tuned circuit, consisting of the transformer winding and the capacitor C - to the emitter. The transformer is designed so that the collector is connected to the point of proper impedance on the tuned circuit. Bias current for the emitter is obtained by connecting the base to a low negative voltage. The direct current voltage for the emitter is supplied through part of the tuned circuit.
2.03 The possibility of high-frequency

 ringing is damped by added capacitance across the secondary winding of the transformer of each oscillator stage. Option Q provides capacitor CB- to each oscillator for this feature.2.04 When the GSI and GS-1 leads are closed through, direct current voltage is applied to the transistor. The voltage across the tuned circuit will build up to the point where the power losses in the tuned circuit as the various loads connected to it will ecuai the power supplied by the transistor. Since the power obtainable for a transistor decreases sharply as the peak of the alternating current voltage applied to the coilector closely approaches that of the direct current voltage between the collector and the base, the output stabilizes at this point and is approximately the same for all transistors. The output level is also fairly independent of the load applied so long as the ability of the transistor to supply power is not exceeded.
2.05 The F-resistors in the output leads are provided to improve the impedance match with the trunk and reduce the tone levels to the required transmission level. The power supplied by an oscillator to a $600-0 \mathrm{hm}$ or $900-0 \mathrm{hm}$ load connected to the output of the repeating coil in a sender is -3 dm per tone for oscillators equipped with X option, -6 dBm per tone for oscillators equipped with V option, -8 dBm per tone for osciliators equipped with W option and -8 dBm per tone for oscillators equipped with S option when the sender is equipped with hybrid coils.
2.06 The cross-connection to V - points on the voltage civider are made so that the proper ourput woltage will be available. The potentiometers P- vary feedback in the oscillators, therefore controlling the oscillator output impedance. The output voltage of an oscillator into an 1100 -ohm load is approximately 2.4 volts and is within 0.15 volts of any other oscillator. The minimum output voltage is 2.15 volts.

3. MUNTIFREQUENCY PULSING

3.01 S1x frequencies in steps of 200 cycles from 700 to 1700 cycles are used.

The first five are assigned on a 2 -out-of-5 basis to the digits 0 to 9 and the sixth is used in combination with others of the first five for a gate opener or keypulse signal and for a "start" or "end" of pulse signal. These frequencies are assigned designations $0,1,2,4,7$, and 10 so as to fit in with standard additive 2-out-of-5 code. The frequencies and their assigments are as follows:

	FRERUENCY					
	700	900	1100	1300	1500	1700
	DESIGNATION					
D1git	0	1	2	4	1	10
0				X	X	
1	X	X				
2	X		\mathbf{X}			
3		X	X			
4	X			X		
5		X		X		
6			X	X		
7	X				X	
8		X			X	
9			X		X	
Key Pulse			X			X
Start Pulse					X	X

SECTION III - RESERENCE DATA

1. WORKING IIMITS
1.01 Pulse Lead Length - The multifrequency signal generator circuit shall be mounted as closely as possible to the circult with which it is associated; the maximum length of the $0,1,2,4,7$, and 10 signal
leads is specified in Equipment Note 201.
1.02 Voltage Limits -

| Voltage | $\frac{\text { Min }}{}$ | Max
 -48 | Output Level
 Tolerance |
| :---: | :--- | :--- | :--- | :--- |
| -45 | -50 | $\pm 1 \mathrm{~dB}$ | |
| -48 | $-42.75-52.5$ | $\pm 1-1 / 2 \mathrm{~dB}$ | |

2. FUNCTIONAL DESIGNATIONS
2.01 None.

3. FUNCTIONS

3.01 To provide $700,900,1100,1300,1500$,
and 17.00 cycle ± 1 percent frequencies for a single signaling circuit for MF signal pulsing.
3.02 To provide through a suitable sending circuit, $-3 \mathrm{dBm},-6 \mathrm{dBm}$, or -8 dBm
per erequency to a $600-0 \mathrm{hm}$ or $900-0 \mathrm{hm}$ termination.
3.03 To provide full output voltage and optimur wave shape after the first half cycle of oscillation, when direct current voltage is applied to the oscillators.
3.04 To cease oscillation when the direct current voltage is removed from the oscillators.
3.05 To have the cross modulation products of any two frequencies fed into a linear load be at a level not highter than -36 dBm.
4. CONNECTING CIRCUITS
4.01 When this circuit is listed on a keysheet, the information thereon is to be followed.

Common Systems

(a) Auxiliary Sender Circuit - SD-96479-01
(b) ANI Outpulser Circuit - SD-95811-01.
(c) Pulse Converter Circuit DP to MF -SD-96453-01.
(d) Line Concentrator No. $1 A$ - Control End - SD-95971-01.
(e) Ine Concentrator No. LA - Remote End - SD-95972-01.
(f) Test Control Circuit - SD-96587-01. Toll Systems
(g) 2-Way Trunk Circuit - SD-56475-01*.
(h) Recording and Completing Trunk -SD-56478-01*.
(1) Toll Switching Trunk - SD-56509-01*. Panel Systems
(j) Outgoing Trunk Testboard - SD-21610-01.

Crossbar System No. 1 or Crossbar randem
(k) Outgoing Trunk Test Frame -SD-25177-01.
(l) Remote Office Test Iine for use with CAROT - SD-28067-01.

SXS Systems

(m) Manual - Outgoing Trunk Test Frame Test Circuit - SD-32349-01.
(n) Automatic Outgoing Trunk Test Frame -SD-32504-01.
(0) Remote Office Test Line Circuit -SD-32521-01.
*Typical

5. MANUFACTURING TEST REQUIRENENTS

5.01 The sender shall be capable of performing all the functions listed in this circuit description and shail meet the requirements ilsted in the circuit Requirements Table and Circuit Note.
6. TAKING EQUIPMENT OUT OF SERVICE
6.01 When the MF signal generator circuit
is to be removed from service for calibration or repair, make busy the associated auxiliary sender, ANI outpulser, etc. in accordance with the TEOS information in the associated circuit CD.

7. ALARM INFORMATION

7.01 If the fuse alarm functions, make busy the associated auxiliary sender,

BEII TELEPHONE IABORATORIES, INCORPORATED

DEPT 5245-LCB
.WE DEPT 367-WCR-EERR-MH

