

			Page No
.0	DESC	RIPTION OF PANEL CIRCUITS AND EQUIPMENT	21
	3.1	Line Circuits	21 /
1. J 7. J 7.		3.11 Open-Wire Line Circuits	. 21
		3.12 Cable Circuits	24
	3,2	Telegraph Circuits	26
		3.21 Telegraph Line Terminals	26
		3.22 Telegraph Subscribers' Loops	27
		3.23 Split Loops	28
	: हो :	3.24 Polar Duplex and Telegraph Repeater Circuits	29
		3.25 Single Line Repeaters	29
		3.26 Metallic Telegraph Lines	30
	3.3	Trunks and Miscellaneous Circuits	31
i i		3.31 Talking Trunks	31
		3.32 Interposition Trunks	. 32
Vision		3.33 Auxiliary Signal Circuit	32
		3.34 Ringing Circuit and Trouble Tone Circuit	32
		3.35 Test Line to Main Distributing Frame	33
		3.36 Combined Composite Set Jacks	33
0	OPERA	ATION OF TESTING EQUIPMENT	34
en Valen	4.1	Methods of Using Voltmeter Testing Circuit	35
		4.11 Continuity Tests	35
		4.12 Tests for Grounds	36
		4,13 Tests for Crosses	. 36
		4.14 Tests for Foreign Potentials	37
J		4.15 Holding	37
20 No. 2 to 6		activity of the control of the con	おいじょう かぬける 名間

	٠.		Page No.
	4.16	Talking	38
	4.17	Ringing	38
	4.18	Use of Connecting Cord	39
4.2	Metho Circ	ds of Using Wheatstone Bridge Test uit	40
	4.21	Loop Resistance Measurement	41
	4.22	Single Wire Resistance Measurements	42
	4.23	Insulation Resistance Measurements	42
:	4.24	Varley Loop Tests	42
	4,25	Murray Loop Tests	43
	4,26	Open-Location Tests	44
4.3	Metho	ds of Using Telegraph Test Circuit	45
	4,31	Current Measurements	46
	4.32	Measurement of Line Potential	46
	4.33	Test of "Home Battery"	47
	4.34	Test of "Distant Battery"	47
	4.35	Potential Measurement of Telegraph Test Battery	47
	4.36	Test Line	48
	4.37	Test Drop	48
	4.38	Telephone Set	48
4.4	Patch	ning Cords	48

LIST OF DRAWINGS

TESTING EQUIPMENT (CIRCUITS)		
<u> </u>	Number	Pag e
Voltmeter Test Circuit, - Simplified Diagrams.	154-A-17	100
Wheatstone Bridge Test Circuit,	154-A-19	101
Wheatstone Bridge Test Circuit - Simplified Diagrams.	154-A-20	102
Telegraph Test Circuit,	154-A-21	103
Telegraph Test Circuit - Simplified Diagrams,	154-A-22	104
Voltmeter Test and Connecting Cord/Circuit.	157-A-14	108
Vacuum Tube Monitoring Circuit:	213-B-17	117
Telegraph Test Set No. 1 \checkmark For Use at Voltmeter Test Positions.	213-B-18	118
Telegraph Test Set No. 3. √	213-B-19	119
4-Cycle A-C. Supply Circuit for / Open-Location Tests.	214-B-37	154
20-Cycle A-C. Supply Circuit for / Open-Location Tests.	214-B-39	155
Wheatstone Bridge per KS-3011 Circuit	214-B-100	156
LINE CIRCUITS .		
Phantom Group not Arranged for Composite Apparatus - 10-Jack Line Circuit and G-Jack Phantom Circuit, Schematic Diagram.	154-A-24	105
Through Four-Wire Phantom Group - Arranged for Metallic Telegraph - Schematic Diagram.	154-A-31	106
Terminating Two-Wire Phantom Group Arranged for Metallic Telegraph - for Cable Offices Where a Secondary Testboard is Provided, Schematic Diagram.	154-A-32	107

	Number	Page
Relay Circuit for Two-Way Trunk to Main Distributing Frame.	213-B-52	151
Interposition Trunks.	213-B-53	152
MISCELLANEOUS CIRCUITS		
Miscellaneous Jack Circuits.	213-B-20	120
135-Cycle Receiving Circuit - For Use with Toll Switchboard No. 3.	213-B-22	122
1000-Cycle Signal Receiving Circuit - For Use with Toll Switchboard No. 3.	213-B-23	123
Auxiliary Signal Circuit. V	218-B-1	157
Ringing Circuit. ✓	218-B-2	158
Interrupted Low-Tone Circuit for Offices Equipped with Motor-Driven Interrupters.	218-B-3	159
Interrupted Low-Tone Circuit for Offices not Equipped with Motor-Driven Interrupters.	218-B-4	160
Patching Cords and Plugs.	218-B-7	163
TELEGRAPH CIRCUITS		
Grounded Telegraph Line.	213-B-30	130
Telegraph Line Terminal	213-B-37	137
Polar Duplex Circuit - Wiring of Jacks.	213-B-38	138
Terminal Metallic Telegraph Repeater Set Wiring of Jacks.	213-B-39	139
Wiring of Jacks for Voice-Frequency and High-Frequency Carrier Telegraph Systems.	213-B-40	140
Spare Telegraph Repeater Jacks.	213-B-42	142
Metallic Telegraph Line.	213-B-43	143
Telephone Loop for Printing Telegraph Subscribers.	218-B-6	162

	Number	Page.
SECTIONS		
Typical Assembly of One Position - Apparatus for Voltmeter Test.	213-B-13	113
Keyshelf Unit, - Section Assembly.	213-B-14	114
FACE EQUIPMENT		
Typical Arrangement of Jack Panel for 6-Jack Line Circuits.	213-B-28	128
Typical Arrangement of Jack Panel for Composited Open-Wire Lines - with 10-Jack Line Circuits and 10-Jack Phantom Circuits.	213-B-29	129
Typical Arrangement of Jack Panel for Non-Composited Open-Wire Lines with 10-Jack Line Circuits and 6-Jack Phantom Circuits.	213-B-31	131
Typical Arrangement of Jack Panel for Primary Testboard Positions.	213-B-33	133
Typical Arrangement of Jack Panel for Four-Wire Terminating Circuits.	213-B -3 5	135
Typical Arrangement of Jack Panel for Terminal Telegraph Test Positions.	213-B-41	141
Typical Arrangement of Jack Panel for Metallic Telegraph Line Circuits.	213-B-44	144
KEYSHELVES		
Blank Keyshelf Unit.	213-B-15	115
Voltmeter Test Position Keyshelf.	213-B-16	116
Keyshelf of Wheatstone Bridge Test Position.	213-B-24	124
Keyshelf of Telegraph Test Position.	213-B-25	125

•		Number	Page
MISC	ELLANEOUS ASSEMBLY DRAWINGS	•	g suffer
	Voltmeter Test Position-Apparatus Panel and Piling Rail.	213-B-21	121
	Telegraph Test Position-Apparatus Panel and Piling Rail.	213-B-26	126
	Assembly and Equipment of 4-Cycle Commutator.	214-B-36	1 53
	Assembly of Wheatstone Bridge per KS-3011.	219-B - 65	164
•	No. 217 Resistance Plug.	38-Y-1468	165
	DRAWINGS FOR REFERENCE		

Telephone Repeater Equipment, Network Jack Circuits:

For Offices where it is not Necessary to bring the Separate Networks out	
to Jacks. 202-B-63	136
For Use with Cord Circuit Repeater	
Operation. 202-B-71	167
For Through Line Repeater Operation. 202-B-92	168

O.O INTRODUCTION

A study made to effect savings and improvements in toll testboard equipment has resulted in the development of a new board known as toll testboard No. 5. On this board the line circuits are arranged in a jack panel and wired to terminal blocks. This assembly is an upper unit of the testboard. The testing equipment is arranged in a detachable unit which is referred to as a keyshelf or lower unit. These units consist of different groupings of circuits and include voltmeter testing equipment, Wheatstone bridge testing equipment, telegraph testing equipment and a blank unit not equipped with testing apparatus. These may be installed in any desired position or removed as required without affecting the line circuits.

The jacks are assembled on relay rack mounting as described in Bulletin No. 138 "Jack and Lamp Socket Mountings for Use on Relay Racks" and line circuits may be added in groups of 12 or more without affecting the testing equipment. The keyshelf units mount on the relay rack framework under the jacks.

The new design effects economy of space and equipment as compared with the No. 4 testboard and provides a greater flexibility of circuit layouts and growth. It is also well adapted for different sizes and types of installations, growth being possible in relatively small units so that the cost is more nearly in direct ratio to the number of circuits than would be possible where a greater portion of the total cost is in the framework and assembly.

1.0 GENERAL DESCRIPTION

1.1 Assembly of Equipment

The equipment of the toll testboard No. 5 is designed for mounting on a standard relay rack framework, thus making possible the use of the same assembly methods which are becoming more generally used throughout the toll terminal room. The testing equipment is assembled in keyshelf units which are, for the most part, self-contained and so designed that they can be mounted on the rack framework under the jacks. Drawing No. 213-B-13, page 113, shows a typical arrangement of a toll testboard No. 5 position equipped with a keyshelf unit. In this bulletin each bay of rack is referred to as constituting a "position" regardless of whether or not it is equipped with a keyshelf unit.

vantage is gained in flexibility of initial arrangements and later extensions, since any desired grouping of line jacks may be associated with any desired testing equipment in the keyshelf units, whereas, in the section employed for the toll testboard No. 4, it was necessary to install sections equipped for each form of testing equipment desired. Since the testing equipment is provided in units separate from the jack equipment only a sufficient amount of testing equipment need be furnished to meet the requirements of the particular office in question. Furthermore, the new arrangement provides flexibility in regard to the ultimate amount of testboard equipment desired in any

office, being as well adapted to the small installations involving ultimately but a few circuits as to those requiring equipment for a large number of circuits.

1.12 Face Equipment

Punched frame singly mounted jacks are used in the No. 5 testboard. The jacks are mounted in No. 184 or No. 185 jack mountings which are adapted to mount on the framework by means of No. 25 jack fasteners as described in Bulletin No. 138, "Jack and Lamp Socket Mountings for Use on Relay Racks." These jack mountings together with such jack spaces, lamp socket mountings, designation strips, etc., as are required are assembled in units in the face of the board suitable to the various types of line circuits as described in Section 3.

Apparatus such as telegraph relays and sounders and other equipment not contained in the keyshelf unit is mounted on apparatus panels above the jacks. Where no testing equipment is provided or when it is not necessary to mount apparatus above the jacks, blank panels are available for use in place of the apparatus panels if desired. A 3-1/2-inch panel or "piling rail" is provided in every position directly under the jacks.

1.13 Keyshelf Equipment

Three types of keyshelf units have been provided one of which is adapted for voltmeter testing, one for Wheatstone bridge testing and one for testing telegraph circuits. A typical assembly of these keyshelf units is shown on Drawing No. 213-B-14, page 114. The keyshelf unit includes cords,

keys and other apparatus associated with the testing circuit except such equipment as must be mounted on the apparatus panel above the jacks or outside the position. A terminal strip is provided in the rear of each keyshelf unit for terminating the wiring external to the keyshelf unit such as battery leads, generator leads, etc.

For those cases where equipment will not ordinarily be required in each position, a blank unit or writing shelf as shown on Drawing No. 213-B-15, page 115, has been designed for use where additional writing space is desired. A commercial type card cabinet is furnished with the writing shelf as indicated on the drawing to provide space for card records, etc. No space is available for card record drawers in any of the other keyshelf units.

1.2 Classification of Positions

Toll testboard No. 5 positions are divided into several classes for terminating the various types of line circuits.

The function of these various positions is given briefly below and the circuits and equipment are described in more detail in Section 3.

1.21 Primary Testboard Positions

Primary testboard positions are used in cable offices for terminating the cable pairs and to provide means for patching the cable pairs and line equipment. No phantom line jacks, telegraph line jacks or listening jacks are provided in the primary testboard positions. When jacks are provided

for terminating spare line equipment they are located in the primary testboard positions.

1.22 Secondary Testboard Positions

Secondary testboard positions are used in cable offices for terminating the two-wire and four-wire telephone circuits. Facilities are provided in the secondary testboard for monitoring on circuits as desired and for patching drop circuits. The jacks in the secondary testboard positions are on the drop side of the office equipment. In cable offices, "through" circuits do not ordinarily appear in the secondary testboard.

1.23 Open-Wire Testboard Positions

Positions for terminating open-wire lines differ from those used for cable circuits in that all jacks associated with a given line are located together in the same position instead of being divided between primary and secondary testboard positions. In open-wire positions jacks are provided for patching the superposed line equipment and for terminating and patching phantom circuits and grounded telegraph line circuits.

In this testboard sufficient flexibility is provided so that any jacks other than the regular line jacks may be included as required.

1.24 Telegraph Testing Positions

Telegraph subscribers' loops and telegraph repeaters are terminated in separate testing positions thus making it possible to test or patch this equipment without interfering

with the telephone circuits. The telegraph testing positions will accommodate grounded telegraph circuits, metallic telegraph circuits and voice-frequency or high-frequency carrier telegraph circuits.

1.25 Metallic Telegraph Line Positions

In large cable offices the jacks provided at the telegraph testing positions in connection with the metallic telegraph repeaters may not furnish the facilities required for patching metallic telegraph circuits. In such cases all the metallic telegraph lines may be grouped together in metallic telegraph line positions to facilitate patching.

1.3 Wiring and Cabling

nated on terminal strips at the top of the position. Connections between these terminal strips and the jacks and keyshelf units are made by means of a factory made form employing No. 22 BEDS and SCC wire. In the case of cable circuits the pairs are normally connected to the jacks in the order corresponding to the consecutive pair numbers in the cable. For open-wire lines the jacks are normally wired consecutively corresponding to the numbering on the distributing frame and may be assigned to circuits as desired consistent with the maintenance of proper quadding. However, where it is desired to have the relative location of the jacks indicate the pin positions on the open-wire pole nearest the office pairs 5-6, 15-16, etc., are shifted in the local cable form between the jacks and terminal strips

at the top of the testboard position to take care of the regular phantom grouping arrangement. In this case it will be advisable to carry the jacks corresponding with the fifth crossarm over to the next position, assigning the 41-48 jacks in the first position to other lines.

No. 19-gauge cable is used between the terminal strips at the top of the position and the I.D.F. Ordinarily one cable is provided between each vertical row of terminal strips in the position and the I.D.F. except in cases where it is necessary to provide two cables on account of their size or to provide the required separation between the different kinds of circuits in cable. In addition to these line cables, two separate

No. 19-gauge miscellaneous cables are provided to certain positions equipped with voltmeter test circuits or telegraph test circuits. One of these cables is used for battery leads and other miscellaneous circuits; the second cable is used for tone and generator leads and any other miscellaneous circuits which it is desired to keep separate from the talking circuits to avoid trouble from noise.

In primary testboard positions, the line cables and local cable forms must be grouped as may be required to provide separate cables for (1) inputs of four wire repeaters (2) outputs of four-wire repeaters (3) No. 16-gauge H-44-25 two-wire circuits and (4) Nos. 16-gauge and 19-gauge H-174 two-wire circuits. The interposition trunks, which are provided between the testboard and repeater racks in cable offices, are separated into two groups to facilitate the patching of the various kinds

of cable circuits. Separate cables are used for these two groups of trunks.

Switchboard cables are used between the terminal strips at the top of the positions for carrying interposition trunks, talking trunks and other circuits which are multipled from bay to bay. Battery, tone or generator leads which are wired between bays are carried in a separate hand formed cable made up of No. 20 BBE wire.

The local factory made forms within the keyshelf units are made up of No. 20 BBE wire.

2. DESCRIPTION OF TESTING EQUIPMENT

As noted in Section 1, the testing equipment is contained in units separate from the jack equipment. The voltmeter testing and telegraph testing equipment is terminated in cords and plugs in the keyshelf. The Wheatstone bridge testing equipment is wired to the keys in the voltmeter testing circuits so that connection to the line is made through the voltmeter test cords when Wheatstone bridge measurements are to be made. The circuits are arranged so that one Wheatstone bridge may serve one or more voltmeter test positions as desired. Each position of No. 5 testboard is arranged so that any type of testing equipment may be provided or it may be omitted entirely, as desired.

2.1 Voltmeter Testing Equipment

The voltmeter testing equipment includes a testing circuit, a connecting cord circuit and an operator's telephone circuit, which are arranged as shown on Drawing No. 157-A-14, page 108. The apparatus is assembled in the keyshelf as shown on Drawing No. 213-B-16, page 116.

2.11 Voltmeter Test Circuit

The voltmeter test circuit is terminated in two test cords "A" and "B" with twin plugs and two single test cords. The shells of the twin plugs have the tip side knurled and the ring side plain to enable the testboard operator to distinguish readily between the tip and ring sides of the circuit. When inserted horizontally, the knurled edge is turned to the left

and when inserted vertically, the knurled edge is turned toward the top. The single plugs provided in connection with cord "B" facilitate tests for "crosses" and enable the testboard operator to test on split pairs when desired. The single cords have a much lower resistance than the ordinary tinsel cord and therefore can be used to advantage in Wheatstone bridge measurements. All the cords are of sufficient length to reach any of the jacks in either position adjacent to the one in which the testing equipment is located.

Keys are provided for making the usual voltmeter tests for continuity, crosses, grounds, etc. With all keys normal, the testing battery is disconnected and the telephone set is connected to the test cords for monitoring so that the operator may plug into the listening jacks to be sure that the line is not busy before applying the testing battery. The test cords are arranged so that they may be used independently of each other. The left cord may be used for talking or testing on a line while the right cord is being used for holding, or for Wheatstone bridge test, and conversely.

A key is provided in connection with each of the test cords which, when thrown back to the HOLD position, disconnects the associated cord from the other test cord and connects it to a repeating coil across the middle of which a 20-cycle ring-up relay is connected. The other winding of the repeating coil is connected to the interrupted low tone so that this tone may be sent out on the line by inserting the test plug in the line or

listening jacks. The cord may then be used as a holding cord for incoming calls from linemen, the tone serving to identify the circuit and the ring-up relay providing a ringdown signal. The telephone set may be connected to the holding cord as shown in Figures 1 and 2, Drawing No. 154-A-17, page 100, by cperating the TEL. ON HOLD key. When a test cord key is thrown back, the sleeve circuit of the associated cord is opened so that the busy signals at the toll switchboard will not be operated.

When a test cord key is thrown forward to the BRIDGE position, the tip and ring terminals of the cord are disconnected from the voltmeter test circuit and connected to the tip and ring terminals of the Wheatstone bridge circuit. Since one Wheatstone bridge may be associated with several voltmeter testing circuits, lamp signals are provided in each voltmeter test position which are lighted whenever the Wheatstone bridge is in use at some other position.

The voltmeter used in the toll testboard No. 5 is a Weston square type meter similar to the Weston Model 502 meter. This voltmeter has a central zero scale with a full-scale reading of 150 volts in each direction from the zero point. It has a resistance of 100,000 ohms and is provided with a shunt coil which, when bridged across the instrument, reduces the resistance to 1,000 ohms and converts it to a milameter. When the shunt key is thrown, the scale reading in volts is equivalent to the current flowing in the circuit in milliamperes.

The 150-volt testing battery required in connection with the voltmeter test circuit is made up of eight 22-1/2-volt radio type batteries. The keyshelf unit is designed so that these batteries may be mounted inside the section.

2.12 Connecting Cord Circuit

One connecting cord circuit is provided at each voltmeter test position for the purpose of connecting toll lines together or to various desk telephones or other terminal sets in the toll office. It provides facilities for talking, monitoring, ringing and supplying talking battery and may be used as a secondary cord for handling incoming and outgoing calls. A dial associated with the right-hand cord to permit the testboard operator to dial machine switching subscribers directly is provided for use when required in machine switching areas. In this case a retardation coil is provided in the cord circuit for holding the machine switching connection and to trip ringing when answering calls incoming from the machine switching office.

2.13 Operator's Telephone Circuit

The telephone circuit is normally connected to the test cords. It may be disconnected from the test cords by operating the TEL. DISC key. The TEL. ON HOLD key is provided for connecting the telephone set to a test cord which is being used for holding. When the telephone set is connected to a holding cord by the operation of the TEL. ON HOLD key, it is disconnected from the other test cord, and when associated with

the connecting cord by the operation of the TEL. ON CORD key it is disconnected from both the test cord and the holding cord. Condensers are connected between the telephone set and the test circuit so that the telephone set may be bridged across the line without interfering with the test circuit. This enables the testboard operator to listen and test on a line at the same time.

The telephone circuit is designed to use a No. 528 receiver.

2.14 Monitoring

A 27-F repeating coil is provided in the operator's telephone circuit as shown on Drawing No. 157-A-14, page 108, to reduce the transmission loss when monitoring. This monitoring condition introduces a loss to the circuit being monitored of about 1/3 TU in offices having a 600 ohm impedance.

The impedance of the monitoring circuit using the 27-F repeating coil is too low to permit satisfactory monitoring on lines connected with cord circuit or through line repeaters. Where it is desirable to monitor on such lines, a vacuum tube amplifier, as shown on Drawing No. 213-B-17, page 117, may be provided in place of the 27-F repeating coil. This arrangement introduces a transmission loss of less than .1 TU and has a sufficiently high impedance so that the circuit may be bridged across a line adjacent to a 22-type telephone repeater without appreciable effect on the balance.

2.15 Telegraph Test Sets at Voltmeter Test Position

Telegraph test set No. 1, as shown on Drawing No. 213-B-18, page 118, is provided in the voltmeter test position. Telegraph test set No. 1 is terminated on cords, and is so arranged that it can be used in conjunction with miscellaneous battery and ground jacks for making continuity and other tests. Tests of this kind should be made in such a way that the line current will not exceed 100 milliamperes. The simplified diagram is shown in Figure 17, of Drawing No. 154-A-17, page 100.

Telegraph test set No. 3 is provided for use with the test wire circuit and is arranged as shown on Drawing No. 213-B-19, page 119. This circuit is wired to a telegraph subscriber's loop jack in a telegraph line terminal circuit for connection to the desired test wire. Spare test wires with series looping jacks are arranged as shown in Figure 4 of Drawing No. 213-B-20, page 120.

The telegraph relays in telegraph test sets Nos. 1 and 3 at the voltmeter test positions, together with the voltmeter shunt, vacuum tube monitoring equipment when required, and other miscellaneous apparatus, is located on an apparatus panel above the jacks as shown on Drawing No. 213-B-21, page 121.

2.16 Signal Receiving Circuits for Toll Switchboard No. 3

Where toll switchboard No. 3 is used, the toll line signal receiving circuits are located on the drop side of the testboard so that this equipment is cut off whenever a plug is inserted in the jacks at the testboard. Signal receiving

circuits, as shown on Drawings Nos. 213-B-22, page 122, and 213-B-23, page 123, which are adapted to receive 135-cycle and 1000-cycle signals respectively, are provided as required in connection with the voltmeter test circuit to permit the test-board operator to receive signals directly from the toll line. These will be required, of course, only where toll lines which employ 135-cycle of 1000-cycle signaling are wired through the testboard.

Apparatus in the signal receiving circuits, when required, is located outside the position along with the similar signal receiving circuits for toll switchboard No. 3.

2.2 Wheatstone Bridge Testing Equipment

2.21 Wheatstone Bridge

The Wheatstone bridge used in toll testboard No. 5 is an inverted dial-type bridge with an adjustable ratio and four sets of adjustable resistances in the rheostat arm. The general assembly arrangement of the bridge is shown on Drawing No. 219-B-65, page 164. The total resistance in the ratio arms is 1000 ohms and the ratio is controlled by a single dial, giving multipliers of $\frac{1000}{1}$, $\frac{100}{1}$, $\frac{10}{1}$, $\frac{1}{1}$, 1/4, 1/9. 1/10. 1/100, 1/1000 and M1000, the latter giving a Murray connection with 1000 ohms in the ratio arm. The rheostat arm is adjustable in units, tens, hundreds, and thousands and has a total resistance of 9999 ohms. The resistances in the rheostat arm are accurate to 1/10 per cent, and those in the ratio arm are accurate to 1/20 per cent.

In addition to the rheostat arm, 3 groups of resistances, adjustable in tens, hundreds and thousands, and having a total resistance of 9990 ohms, are provided in a separate rheostat referred to as the "condenser arm rheostat." This is used in making open-location tests as described in Section 4.26.

The maximum allowable power consumption in any resistance coil in the bridge is one watt and sufficient resistance should always be present in the battery supply to insure that this limit will not be exceeded. The bridge should never be used as an adjustable resistance for regulating current, etc.

A reflection type galvanometer employing a lamp and scale instead of a needle, is used in the bridge. The galvanometer and associated 2-F lamp are located inside the bridge and the scale on the top of the bridge as indicated on Drawing No. 219-B-65, page 164. The galvanometer is a dynamometer—type instrument, that is, it employes a separately excited field coil, which may be connected to the 24-volt central office battery, in place of permanent magnets. The electromagnetic field affords a stronger flux density than is usually secured with a permanent magnet and consequently the new galvanometer is inherently more sensitive than the permanent magnet needle type. The electromagnetic field also makes it possible to use the galvanometer for alternating-current as well as direct-current measurements, without requiring relays for reversing the galvanometer twice during each cycle.

No battery or galvanometer keys are provided in the bridge, it being intended that the battery key in the keyshelf be used for connecting the testing battery to or disconnecting it from the bridge circuit. Non-locking galvanometer shunt keys, giving shunt values of .001, .01, .1 and 1 are provided in the bridge which, when operated, also serve to close the galvanometer circuit. The internal wiring of the Wheatstone bridge is shown on Drawing No. 214-B-100, page 156.

A more complete description of the Wheatstone bridge is given in Bulletin No. 214, "Wheatstone Bridge per KS-3011".

2.22 Wheatstone Bridge Test Circuit

The Wheatstone bridge test circuit is show on Drawing No. 154-A-19, page 101. The Wheatstone bridge and associated keys are located in the keyshelf as shown on Drawing No. 213-B-24, page 124. Keys are provided in the testing circuit for reversing the line, for connecting the battery and for setting up the proper bridge connections when making Varley or Murray loop tests, open-location tests, or single-wire resistance measurements to ground. The operator's telephone circuit is permanently bridged across the line under test, except when making open-location tests.

A separate 150-volt testing battery which is made up of 22-1/2-volt radio type "B" battery units is required for each Wheatstone bridge circuit. The keyshelf unit is designed to accommodate the testing battery inside the section. A two-position battery key is provided which in one position connects

the full battery voltage to the bridge circuit and in the other position, reduces the voltage to approximately 6 volts through a potentiometer arrangement. The battery key is also used for connecting alternating current to the circuit when making openlocation tests.

3.23 Alternating-Current Supply for Open-Location Tests

The location of "opens" on toll lines consists essentially of impedance measurements between the line in trouble and ground. The accuracy with which such locations can be made increases as the frequency is reduced. A motor-driven commutator is used for these tests, as shown on Drawing No. 214-B-37, page 154. This arrangement provides a 4-cycle alternating potential by reversing a separate test battery associated with the interrupter, as well as a 4-cycle alternating field potential by reversing 24-volt office battery and ground. The apparatus is located outside the position on the relay rack, as shown on Drawing No. 214-B-36, page 153.

Where a 4-cycle supply is not available, and where the length of circuits which it is desired to test does not exceed 20 miles in cable or 100 miles in open wire, 20-cycle ringing current if used for open-location measurements will give fairly satisfactory results. Drawing No. 214-B-39, page 155, shows the arrangement of the alternating-current supply to the Wheatstone bridge where 20 cycles is used.

2.3 Telegraph Testing Equipment

The testing pparatus provided in telegraph test positions consists of voltmeter testing equipment, telegraph

test sets Nos. 1 and 2 and an operator's telephone set, which are arranged as shown on Drawing No. 154-A-21, page 103, and telegraph test set No. 3, Drawing No. 213-B-19, page 119, which is intended for use with the test wire. This testing apparatus is located in the keyshelf as shown on Drawing No. 213-B-25, page 125, and the volt-milameter, the relay and sounder of telegraph test set No. 3, are located on the apparatus banel above the jacks with other miscellaneous equipment as shown on Drawing No. 213-B-26, page 126.

The voltmeter testing equipment and telegraph test sets Nos. 1 and 2 are each terminated in a looping test cord and two single cords. The milameter winding of the meter is normally connected to the looping test cord, but may be removed from the test cords and connected to telegraph sets No. 1 or No. 2 by means of a milameter key.

A key is provided in connection with the test cords which when thrown forward, connects the voltmeter winding of the volt-milameter to the test cords in place of the milameter winding so that the usual voltmeter tests may be made. The circuit is arranged to prevent interference between telegraph circuits when the test cords and telegraph test sets are being used simultaneously on different telegraph circuits.

When the test cord key is thrown back the operator's telephone set is connected to the test cords so that the looping test cord may be used for talking on local trunks, telegraph subscribers' telephone loops, etc. A ringing key and

a key for supplying talking battery are provided in connection with the operator's telephone circuit.

3.0 DESCRIPTION OF JACK CIRCUITS AND EQUIPMENT

The method of assembling the jacks in the toll testboard No. 5 effects economies in assembly, wiring, and installation and permits easy access to circuits for the purpose of testing, patching, and maintenance. The jack mountings are shop mounted on iron framework which is designed to mount directly on a relay rack framework employing standard drillings for 1-3/4-inch mounting plates. The jack mountings, piling rail, apparatus panel and terminal strips are assembled on the framework and wired in the factory so that the complete unit may be placed on the relay rack at the time of installation without disassembling. Wiring, external to the keyshelf unit required in connection with the testing equipment, is provided for in the local forms only in positions where testing equipment is specified. The jack equipment in a position may be wired for any of the standard types of line circuits or a combination thereof.

3.1 Line Circuits

The various types of standard line circuits for openwire lines and cables are described below.

3.11 Open-Wire Line Circuits

These circuits include the following standard arrangements:

A terminating six-jack toll line circuit, not arranged for phantom, simplex, or composite apparatus is wired as shown on Drawing No. 213-B-27, page 127. A typical arrangement of

the jack equipment for six-jack line circuits is shown on Drawing No. 213-B-28, page 128.

The arrangement of wiring of a ten-jack toll line circuit is shown on Drawing No. 157-A-15, page 109. cuit is intended for use when it is desired to provide jacks for patching equipment such as composite sets, etc. also be used for phantom circuits when jacks are required for patching the equipment in the phantom line. Furthermore, when the lines are both phantomed and composited a ten-jack circuit is ordinarily sufficient and the phantom set and composite set patched together as a single unit. Since considerable patching may be required on open-wire circuits, the jacks for superposed equipment on open-wire circuits are located in the same panels with the line circuits. This also distributes the lines over a larger number of positions than if the line jacks for all circuits were located together in positions such as primary testboards in cable offices and thus permits a larger number of testboard operators to work efficiently during periods of severe line breaks.

Drawing No. 157-A-16, page 110, shows in schematic form a terminating phantom group equipped with phantom and composite apparatus and employing a ten-jack phantom circuit. A typical position for these circuits is shown on Drawing No. 213-B-29, page 129. Where jacks are not required for equipment in the phantom circuit, the six-jack line circuit, Drawing No. 213-B-27, page 127, may be used for the phantom circuits.

Where open-wire lines are equipped with composite apparatus, the telegraph legs of the composite sets are terminated in jacks in the same position with the line circuits. These jacks are wired as shown on Drawing No. 213-B-30, page 130.

A terminating phantom group not arranged for composite apparatus is shown in schematic form on Drawing No. 154-A-34, page 105. The jack equipment for a typical position equipped with such circuits is shown on Drawing No. 213-B-31, page 131.

Where telephone repeater network jacks may be required at the testboard, the jack arrangement is shown on Drawings Nos. 202-B-63, 202-B-71 and 202-B-92, pages 166, 167 and 168.

The flexibility of jack arrangement of this type of testboard is well adapted to care for whatever requirements may be imposed by future developments. Where carrier telephone or carrier telegraph may be required either initially or at some future time the board will provide the necessary facilities for patching, service, etc. In so far as practicable, the standard telephone and telegraph circuits will be used. The circuits applying specifically to the carrier systems will be covered in detail together with the other information issued in the bulletins describing these systems.

3.12 Cable Circuits

Toll cable circuits are more uniform in their make—
up than open—wire lines and since they are also less suscept—
ible to line trouble less patching is ordinarily required on
them than on open—wire lines. Consequently, fewer jacks are
required for patching equipment. Also the fewer number of
troubles in cable circuits makes it practicable to concen—
trate a relatively large number of circuits in one position.
In view of this the jacks on toll cable circuits are grouped
in primary testboard positions and secondary testboard posi—
tions as explained in Section 1.2. This primary and secondary
grouping scheme provides adequate flexibility for patching
and testing and in addition makes it possible to use eco—
nomically the same testboard arrangements at both through repeater stations and at stations having a relatively large
number of terminating circuits.

The primary testboard positions are provided for testing the cable pairs and for patching between the cable pairs and the line equipment. Each cable pair is wired through a four-jack cable circuit in the primary testboard as shown on Drawing No. 213-B-32, page 132. These jacks are arranged in the primary testboard positions as shown on Drawing No. 213-B-33, page 133.

The cable pairs are wired through the testboard consecutively in the order of the pair count.

Terminating two-wire circuits are wired through six jacks in the secondary testboard positions as shown on Drawing No. 213-B-27, page 127. These jacks are arranged in the face of the board as shown on Drawing No. 213-B-28, page 128. Terminating four-wire circuits are wired through fourteen jacks as shown on Drawing No. 213-B-34, page 134. These jacks are arranged in the face of the board as shown on Drawing No. 213-B-35, page 135.

Through circuits do not appear at the secondary testboard positions. If equipped with telephone repeaters, the jacks provided at the repeater racks, as described in connection with information relative to telephone repeater equipment, furnish facilities for testing or patching on the drop side of equipment such as repeating coils and composite sets. Drawing No. 157-A-19, page 111, shows schematically a typical arrangement of a through two-wire phantom group equipped with telephone repeaters and arranged for metallic telegraph; Drawing No. 154-A-31, page 106, shows a similar arrangement of a through four-wire phantom group (one-half of a four-wire circuit). Drawings Nos. 154-A-32, page 107, and 157-A-22, page 112, show typical arrangements of terminating two-wire and four-wire phantom groups, respectively. Jacks when required for metallic telegraph line circuits are located in separate positions as explained in Section 3.26.

Spare equipment such as repeating coils or composite sets may be wired to jacks in the primary testboard positions so that it may be substituted for the regular equipment when desired. The wiring of the jacks for spare equipment is shown on Drawing No. 213-B-36, page 136.

3.2 Telegraph Circuits

3.21 Telegraph Line Terminals

In positions provided for testing and patching terminating telegraph circuits and associated apparatus, telegraph line terminal circuits, as shown on Drawing No. 213-B-37, page 137, are provided for terminating and testing the telegraph subscribers' loops, and for connecting the loops to the desired telegraph repeater or duplex set. The telegraph line terminal circuit includes a calling signal relay arranged to operate a signal at the testboard and at the telegraph repeater set. This relay is differentially connected so that it is not affected by the normal operation of the telegraph circuit but will be operated when the subscriber's calling-in-key which connects a ground to the loop at the subscriber's station is depressed. Where the subscriber's loop normally operates with a ground at the subscriber's station or where the windings of the relay become separated on different circuits, one winding of the relay is cut out and the relay operated on a marginal rather than a differential basis.

Two series looping jacks are provided in the telegraph line terminal for connecting additional loops or single line

telegraph repeaters temporarily by means of patching cords.

3.22 Telegraph Subscribers' Loops

Telegraph subscribers' loops are terminated directly on the subscribers' loop jacks in the telegraph line terminal circuits. Provision is made for three subscribers' loops or single line repeaters in each telegraph line terminal. operate more than three subscribers' loops in connection with one telegraph circuit, the extra loops are connected to the subscribers' loop jacks of a second telegraph line terminal The battery side of the first telegraph line terminal is then connected to the line side of the second telegraph line terminal, and battery connected to the second telegraph line terminal in the usual way. These connections, if permanent, are normally made at the distributing frame, or, if temporary, they can be made by patching the DROP-2 jack of the first telegraph line terminal to the DROP-1 jack of the second terminal. Where lamps at the duplex or repeater tables are wired to a local contact on the DROP-1 jack, a two-conductor patching cord should be used in connecting telegraph line terminals in series in order that the lamp signal at the duplex table may operate in conjunction with the signaling apparatus in the second telegraph line terminal circuit.

The contacts on the subscribers' loop jacks are arranged so that when a loop is taken up for test with the test cords or telegraph test sets or with a patching cord for patching to another circuit, the telegraph circuit will be closed

through with the loop removed. A subscriber's loop may be removed from the circuit by inserting a dummy plug in the subscriber's loop jack.

A telephone loop for use between the testboard and a printing telegraph subscriber's station is shown on Drawing No. 218-B-6, page 162. When the receiver is removed from the switchhook at the subscriber's station a signal is operated at the testboard which remains operated until a plug is inserted in the subscriber's loop jack to answer the signal. Battery supply is furnished the subscriber from the testing cord used to answer the signal. The telephone loop may be patched to a telegraph line terminal circuit for temporary use as a telegraph loop if desired.

3.23 Split Loops

To use one wire of a telegraph subscriber's loop for emergency or temporary service, the split telegraph loop circuit, shown in Figure 1, Drawing No. 213-B-20, page 120, may be used. The subscriber's loop jack should be patched into the looping jack of the split telegraph loop circuit and the tip or ring jack of the split loop circuit patched to the DROP-2 jack of the telegraph line terminal circuit. Under these conditions, it is not possible for the telegraph subscriber's operator to use the signaling relay in the telegraph line terminal circuit. If the signaling feature is required, the tip or ring jack of the split telegraph loop circuit should be patched to a LOOPING jack of a telegraph line terminal.

About 500 ohms resistance should then be added at the subscribeer's station and the signal relay in the telegraph line terminal given a special adjustment to operate on a marginal basis as described above.

3.24 Polar Duplex and Telegraph Repeater Circuits

Polar duplex sets and terminal repeaters used in connection with grounded and metallic telegraph systems, and voice-frequency carrier and high-frequency carrier telegraph systems are wired to jacks in the telegraph positions as shown on Drawings Nos. 213-B-38, page 138, 213-B-39, page 139 and 213-B-40, page 140, respectively. These jacks are normally wired to telegraph line terminals for connection to the subscribers' loops so that patching cords are not ordinarily required. Where special arrangements or changes in layout are necessary, new telegraph line terminals or telegraph equipment are readily substituted by patching cords.

Telegraph subscribers' calling-in-signals at telegraph repeater sets and duplex sets are wired through the jacks associated with the set to the telegraph line terminal so that the signal is patched automatically whenever a set is patched.

The jacks for telegraph line terminals, telegraph repeaters, etc., are located in the testboard as shown on Drawing No. 213-B-41, page 141.

3.25 Single Line Repeaters

Single line repeaters are normally connected to subscribers' loop jacks in the telegraph line terminals. Spare

as described in Section 3.12 for patching in case trouble develops in the line equipment.

3.3 Trunks and Miscellaneous Circuits

3.31 Talking Trunks

Talking trunks are provided to such locations as the testboard operator may have occasion to call. These trunks are arranged for multipling to the different testboard positions and ordinarily appear in positions equipped with voltmeter testing equipment or telegraph testing equipment since cords adapted for talking on the trunks are available only in these positions. In voltmeter testing positions two jacks are provided in the trunk circuit as shown in Figure 1, Drawing No. 213-B-45, page 145, for use in connection with the test cords and connecting cords. In telegraph testing positions a single jack as shown in Figure 2, is provided for use with the looping test cord. Lamp signals are provided at the testboard which may be multipled at one, two or three positions as desired. trunk may be multipled at the voltmeter testing positions or telegraph testing positions or both; and jacks for all the different types of trunks are wired alike. The relay equipment required for the various types of trunk circuits differs depending on the service and is covered by the following drawings:

Type of Trunk	Drawing No.	Page
Two-Way Ringdown Trunk or Trunk to Step-by-Step or Panel Machine Switching Office	213-B-46	146
Trunk to Toll Switchboard No. 1 Incom- ing Automatic - Outgoing Ringdown	213-B-47	147

Type of Trunk	†	Drawing No.	Page
Trunk to Toll Switchboard No. 3 Incoming Automatic - Outgoing Ringdown		213-B-48	148
Trunk to Local Manual Exchange or Official PBX		213-B-49	149
Trunk to Toll Chief Operator's or Assistant Toll Chief Operator's Desk		213-B-51	150
Telephone Line to Main Distributing Frame		213-B-52	151

3.32 Interposition Trunks

For interposition patching purposes, trunks are provided between testboard positions as shown on Drawing No. 213-B-53, page 152. These trunks can be used for the patching telephone lines, composite sets, telegraph circuits, etc. The interposition trunks are arranged so that when a plug is inserted in a jack at one position a busy test will be obtained on all other positions where the trunk is multipled.

3.33 Auxiliary Signal Circuit

The auxiliary signal circuit is used in connection with the trunk signals, cord supervisory signals, and the telegraph line terminal signals. The lamp, key and buzzer for this signal circuit are shown on Drawing No. 218-B-1, page 157.

3.34 Ringing Circuit and Trouble Tone Circuit

Leads for the supply of 20-cycle ringing current for toll testboard No. 5 are wired as shown on Drawing No. 218-B-2, page 158. The wiring arrangement for the 1000-cycle and 135-cycle is covered in bulletins on these ringing systems.

The interrupted low-tone circuit for offices equipped with motor-driven interrupters is shown on Drawing No. 218-B-3, page 159. Where no motor-driven interrupter is available for supplying the tone a system of relays as shown on Drawing No. 218-B-4, page 160, may be provided if the interrupted low tone is required. Interrupted low tone will only be required when the test board is associated with a switchboard.

3.35 Test Line to Main Distributing Frame

The test line to the main distributing frame shown on Drawing No. 218-B-5, page 161, can be used in offices where all lines entering the office are not looped through the toll test-board and where it is desired to gain access to these circuits at the main distributing frame for testing purposes.

3.36 Combined Composite Set Jacks

Where combined terminal and intermediate composite sets are provided and it is desired to provide facilities for converting them quickly from terminal sets to intermediate sets or vice versa, jacks as shown in Figures 7 and 8, Drawing No. 213-B-20, page 120, are provided in the testboard. Figures 5 and 6 of the drawings show the arrangement of the corresponding jacks for combined terminal and intermediate composite balancing sets.

(4.0) OPERATION OF TESTING EQUIPMENT

The testing circuits of the toll testboard No. 5 are provided for the purpose of determining the nature and location of troubles occurring in the toll lines outside of the office and in the apparatus associated with them inside the office.

The testing equipment includes a voltmeter test circuit, a Wheatstone bridge test circuit and a telegraph test circuit.

The type of testing apparatus provided in the No. 5 toll testboard permits a high degree of accuracy in the location of faults on cable circuits up to 60 miles in length and on open-wire lines up to 200 miles in length. The methods of making the various tests required for locating the more common faults are described below. The accuracy obtained in the location of a given fault depends to a considerable extent on the completeness and accuracy of the line records, the procedures followed in making the measurements made and on the interpretation of the results.

In taking up a line for test, care should be taken not to connect testing battery or ringing current to the line when linemen or cablemen are working on the line before notifying them. When inserting the test plugs all keys should be normal and the battery key should not be thrown before notifying the lineman if he is on the line. The shunt should be operated only long enough to make the necessary tests and should never be left in an operated position as this may result under certain conditions in rapid deterioration of the

testing battery.

Where resistance unbalances are suspected in line circuits not carrying grounded telegraph circuits, care should be taken not to connect a high voltage testing battery to the circuit until after a low voltage metallic Varley measurement has been made with the Wheatstone bridge. If the high voltage testing battery in the voltmeter testing position or the Wheatstone bridge position is connected to the circuit the resistance unbalance, if due to a poor connection, may temporarily disappear.

! (4.1) Methods of Using the Voltmeter Testing Circuit

The voltmeter is used to determine the nature of the trouble existing on the line, that is, whether the line is open, grounded, short-circuited, or crossed with another line or with a foreign potential. The usual voltmeter tests may be classified as follows:

- 1. Continuity tests.
- 2. Tests for grounds.
- 3. Rough resistance measurements.
- 4. Tests for insulation resistance and leakage.
- 5. Tests for crosses.
- 6. Tests for foreign or earth potentials.

Simplified diagrams of the circuit arrangements for the various tests made with the voltmeter are shown on Drawing)

(No. 154-A-17, page 100) fage

2 (4.11) Continuity Tests

In making a continuity test, the operator plugs into

normal to monitor for a moment. If the line is not busy, the operator should proceed with the test by operating the BATT. ON key which applies positive metallic testing battery to the tip, as shown on Drawing No. 154-A-17, page 100 Figure 6. The test battery may be reversed as shown in Figure 7 by operating the REV. BATT. key. The tip and ring may be reversed by operating the REV. LINE key. If the external circuit connected to the tip and ring conductors is open, a momentary throw may be observed with a subsequent low or zero reading. If the circuit is closed a steady deflection will be noted.

Since non-grounded battery is used in making the above continuity tests, these tests should always be followed by tests for grounds.

3 4.12 Tests for Grounds

In testing for grounds, either test cord is plugged into the line or drop to be tested and keys operated as shown in Figure [9] or [10] Drawing No. 154-A-17, page 100, depending upon whether the ring or the tip is to be tested. This places either the tip or ring conductor in series with the voltmeter and testing battery. The polarity may be reversed by operating the REV. BATT. key and the tip and ring conductors may be interchanged by operating the REV. LINE key.

4.13 Tests for Crosses

Tests for crosses are usually made with the single cords associated with test cord "B" by connecting one of the

cords to the faulty wire and connecting the other cord momentarily to wires suspected of being crossed with it. Circuit arrangements as shown in Figures 6,7 or 8, Drawing No. 154-A-17, page 100, may be used. A cross between conductors known to be open at the distant end will be indicated by a deflection of the voltmeter. An indication of the resistance of the cross may be obtained by operating the SHUNT key which converts the voltmeter into a milameter with a low or zero reading on high resistance crosses or leaks.

5 4.14 Tests for Foreign Potentials

For this test, either test cord is used with all keys normal. This arrangement places the voltmeter directly across the test cords without the battery. If foreign potential to ground is suspected, the keys may be operated to TEST TIP or TEST RING. In this test, the foreign potential may be an earth potential.

(4.15) Holding

When the key of a test cord is thrown back to the HOLD position, the cord is disconnected from the voltmeter testing equipment and connected to a repeating coil which may have associated with it signaling apparatus responsive to 20-cycle, 135-cycle and 1000-cycle signals and the secondary of which is connected to interrupted low tone as shown in Figure 2. Drawing No. 154-A-17, page 100. The cord may then be used as a holding cord for linemen or distant testboards to call in on, the tone serving to identify the circuit and the signaling apparatus providing a ringdown signal.

7 4.16 Talking

The operator's telephone circuit is normally connected to the test cords for monitoring as shown in Figure 4 Drawing No. 154-A-17, page 100. When the TALK key is operated the consections rechanged for talking as shown in Figure 1. The telephone circuit may be disconnected from the test cords by operating the TEL. DISC. key.

The telephone circuit may be connected to a cord used for holding by operating the TEL. ON HOLD key. The operation of this key also disconnects trouble tone from the holding cord, disconnects the telephone circuit from the other test cord and restores the signal associated with the holding cord.

Talking battery may be supplied on either the test cord or holding cord by operating the TALK. BATT. key.

When monitoring on working telephone circuits to determine their condition, a test cord may be used and the OPEN 3RD key or the HOLD and TEL. ON HOLD keys operated. Either of these conditions opens the sleeve circuit so that the busy signals at the toll switchboard will not be operated when the test cord is connected to the listening jacks.

Normall 30-cycle ringing current is connected to the ringing keys but a switching key is provided for substituting 135 cycles or 1000 cycles when desired. When the RING ON TEST key is operated, ringing current is supplied to the test cords if the TEL. ON HOLD key is normal, and to the

holding cord if the TEL. ON HOLD key is operated.

9 (4.18) Use of Connecting Cord

The connecting cord can be used in connection with the telephone set but can not be used with the voltmeter. It is a double-ended cord and is provided with a ringing key so that ringing current may be connected to either the right or left cord. When the TEL. ON CORD key is operated the operator's telephone circuit is connected to the connecting cord for monitoring as shown in Figure 4. If the TALK key is also operated the connections are changed for talking as shown in Figure 1. Talking battery may be supplied as shown in Figure 3, by operating the TALK BATT, key. When the TEL. ON CORD key is operated the telephone circuit is disconnected from the test cords and holding cord.

A 20-cycle relay is bridged across the cord mainly for receiving clearing out signals. The signals are restored by operating the TEL. ON CORD key.

In machine switching areas a dial may be associated with the right connecting cord. To dial a subscriber the right connecting cord is inserted in the jacks of a trunk to the machine switching office, the DIAL RIGHT key operated and the number dialed in the usual way. The dial key must be restored before the testboard operator can talk to the machine switching subscriber. A retardation coil is bridged across the right connecting cord in such cases to hold the connection after the dial key is restored. This coil also serves to trip machine

ringing when answering calls incoming from the machine switching office.

Series condensers are provided in the tip and ring conductors of the connecting cord so that the left cord may be used for connections to trunks where it is necessary to avoid the bridging of a direct-current path across the circuit on account of interference with supervisory signals in cords or trunks at the toll switchboard.

10 4.2 Methods of Using Wheatstone Bridge Test Circuit

The Wheatstone bridge test circuit is used in the location of faults after the general nature of the fault has been determined and the fault localized. The Wheatstone bridge tests which are usually employed in locating faults may be classified as follows:

- 1. Loop resistance measurements.
- 2. Single wire resistance measurements.
- 3. Insulation resistance measurements.
- 4. Varley loop tests.
- 5. Murray loop tests.
- 6. Open-location tests.

Simplified diagrams of the various tests made with the Wheatstone bridge are shown on Drawing No. 154-A-20, page 102.

One Wheatstone bridge may be associated with several voltmeter test positions. The Wheatstone bridge may be connected to either of the test cords in any of the voltmeter testing circuits with which it is associated by operating the

BRIDGE key in the voltmeter test position. The operation of any one of the BRIDGE keys lights a lamp at the Wheatstone bridge position and at each voltmeter test position with which the bridge is associated. After the general nature and approximate location of a fault has been determined by voltmeter tests, the test cord key is operated to BRIDGE. The operator may then proceed with the Wheatstone bridge measurements as described below. In general it will be desirable to use the single cords associated with test cord "B" when making Wheatstone tridge tests.

1) 4.21 Loop Resistance Measurement

In making a loop resistance measurement, the line or pair to be tested is connected to the Wheatstone bridge test circuit as outlined above. The battery key in the Wheatstone bridge position is then operated to the 6-volt or 150-volt position which connects testing battery to the bridge and also lights the galvanometer scale lamp inside the bridge as indicated in Figure [2], Drawing No. 154-A-20] page [103]. The "Multiply By" dial is set at the desired point and the rheostat arm, (the four dials on the right), is adjusted until no deflection is obtained when a galvanometer shunt key is depressed.

No means are provided for using a voltmeter or other external instrument in place of the galvanometer while obtaining a preliminary balance and, therefore, the .001 shunt key should always be used until an approximate balance is obtained. A higher shunt may be employed as the balance becomes more

exact, until the most satisfactory balance possible is obtained.

12 4.22 Single Wire Resistance Measurements

Single wire resistance measurements are made in the same way as loop resistance measurements, except that a ground return is employed. The single wire to be tested may be properly connected to the bridge circuit by throwing the TEST TIP or TEST RING key, as the nature of the trouble may require, the distant end of the circuit to be measured also being grounded. Single wire resistance measurements should be used only in the event that a loop or Varley measurement is impossible, becausally large errors may be expected as a result of ground potentials, high resistance between the fault and ground, or both.

[3 [4.23] Insulation Resistance Measurements

Insulation resistance measurements are made with the same circuit set up as single wire measurements except that the distant end is opened, the leakage-to-ground serving as return path for the circuit. The ratio dial should be set at 100 or 1,000 and a key thrown to TEST RING or TEST TIP, as the nature of the trouble may require.

Similarly the insulation resistance between conductors can be measured with an ordinary loop connection, the loop being open except for mutual leakage.

14 14.24 Varley Loop Tests

In making a Varley loop measurement, the connection is set up by operating the VARLEY key and operating the battery key to 150 volts or 6 volts, as shown in Figure 5. Drawing

No. 154-A-20, page \102. The "Multiply By" dial should be set on \frac{1}{1} and a balance made in the same way as for a loop measurement. This arrangement connects the bridge to the line with tip-to-tip and ring-to-ring. If it is found that a balance is impossible with this arrangement, the REV LINE key should be thrown to connect the bridge to the line with tip-to-ring and ring-to-tip, in order that the ring of the bridge be connected to the side of the line or loop which has the largest resistance.

The so-called "Reversed Varley" measurement is made with the "Multiply By" dial set on some value less than $\frac{1}{1}$. The measuring procedure is the same as outlined for the regular Varley measurement, although the analysis of the results is more difficult.

The metallic Varley test is made exactly as described above, except that a metallic return line "X", as shown in Figure [7], is patched into the "Varley and Murray" jack. In making metallic Varley measurements to detect resistance unbalances, care should be taken not to throw the battery key to the 150-volt position before making the measurement.

15 4.25 Murray Loop Tests

Connections for the Murray loop test are set up by operating the MURRAY key and throwing the battery key to 150 volts or 6 volts. The circuit for the Murray loop test with the line normal is shown in Figure 8, Drawing No. 154-A-20, page 102 If the REV LINE key is operated the connections are as shown in Figure 9.

The metallic Murray loop test is made in the same

way as the tests described above, except that, in addition, a metallic return line "X" is patched into the "Varley and Murray" jack, as shown in Figure 10.

 $\ensuremath{\Lambda}$ reverse Murray is obtained by connecting the good wire to the ring.

16 4.26 | Open-Location Tests

"Opens" are ordinarily located by comparing the capacity component of the impedance to ground of the wire in trouble with that of a good wire of known length, preferably its mate. A 1 mf. condenser is provided in the Wheatstone bridge circuit for balancing the capacity component of the line. A Murray connection is used with 1000 ohms as one ratio arm and the rheostat as the other ratio arm. The impedance to ground of the wire being measured and the 1 mf. condenser in series with a variable resistance (the condenser arm rheostat) form the other two arms of the bridge. These connections are shown in Figure 11, Drawing No. 154-A-20, page 102. The condenser arm rheostat (the three dials on the right, Drawing No. 219-B-65, page 164) in series with the 1 mf. condenser permits obtaining a phase balance which is necessary for an accurate location. A PHASE SHIFT key is provided to assist in securing the phase balance.

In making an open-location test the wire to be measured is connected to the ring side of the bridge. The MURRAY and OPEN LOCATION keys are operated and the MULTIPLY BY dial set at M1000. The battery key is operated to 150 volts or 6 volts, the condenser arm rheostat set at zero, and with the PHASE SHIFT key

normal, the rheostat arm is adjusted until an approximate balance is obtained. The PHASE SHIFT key is then operated and the condenser arm rheostat adjusted until a balance is again obtained, leaving the bridge rheostat set at the point obtained on the previous trial. The PHASE SHIFT key is then restored and the bridge rheostat again adjusted. These steps are repeated until the operation of the PHASE SHIFT key does not affect the balance.

When a true balance has been obtained the capacity component of the wire being measured is proportional to the setting of the bridge rheostat and the values obtained in the measurements on a good wire and on the wire in trouble are used in calculating the distance to the fault. The condenser arm rheostat is required only to secure a phase balance and its value is not required in the calculations.

17 4.3 Method of Using Telegraph Test Circuit

The voltmeter testing equipment in the telegraph test circuit is terminated in tip, ring and looping cords and is used in testing for continuity, crosses or grounds in telegraph subscribers' loops and in determining the polarity and potential of voltages in the various telegraph circuits and battery taps appearing at the testboard. The milameter is used in checking and adjusting the current in telegraph circuits. The usual tests made with the telegraph test circuit may be classified as follows:

- 1. Current measurements.
- 2. Measurement of line potential.
- 3. Test of "home battery."
- 4. Test of "distant battery."

- 5. Potential measurement of telegraph test battery.
- 6. Test of telegraph drop.
- 7. Test of telegraph line.
- 8. Telephone Set.

Simplified diagrams of the various tests are shown on Drawing No. 154-A-22, page 104.

8 14.31 Current Measurements

The milameter winding of the volt-milameter is normally wired to the test cords so that current measurements may be made without operating any keys by plugging the looping test cord into a looping jack or by connecting in series with the circuit by means of the single test cords.

Current measurements may be made with looping cords of telegraph test set No. 1 or No. 2 by operating the MIL-AM ON 1 or MIL-AM ON 2 key. When a telegraph test set is used for current measurements as shown in Figure 13, Drawing No.

154-A-22, page 104, the circuit includes a 100-ohm relay winding.

| 9 | 4.32 | Measurement of Line Potential

Care should be taken in taking up a telegraph circuit for voltmeter tests to insure that the circuit is not in operation, for the high resistance of the voltmeter winding will interrupt the telegraph service if connected in series with the circuit. When it is desired to measure the potential across the telegraph line and drop the looping test plug should be inserted in the looping jack of the telegraph line terminal and the voltmeter winding connected in series with the circuit as shown in Figure 1 Drawing No. 154-A-22, page 102 by

throwing the TEST key.

2 0 4.33 Test of "Home Battery"

The potential of this battery may be measured by throwing the TEST and TEST RING keys. This opens the tip and connects the voltmeter across ring and ground as shown in Figure 3. The voltmeter reading will then indicate approximately the potential of the battery connected to the battery jack and through the subscriber's loop to the looping jack of the telegraph line terminal, and the direction of the deflection will indicate the polarity.

7 | 4.34 Test of "Distant Battery"

For this test the looping plug is inserted in the looping jack of the telegraph line terminal or a duplex line jack, the ring side of the testing circuit is opened and the voltmeter connected to ground in series with the tip by throwing the TESI and TEST TIP keys as shown in Figure 2. The voltmeter reading will then indicate the potential of the battery at the distant end and the direction of the deflection will indicate the polarity.

1 2 4.35 Potential Measurement of Telegraph Test Battery

The potential of the telegraph test battery may be measured by operating the TEST and SHORT keys which short-circuit the tip and ring through the voltmeter. If the + BATT.

or - BATT, keys are then operated the voltmeter will indicate the potential and polarity of the battery under test.

13 4.36 Test Line

This test made with a telegraph test set can be made by inserting the looping plug of telegraph test set No. 1 or No. 2 in the listening jacks of a telegraph line terminal and applying + BATT., - BATT. or CROUND in series with the telegraph relay as shown in Figures 17, 18 and 19

1 4 4.37 Test Drop

This test is the same as the line test except that the connections are set up to test the ring instead of the tip. The connections are set up as shown in Figures 14, 15 and 16, prawing No. 154-A-22, page 104.

25 74.38 / Telephone, Set

The operator's telephone circuit can be connected to the test cords as shown on Figure [9] by throwing the TEL. key. If in addition to the TLL. key, the TALK BATT, key is operated, talking battery may be supplied as shown in Figure [10] Ringing current can be applied to the test cords by throwing the TEL. and RING keys.

4.4 Patching Cords.

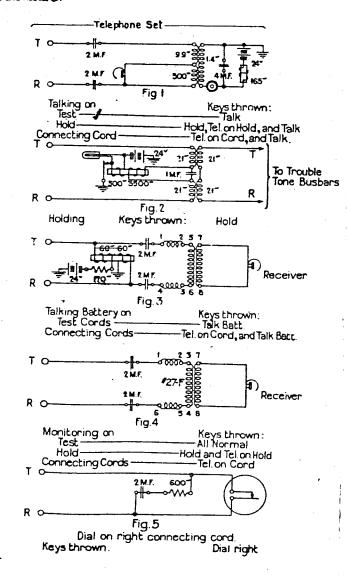
Patching cords are provided so that circuits terminating in jacks at the testboard may be connected to circuits other than those with which they are normally associated. The various kinds of patching cords and cordless plugs provided in connection with toll testboard No. 5 are shown on Drawing No. 318-B-7, page 163. The shells of the twin plugs have the timeside knurled and the ring side plain to enable the operator

to distinguish between the tip and ring wire terminals of the plug. When inserted horizontally the knurled edge is normally turned toward the left and when inserted vertically the knurled edge is normally turned toward the top.

Cordless plugs are provided for certain special uses.

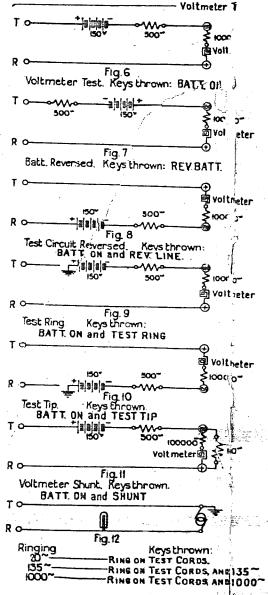
Plug | "E" | is used for short-circuiting lines, drops, composite 241-B sets, etc. Flug | "F" | is used for opening both sides of a circuit or for patching out line equipment by inserting two of these plugs vertically in the line and drop jacks. Plug | "J" is used for opening signal wires, etc. | Plugs "C" and "H" may be used as required. A black shell on a cordless plug indicates that the ring and tip of the plug are strapped as in plugs "E" and "H". A red shell indicates that the tip and ring are not strapped, as in plugs "F" and "G".

Cord "A", Drawing No. 218-B-7, page 163, is used for patching a single conductor such as a grounded telegraph line circuit. Cord "C" is used where it is necessary to patch the conductor connected to the sleeve of a jack along with the tip conducto as in the case of telegraph subscribers' loops, telegraph repeaters where it is desired to patch the subscriber's signal along with the telegraph repeater set, etc. Cord "B" is used for patching telephone circuits, line equipment, or other apparatus or circuits where the tip and ring conductors are wired through adjacent jacks. Cord "D" is used similarly to cord "B" except that the sleeves of the plugs are connected. It is used principally in connection with telephone repeaters


where three-conductor patches are sometimes required. Cord "K" is used for certain special patches such as connecting a cable pair to a metallic telegraph circuit. Cord "L" is used only at the distributing frame. A white patching cord indicates that the sleeves of the plug are not connected and a red patching cord indicates that the sleeves are connected. Resistance plugs as shown in Drawing No. 38-Y-1468 are used for line terminations in transmission testing.

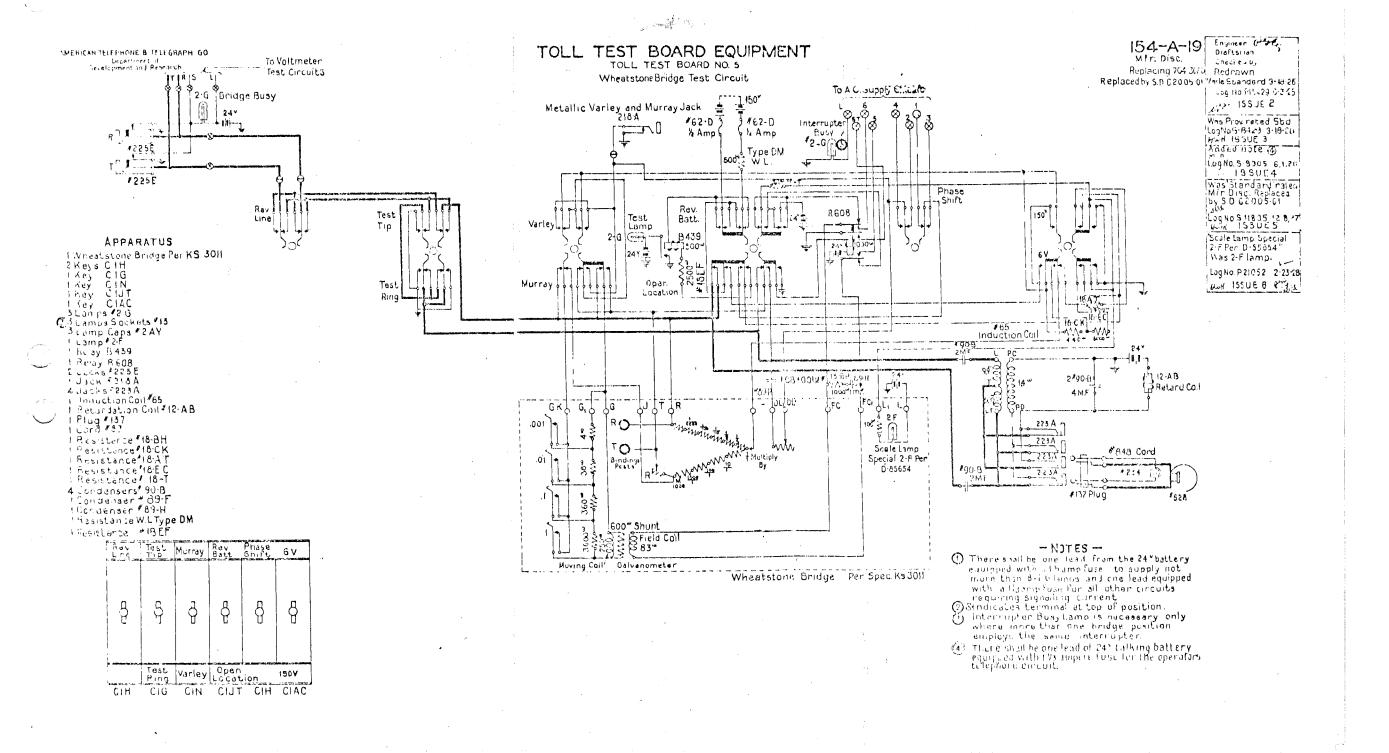
REFERENCES:

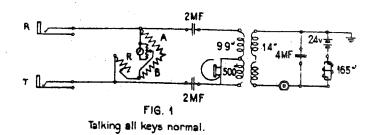
Bulletin No. 138 - Jack and Lamp Socket Mountings for Use on Relay Racks.

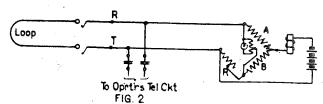

Bulletin No. 214 - Wheatstone Bridge per KS-3011.

AMERICAN TELEPHONE & TELEGRAPH CO Department of Development and Research

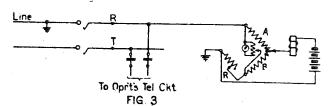
TOLL TEST BOARD EQUIPM TOLL TEST BOARD NO.5 Volumeter Test and Connecting Cord Circuit

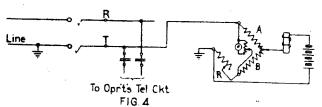

Simplified Diagrams


154-A-17 Standard Replacing 704-3021

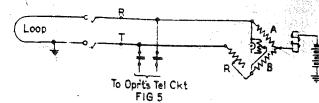

Engineer W.W. W. Draftsman 449 Checked by MedeStenerd 3-18-25 Log No.P.14423 1,262 APA ISSUE 1 -The bettery convention
was removed from Fig. 18
LogNaR47396 2-17-25
ISSUE 2 7-wh
Was Prov rated Std.
LogNaS-6426 3-18-28
Hunt ISSUE 3

₹xxxxxxx 🖄 Volt meter fig.I3 Battery Off. All Keys Normal. £1000000 d voltmeter Fig 14
Measuring Battery Voltage Keys thrown:
RATTON and SHORT 100000 蓟 Voltmeter 5 o Fig. 15
Third Wire Open, Keys thrown: OPEN 3 19 - <u>-</u> 100000 🖻 Voltmeter Fig. 16
Third Wire Test. Keys thrown:
BATT ON and TEST 3 **
Telegraph Set Fig. 17
Telegraph Test Set 21 on Telegraph Cords.
All Keys Normal Wheatstone Bridge -Fig. 18
Wheatstone Bridge Test, Keysthrown: Bridge

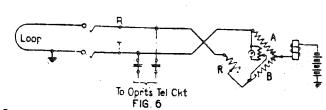




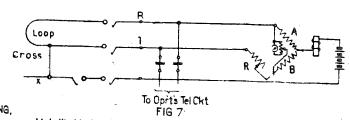
Loop resistance measurement. Key thrown: 150 v. or 6 v.

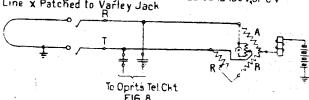


Single grounded wire resistance measurement. Key thrown TEST RING, 150 v or 6v



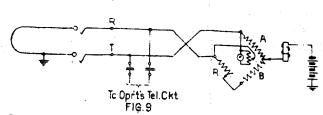
Single grounded wire resistance measurement Key thrown TEST TIP, 150 v or 6 v


TOLL TEST BOARD EQUIPMENT Wheatstone Bridge Test Circuit, Simplified Diagrams

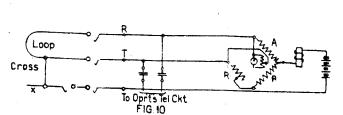

Variey loop test Key thrown: VARLEY, and 150 v.or 6 v.

Rev. Varley loop test. Keys thrown VARLEY REV LINE, and 150 yor 6 v.

Metallic Varley test Keys thrown VARLEY and 150 v or 6 v Line x Patched to Varley Jack

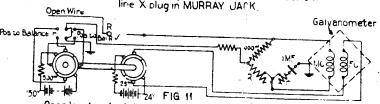

Murray loop test Keys thrown MURRAY, and 150 vor 6 v

154-A-20 Standard Replacing 704-3045

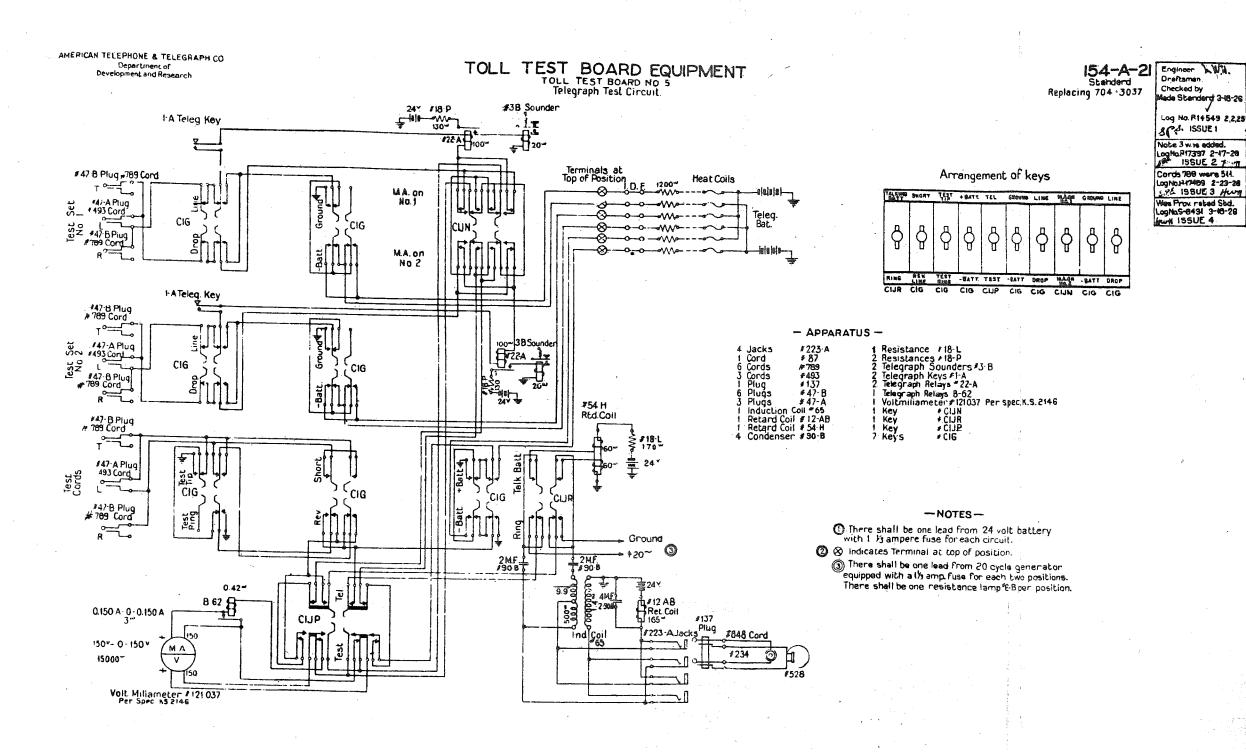

Draftsman 4*

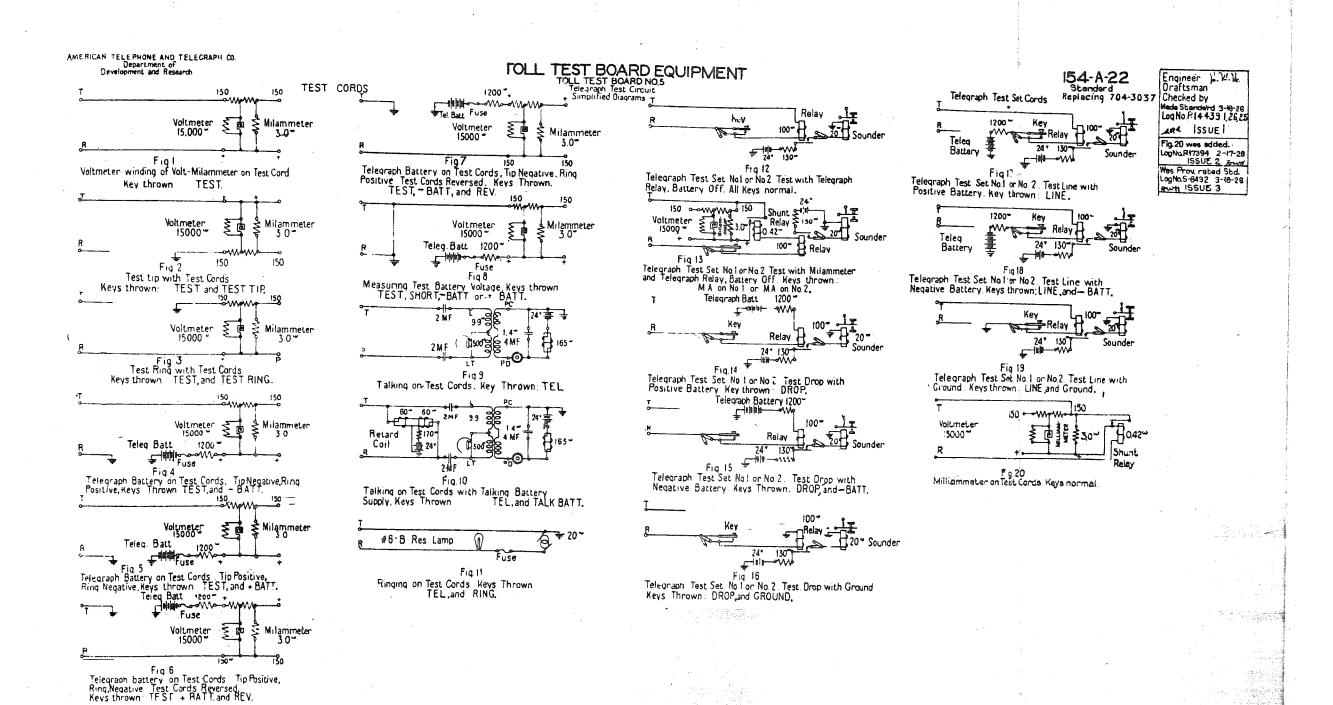
ration was added to find to fi

Log No 58430 3.18,26 Hay 155UE3



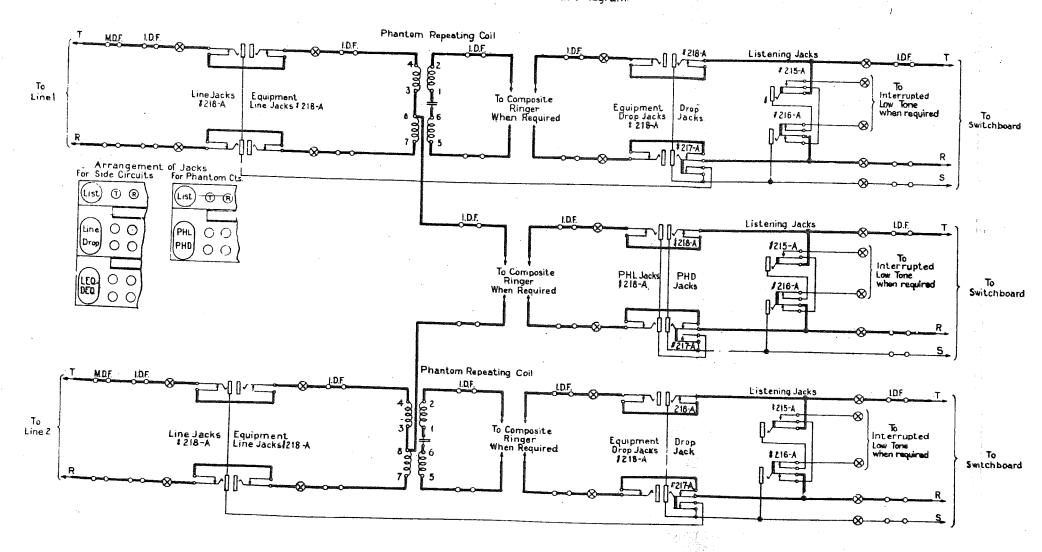
Reversed Murray loop test Keys thrown FEV. LINE, MURRAY, 150v.or6v




Metallic Murray loop test Keys thrown MUFRAY. 150 vor 6 v.
Onen Wire.

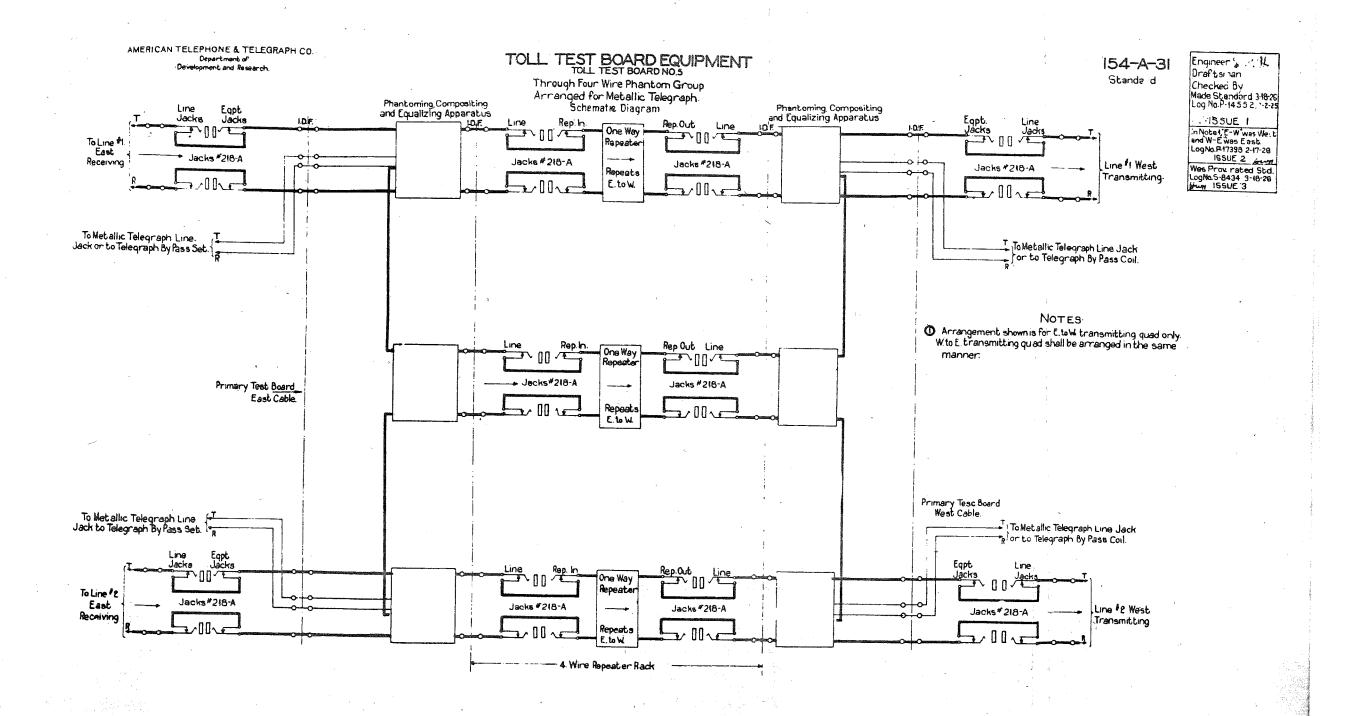
Onen Wire.

Open location test: Keys thrown OPEN LOCATION, MURRAY 150 v. or 6 v. and Multiply by M-1000



AMERICAN TELEPHONE & TELEGRAPH CO. Department of Development and Research

TOLL TEST BOARD EQUIPMENT
TOLL TEST BOARD NO.5


Phantom Group not Arra nged for Composite Apparatus
10-Jack line circuit and 6-Jack Phantom Circuit
Schematic Diagram.

Checked by Meda Standard S-81-26

Log Naf-14437 1,26,25 ر الا SUE 1

The designation interrupted low-tone punching was interrupted trouble-tone. Logilla R17396 2-17-28 AS. 165UE 2 Hund. Interrupted low-tone connections meried, when required. Logilla R17490 2-23-26 (167. ISSUE 3 Aug. Wee Prox rated \$5d. Logilla S433 3-19-28 [M. IISSUE 4]

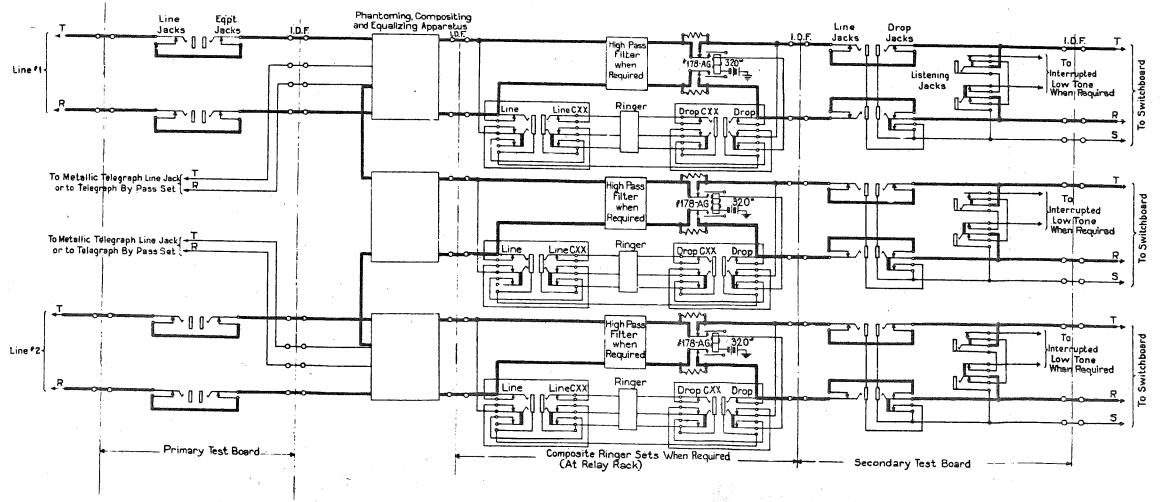
AMERICAN TELEPHONE & TELEGRAPH CO. Department of Development and Research

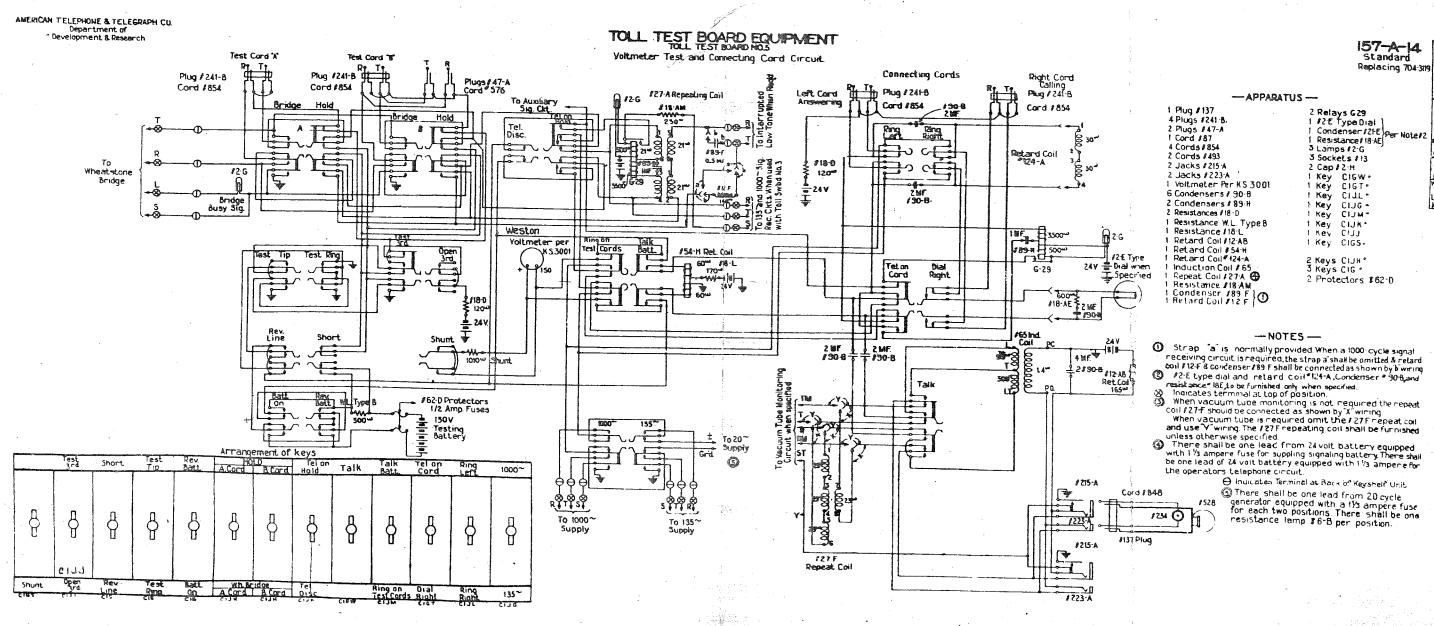
TOLL TEST BOARD EQUIPMENT

Terminating Two Wire Phantom Group.

Arranged for Metallic Telegraph.

For Cable Offices where a Secondary Test Board is provided.


Schematic Diagram.


Standard Engineer A. (v. N. Dreftsman F.J. N. Checked by Made Standard 3-18-26

Log No. P-14551 2-2-25

Log No. P-14551 2: 2-23
Log No. P-14551 2: 2-23
Log No. P-14551 2: 2-23
Resistences were placed across the break
Contacts of Relays
No. 1787-A8.
Log No. P-147393 2-17-28
Jeff ISSUE 2: 1747

Interrupted low-tone's connections merked, when required LogNo.R47494 2-23-28 40%. ISSUE 3 Hour Wes Prox rated Std LogNo.S-8435 3-10-26 Hour ISSUE 4

Checked by Made Standard 1878 Log M9 F 14 4 24 1, 26, 25

195UE1

Designations were added.
Test Cord A and Test
Cord B:
Logis AT401 2-17-28
AT8-19SUE 2 //mm
Injurrupted low-tone
Connections merked
When required
Logis AT402 2-23-28
Logis AT407
Was Pro rated Std

AMERICAN TELEPHONE & TELEGRAPH CO Department of Development and Research

To line or to phantom taps of side carcuit repeating coils for phantom circuits

MDF

TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD HOS 10 Jack Toll Line Circuit Arrangement of Wiring

Listening Jacks 218-A (216A) Equipment
Drop Jacks for side
or physical circuits
PCD Jacks for
phantomicircuits Interrupted low Tone When Paquired Cross connect to line side of Composite Set or phantom repeating coil as required. /2:6A Cutoff Relay To Switchboard To Composite Ringer

157-A-15 Standard Replacing 704 3005

APPARATUS

Log No P14 447 1, 2625 and Issuε f Age 1930/E | May receive of the Program of the Prog

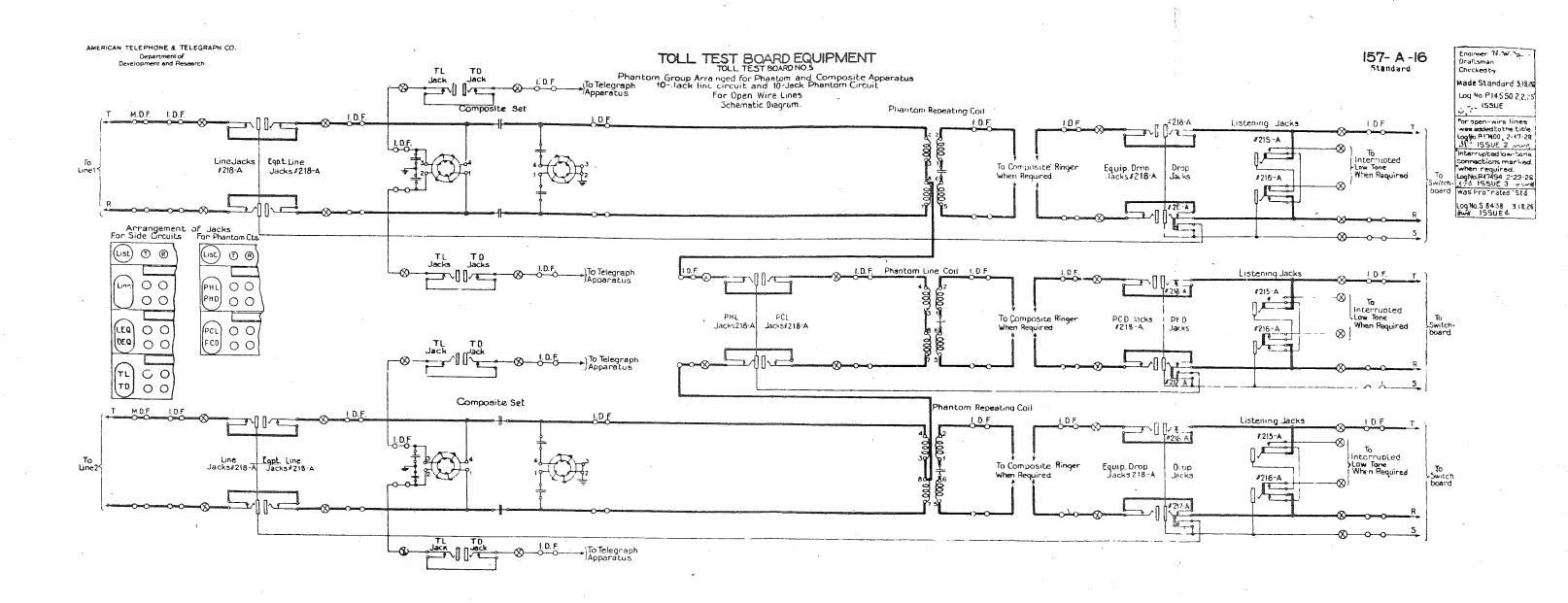
Engineer 17 18 Draftsman 17 Checked by Made Standard S. 1826

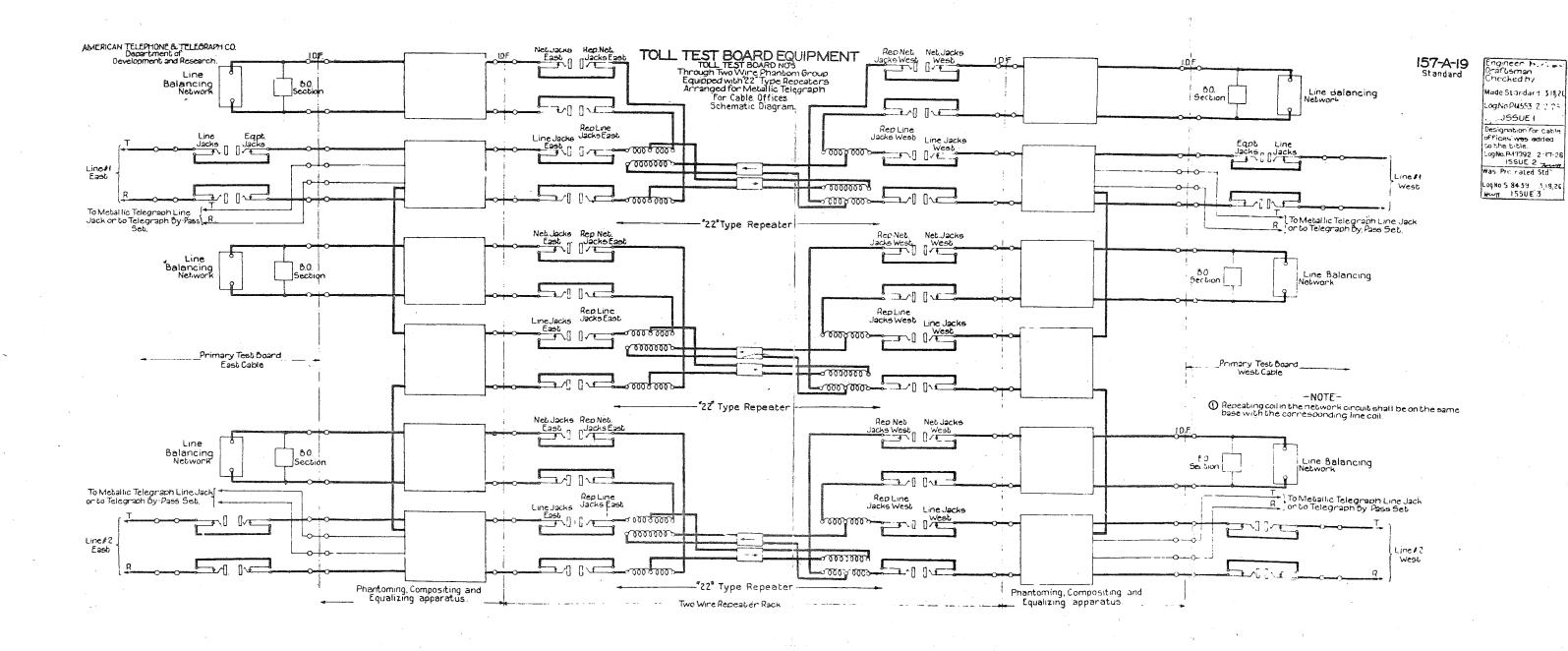
• NOTES

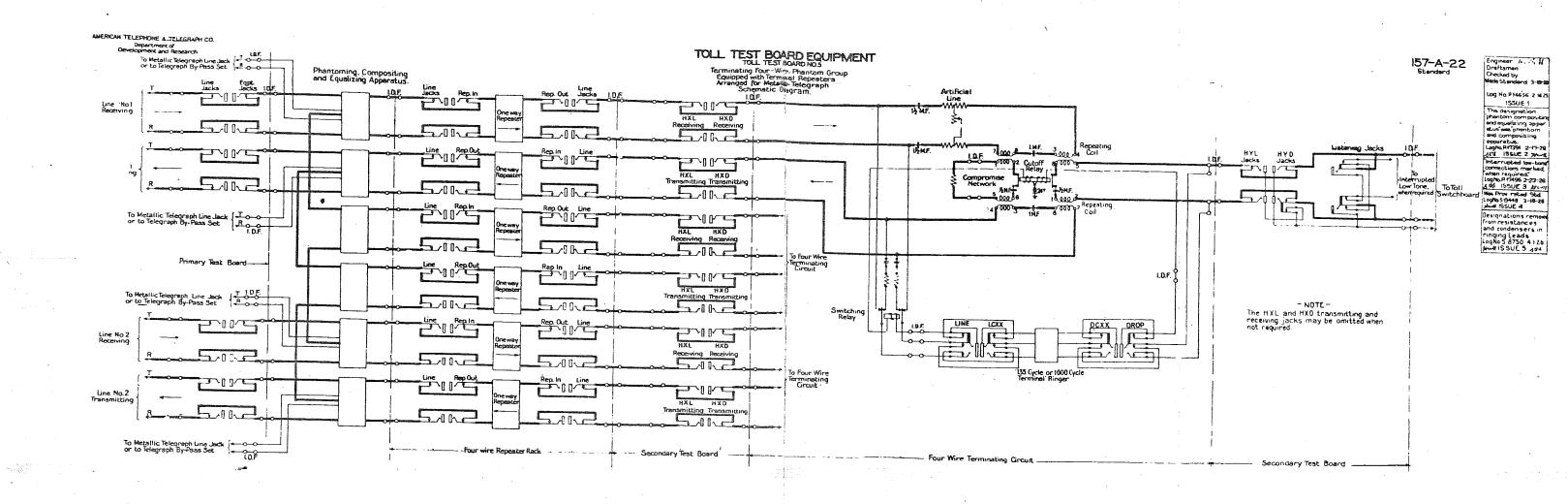
Designates terminal at top of position

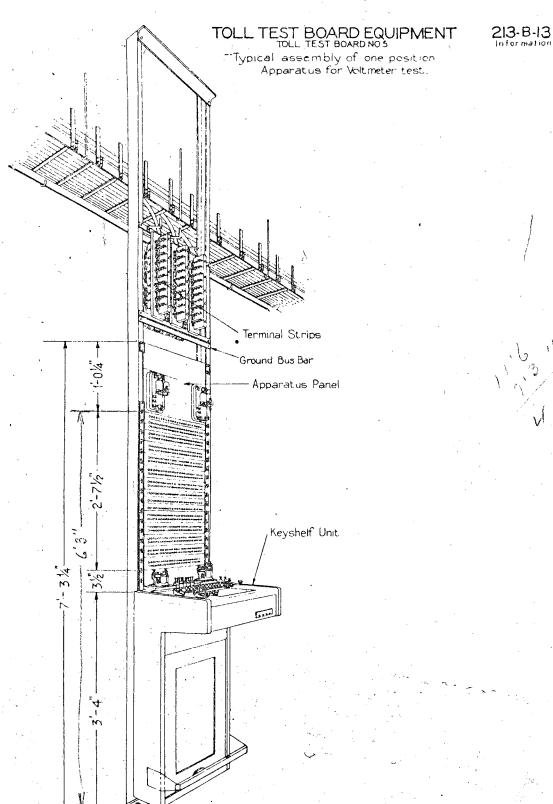
To connect trouble tone across tip and
ring insert a short circuiting plug in the
tiplistening jack

When the jack count does not rollow the circuit arrangement at the LDF the necessary wiring changes shall be made in the local cable.

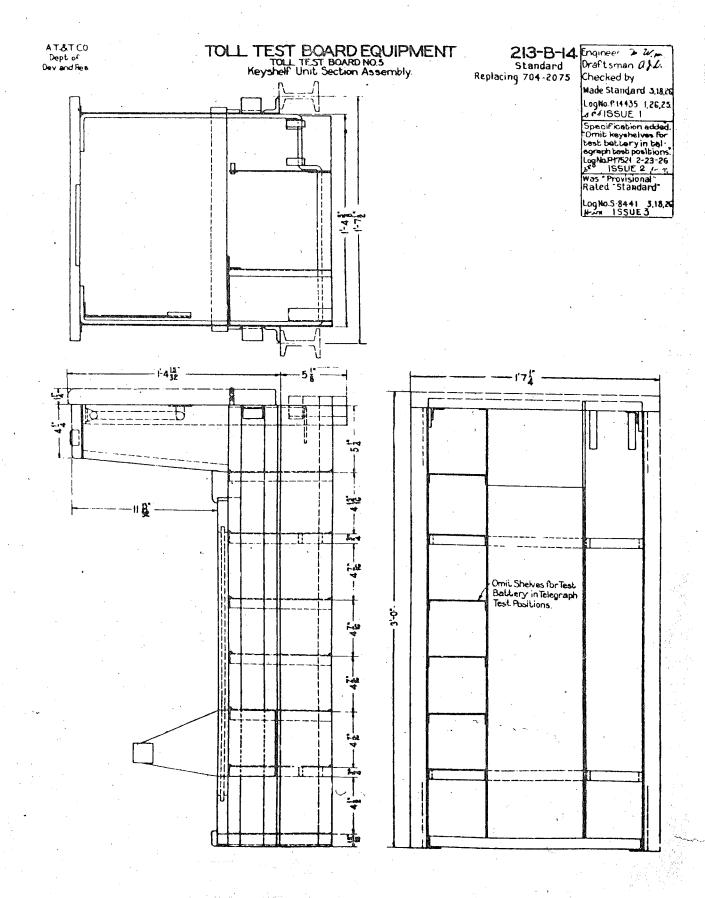

Arrangement of Jacks for 10 Jeck Phantom Circuits For 10 Jack Physical Circuit. (D) O Ø PHL OO 00 00 00 00 PCD 00

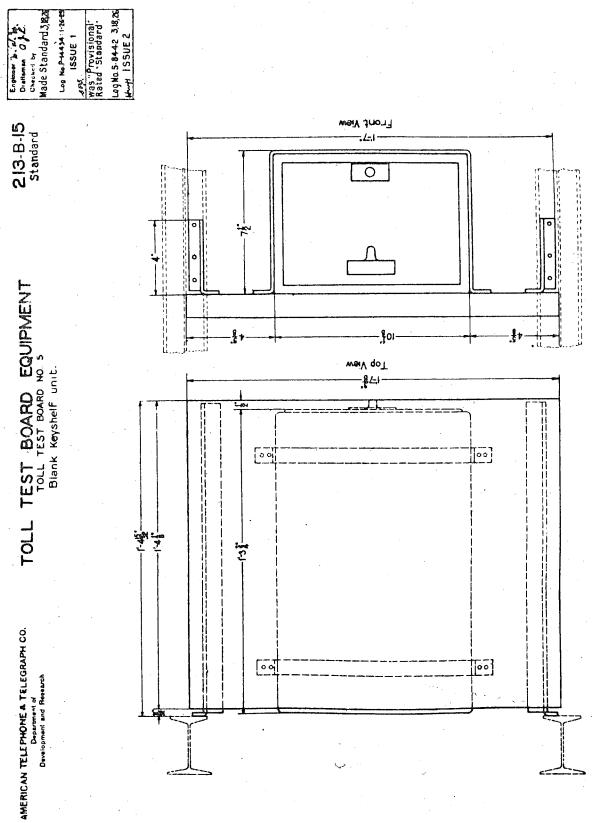

00

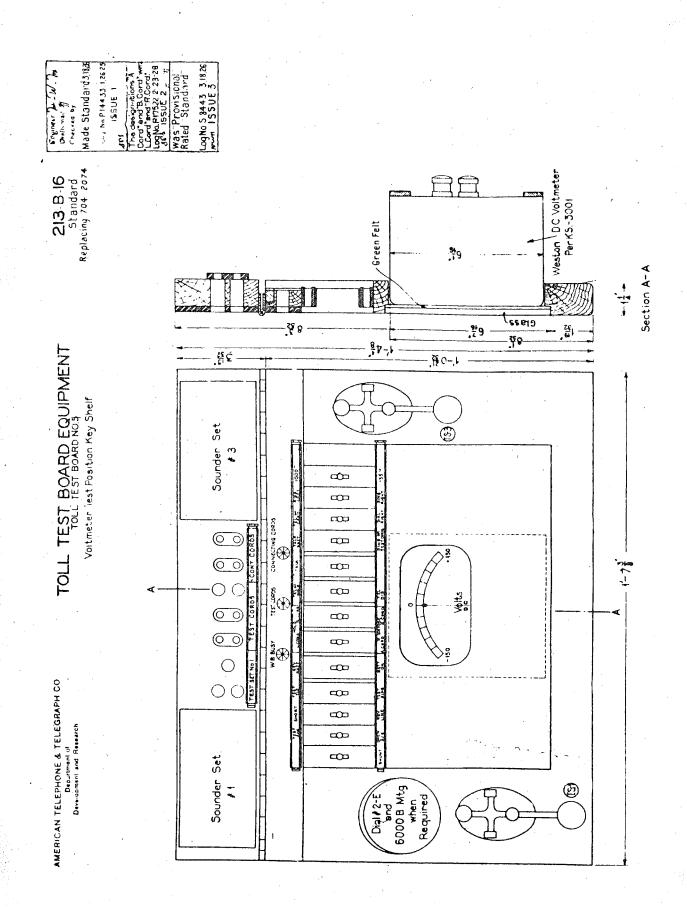

776 A 1 218 A


Equipment Line Jacks for side or physical circuits . PCL Jacks for phantom circuits.

Line Jacks for side or physical circuits PHL Jacks for phantom circuits






Chacked by

Log No P144 5E 1648

LOGNO P17341 21125

Logical Prize 2-16-28 Made Standgrd 3.18.29 Log No P14432 12625 ersociated equipment charged for vacuum buba 101-0. 215. A vacuumi buba and LOG NU.5-8444 318,26 Erunner K. Id. K. Drain District Charles Dr 1 30SSI 1 213-B-17 Standard Replacing 709 - 3047 To Voltmeter Test and Connecting Cord Circuit. The Filament Current shall be taken from Load supplying talking Battery to Operators Telephone Circuit. ST ₹ 줎 œ TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO.5 Vacuum Tube Monitoring Circuit MOTES #IIB-A Output Trans. 9988 #57.4 [9983] . G-90-1 \$54 18-AL w. i S + 12 + AMERICAN TELEPHONE & TELEGRAPH CO. Development and Research N 8-89-10 Input Transformer #218-A Output Transformer #116-A Condenser \$ 57.4 3 \$ 100-A #18-AL APPARATUS 2 Resistances 1 Socket 1 Vacuum Tube Condenser Retard Coil 5 Resistance

AMERICAN TELEPHONE & TELEGRAPH CO Department of Development and Possarch

TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO.5 Telegraph Test Set No.1 for Use at Witmeter Test Positions

Checker by Made Standard 3,1828 LOG No. P.14431 1,2625 Sounder changed. LogNo.R17372 2-16-28 A196-15501E 2 74-44 .09 Na S-8445 3.18,25 Ergineer 74:70, 3 Was Provisional Rated Standard Convertion of 3-8 ISSUE 1 Corde 789 ware LogNo R47498 2-1 MAK ISSUE 4

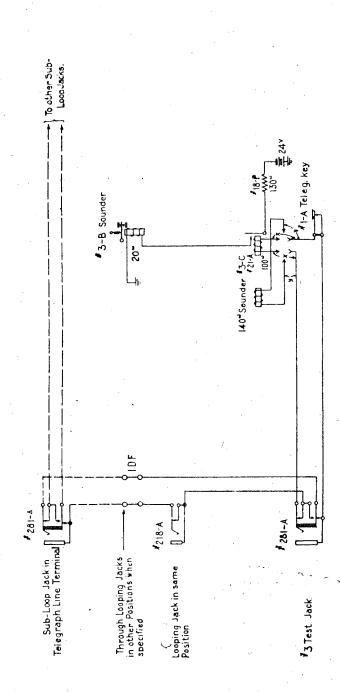
213.B-18 Standard Replacing 704 - 2095

- Notes-F789 Cords *493 Cord

100 21-4 Telegraph Telay

1-4 Telegraph Key

APPARATUS


There shall be one lead from 24 volt battery equipped with a 1/3 amp. Fuse for each circuit. Obstery for the sounder shall be taken from the lead supplying signaling battery, to the voltmeter test and connecting cord circuit.

AMEPICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Research

TOLL TEST BOARD EQUIPMENT

213-B-19 Standard Replacing 704-3017

Ergineer 21.76.76. Dearteman & A.Z. Checked by Made Standord 3-80-25 Log No.P.14430:125,25 3-B Sounder convention of the Sounder Con-Log No. R17342 2-13-John ISSUE 2 12-JG6 ISSUE 1

--APPARATUS-

1 Jack 1218-4 Jack 1281-A Telegraph Key 1:A Sounder 13-B Begraph Reigy 21-A Resistance 18-7 Main line Sounder 3-C

- NOTE -

When relay and sounder is desired usex wiring, when main line sounder is desired usey wiring. Relay and sounder shall be furn hed unless otherwise specified.

 The battery for the sounder circuit shall be taken from the lead supplying battery to Telegraph Test. Set. No. 1

Fgures 5,8,7 and 8 edded. Log No. R17373 2-16-28 Hade Standard 3.18.26 LCG NO.PI4429 1,26 25 109 No S 8447 318,26 was Prorrated Std Engineer 'N. 14', 18, ISSUE 1 Checked by Draftsman ع بي 213-B-20 To change to intermediate Set insert a M6 Plug in this boste Salancing Set Fig. 5 Plugin bins Jack
Jack for Combined Terminal and Intermediate Composite Salancing Set insert a fill Plug in this Jack To Change to Intermediate Standard 1 To change to Terminal Set Balancing Set insert a Jack for Combined Terminal and intermediabe Composite Balancing Set n To change to Terminai *116 Plug in this Jack. Arranged to be used normally as an Intermediate Balancing Set. Arranged to be used Normally as a Terminal Balancing Seb Jack #225 Jack# 225 Jack * 216 Jack # 218 Jack for Combined Terminal and Intermediate Composite Set Jack for Combined Terminal and Intermediate Composite Set. Arranged to be used normally as an Intermediate Set. Arranged to be used normally as a Terminal Set. Assembly of Jacks Cross-Connect to Composite Set Ground Terminal Block Cross-Connect to Composite Set Ground Terminal Block on Distributing Frame. Fig.6 TOLL TEST BOARD EQUIPMENT F19 8 T IDE TIDE N. S. Miscellaneous Jack Circuits on Distributing Frame Terminal and Intermediate Composite Balancing Set To Combined Terminal Composite Balancing Set To Combined Terminal ToCombined To Combined Terminal and intermediate and Intermediate Composite 3et and intermediate Composite Set. \$223-A Fig. 3 Battery Taps, etc. (See Note) T MLooping A-91218-A A-318-A A 218-A connected to any line in such a way as to give more than 100 mile: line current. one Ohm per Volt. These shall not be shall include a Resistance of at least Fig.4 Spare Test Wires Fig. 1 Split Leops Mindicates Terminal at Top of Position. Baltery Tabe wnich are wired to dacks £218-A Fig 2 Grounds ~ SMLON~ AMERICAN TELEPHONE & TELEGRAPH CO. VI Ring \$223-A Department of Development and Research Fig.1 2 Jacks \$223-A 1 Jack \$218-A Fig.3 Jack #218-A ~ APPARATUS ~ Fig.2 1 Jack # 218-A Jack 7218-4 Fig3 or Fig. 6 Jack # 223-A F19.7 1 Jack \$215 Engineer 1. W M. Diansman T. Cheesen by Made Standard 31825 1 ISSUE II

2014 Avecuum bube
and associated equipment of propage for
ment of hongoid for
wecum bube
100 No. 11359 2-18-28
1 ISSUE 2 H-11
WAS Provisional
Rated Standard 243 No P 14 428 1 3624 -09 No S 8448 3.18 2 Drill lamp socket bases as specified 213-8-21 Standard 38-N Res. r 400-L V.T. Socket f 248-Ainput Trans r 46-A3Juput Trans 000000 0000000000000 4-3Number Rate r 100-A Ret Ci Cy Weston 1010 Shunt رم Weston 1010 Piling Rai. Voltmeter Test Position Apparatus Panel and Piling Rail TOLL TEST BOARD EQUIPMENT MSA Designation Front Rear 5.5 F5-18-AL Res. r57ACond "i B Yumber Pate #48 Buzzen 32-D Protector 57E Cond. The Apparatus at the Top of the Apparatus Panel shall be omitted when Vaccum Tube Relay Set Felegraph Relay Top View of Panels and Filing Raik -NOTES -Front AMERICAN TELEPHONE & TELEGRAPH CO.
Denationed of Consistency Consistency Research Relay Set Relay

monitoring is not specified

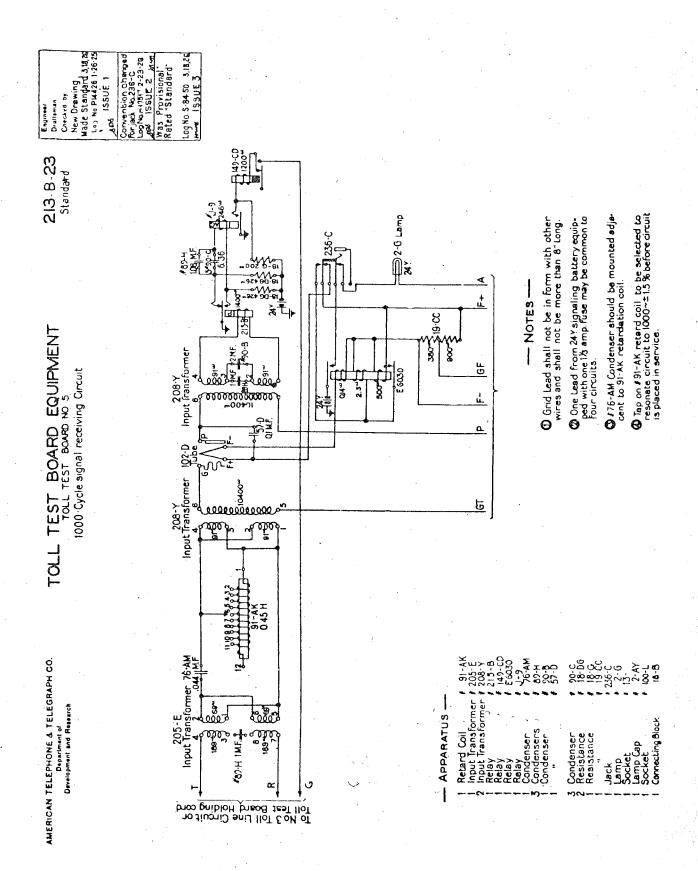
AMERICAN TELEPHONE & TELEGRAPH CO. Department of Development and Research

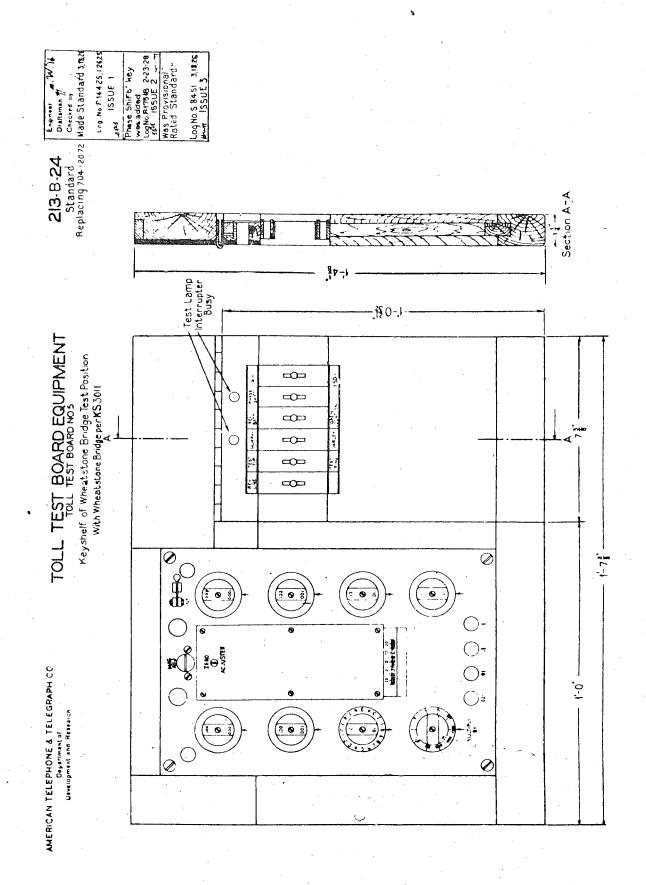
TOLL TEST BOARD EQUIPMENT
TOLL TEST BOARD NO.5
135 CYCLE SIGNAL RECEIVING CIRCUIT
For use with Toll Switchboard No.3

Made Standard 118 26 Log No.P14427 1.26,25 Convention of relay SSUE 1 Engineer V. W. Draffaman PAY Checked by Loghe P.17488 2-2 Jobs 155UE 2 Ju-Was Provisional

LOGNO.5:84 49 3,18,26

Rated Standard

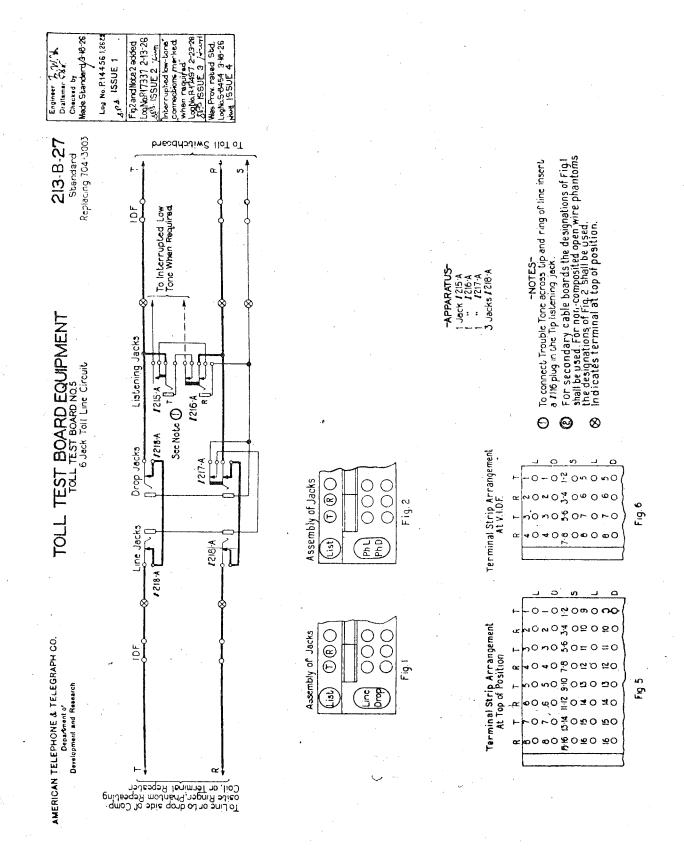

To Voltmeter There shall be one lead from the 24 volt battery equipped with a 1% ampere fuse for each circuit. **α** ∤ E 6 -Note-·日 209-. 8 eu *57.AE 0.54 MF *57.AE 0.54 MF *57 AE 0.54 MF **.218B** .001 .0001 2500 #149-T **2**4, 718-G 200-


-APPAPATUS

I Relay '218 B I Relay B 56 I Relay #149.T Retardation Coil /31.C

S Condensers *57AE I Resistance #19.0U Resistance #18.6 Condenser * 57 B Condenser * 57 AG

213-B-22 Standard

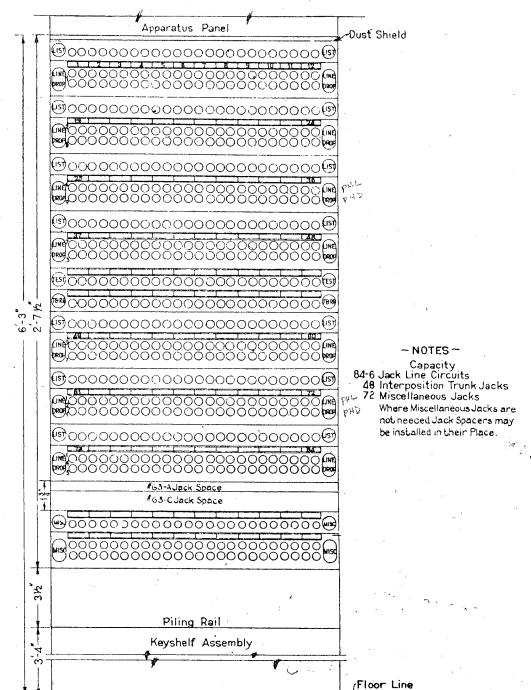


Cords marked T, IR and L.
Loghe, PATS 2-23-28
Logheston TSUE Z. "Low,
Was Provinced Std.
Logheston TSUE 3: 18-26
km, 15SUE 3: Lug Na P. 14420 12625 Checked by Wada Standard 3-18-26 ISSUE 1 Standard Replacing 704-2073 Section A-A 213-B-25 Relay Set Sounder Set # 2 TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NOS cc. ض ___ <u>~~</u> Sounder Set # ! Relay Set Department of Development and Research

AMERICAN TELEPHONE & TELEGRAPH CO.

ISSUE 1
Number places (-B)
and probactors 62-D
wers added.
LogNa R1750 2-23-28
173 155UE 2 Jew H Made Standard 3.18 28 1 1. 1.0 P 14-19 1.26,25 LOGNOS 8453 3.18,26 Engineer W. M. Du. Draftsman C. C. Was Provisional Rated Standard 213-B-26 Standard 3-462-9 Protectors TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO.5
Telegraph Test Position Apparatus Panel and Piling Rail 41-B Number Plate 492-3 Yey (3) Top View of Panel and Piling Rail Voltmilliammeter KS 2146 #58-A Designation Strip 44-B Buzzer Mountedon rear 1-513/16 7+3 Number Pate Designated with Bay Number ₹3-8 Souncer Resonator P-98,734 #21-A Telegraph Relay Set#3 AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Reserch Drill Lamp Socket Bases as Specified

American Tel & Tel Co. Dept of Dev. & Res.


TOLL TEST BOARD EQUIPMENT

Typical Arrangement of Jack Panel for 6 Jack Line Circuits

213-B-28 Standard Replacing 704-3014

Engineer With.
Draftsman
Checked by
Made Standard 318A
Log No. R14454, 1.26,75
403. ISSUE I
Was Provisional
Rated Standard

Log No S 8455 3,18,26

Amer. Tel. & Tel. Co. Dept. of Dev. & Res.

TOLL TEST BOARD EQUIPMENT

Standard

Typical Arrangement of Jack Panel for Composited Open Wire Lines With 10 Jack Line Circuits and 10 Jack Phantom Circuits.

213-B-29 Engineer 2 W.Z Dräftsman Checked by Made Standard 3,18,20 Log No.P.14451 1,26,25 and ISSUE 1

Designations strips were removed from List jack mountings. Looko R17513 2-23-28 by ISSUE 2 Heart was Proinated Std.

Log No.S 8456 3.18,2 الاستير 195UE 3

Apperatus Penel - Dust Shield ®òooocooooooooooo 2-772 @0000000000000000000000@ MOOOOOOOOOOOOOOO (b) 000000000000000000000 #63-C Jack Space 3% Piling Rall Section Assembly Floor Line

~NOTES~ Capacity

24-Ten Jack Line Circuits

12 Ten Jack Phantom Circuits

12 - Six Jack Line Circuits 48 - Grounded Telegraph Circuits 48 - Interposition Trunk Jacks

72 - Miscellaneous Jacks

Where jacks are not required for terminating equipment in the phantom circuit the PCL and PCD jacks may be omitted and a six-jack line circuit used for the phantom circuits.

TOLL TEST BOARD EQUIPMENT
TOLL TEST BOARD No. 5
Grounded Telegraph Line AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Research

213-B-30 Standard

Engineer JK/W. B-Draftemen Checked by Made Standard 3-1828 Log No. P.14467,12625 ISSUE 1

Arrangement of Jacks 10.5 \$218-A ¥-61.2 ₹ \$ -001 1218-A To Telegraph legs of composite or simplex set.

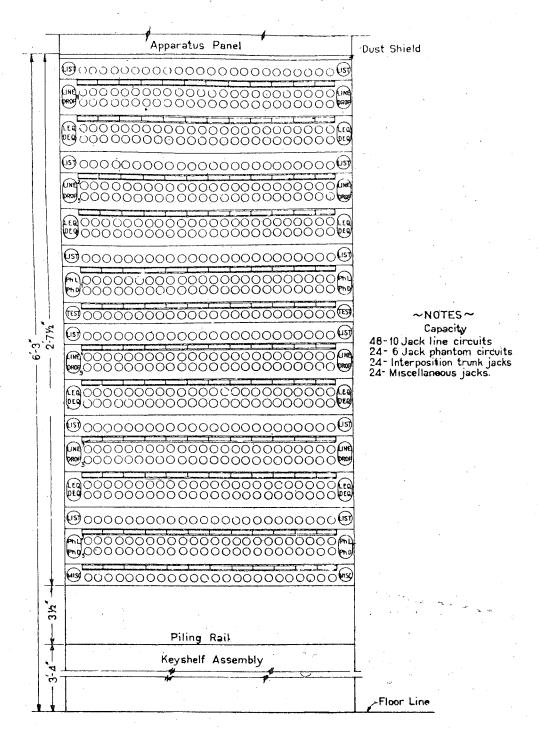
2 Jacks 218-A 1/2 Resistance 1941 per Strip of 48 Jacks APPARATUS

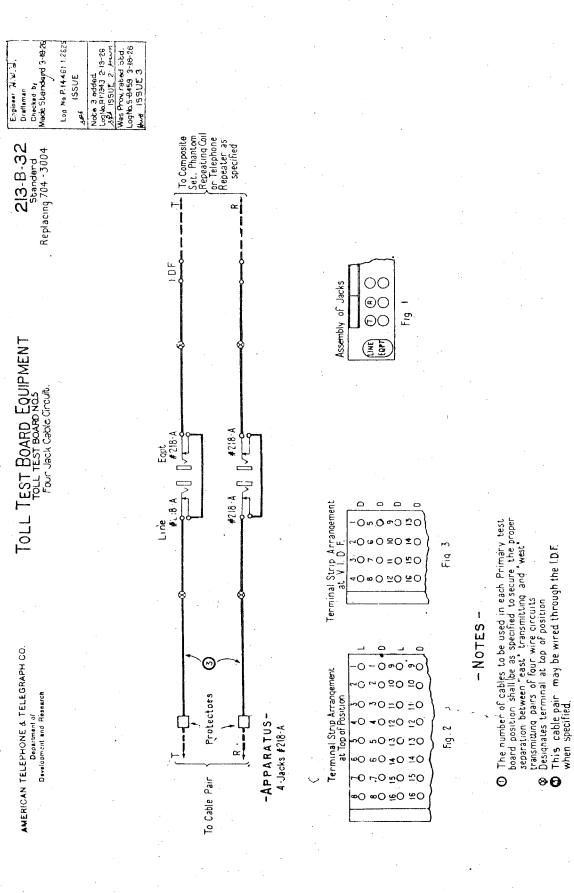
(F P

-Note-

⊗ Indicates terminal at top of pusition

Amer. Tel. & Tel. Co. Dept. of Dev. & Res


TOLL TEST BOARD EQUIPMENT


213-B-31 Standard

Typical Arrangement of Jack Panel for non-composited Open Wire Lines With 10 Jack Line Circuits and 6 Jack Phantom Circuits.

Engineer Minima Draftsman Checked by Made Standard 318,26 Log No. R14459 1,2625 And ISSUE 1 In the title Nor-Composited Open-Wire Lines was "Phantom" LogNo. R17614 2-23-28 J. SSUE 2 J. 1 Was "Provisional Rated "Standard"

Log No. 3-8458 3,18,26

⊗ 0

AMERICAN TELEPHONE & TELEGRAPH CO. Department of Devevelopment & Research

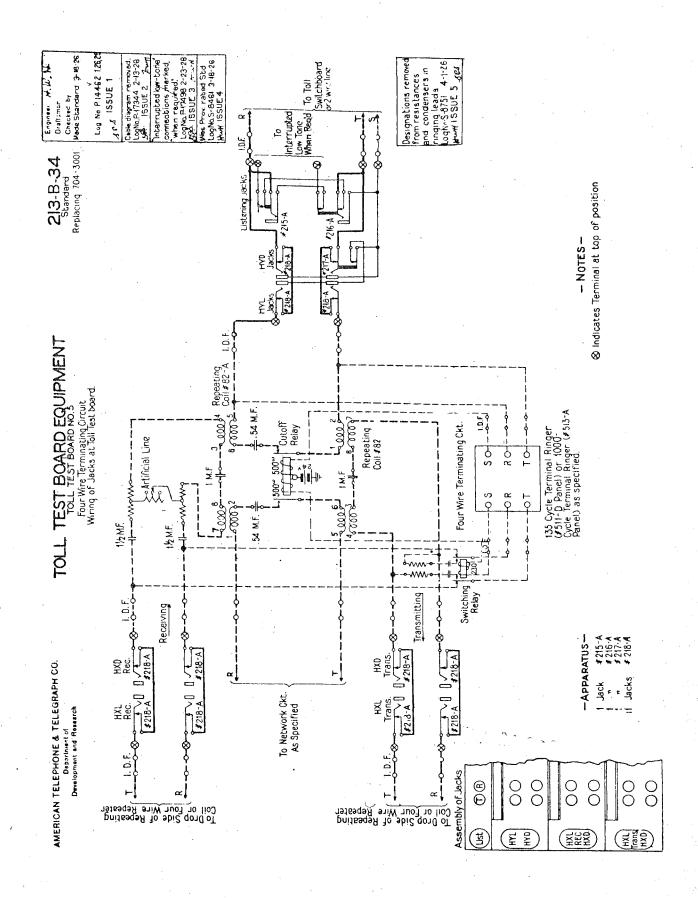
TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO.5 Typical Arrangement of Jack Panel

For Primary Testboard Positions

213-B-33 Standard Replacing 704-3013

Engineer 2: 2. 2 Draftsman Checked by Made Standard 318,26 Log No P.14457, 1,26,25 ISSUE1 Designations TB-RR and TB-TG were interchenged.
LogNo 27575 2-23-20
Was "Provisional Rated Standard"

Log No 5-8460 3.18,26.


Apparatus Panel Dust Shield ₱₽00000000000000000000000000000000000

NOTES

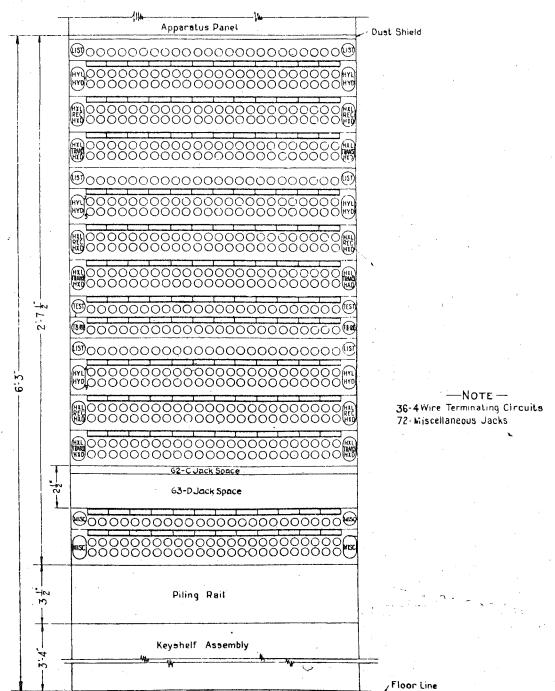
Capacity 132 Cable pairs 72 Interposition trunk Jacks 72 Miscellaneous Jacks

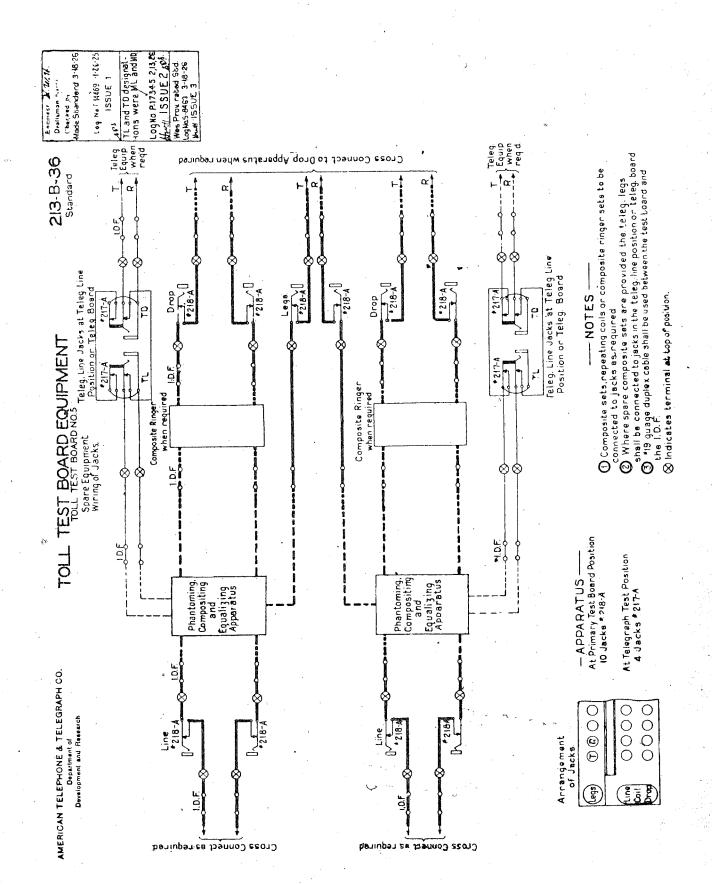
Jack Space <u>®00000000000000000000000</u> ٠٣٠ Piling Rail Keyshelf Assembly

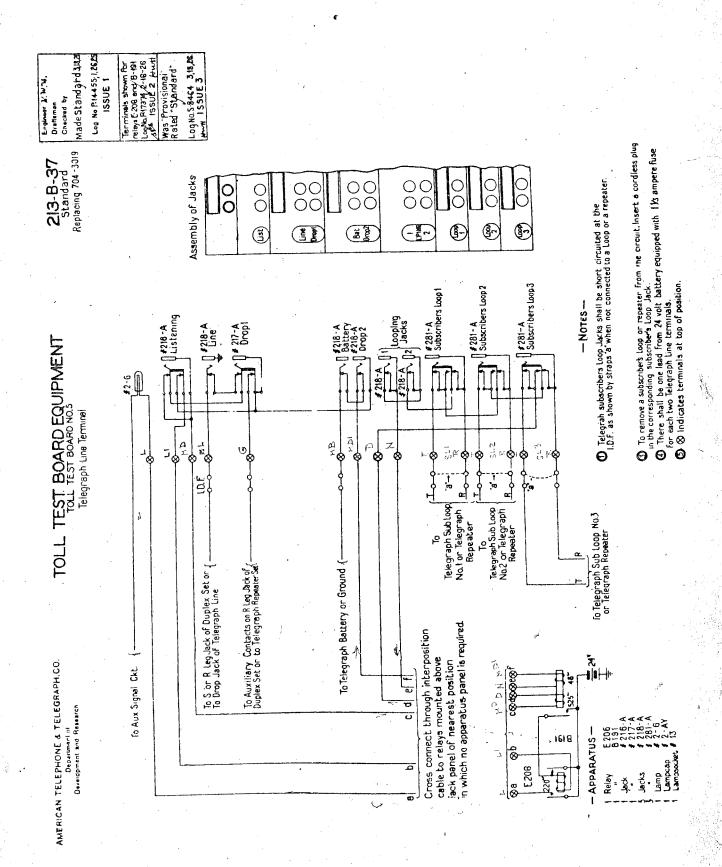
-Floor Line

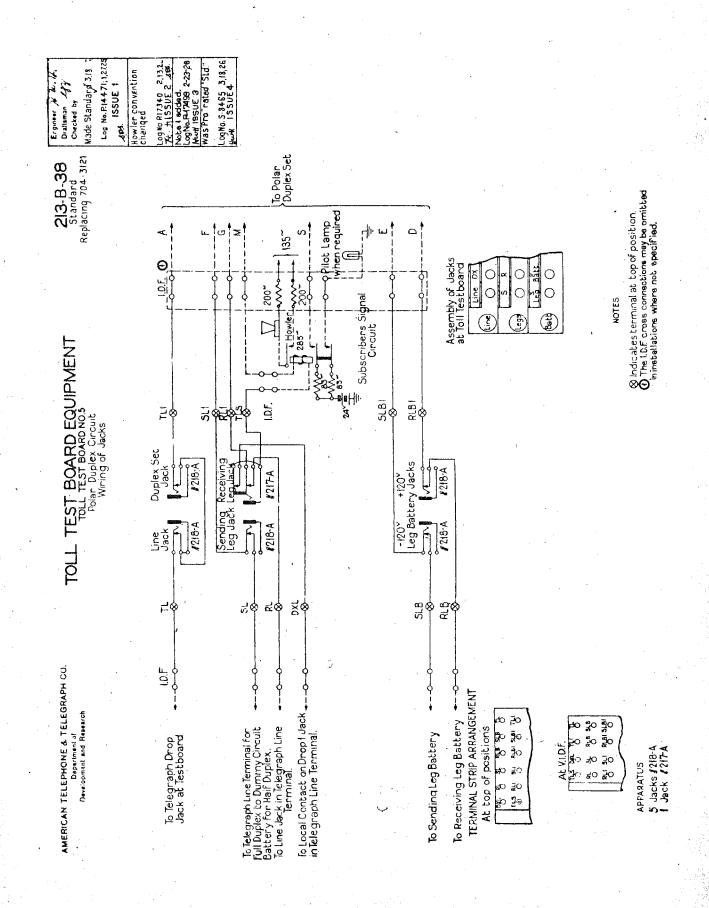
AMERICAN TELEPHONE & TELLGRAPH CO Department of Development and Research

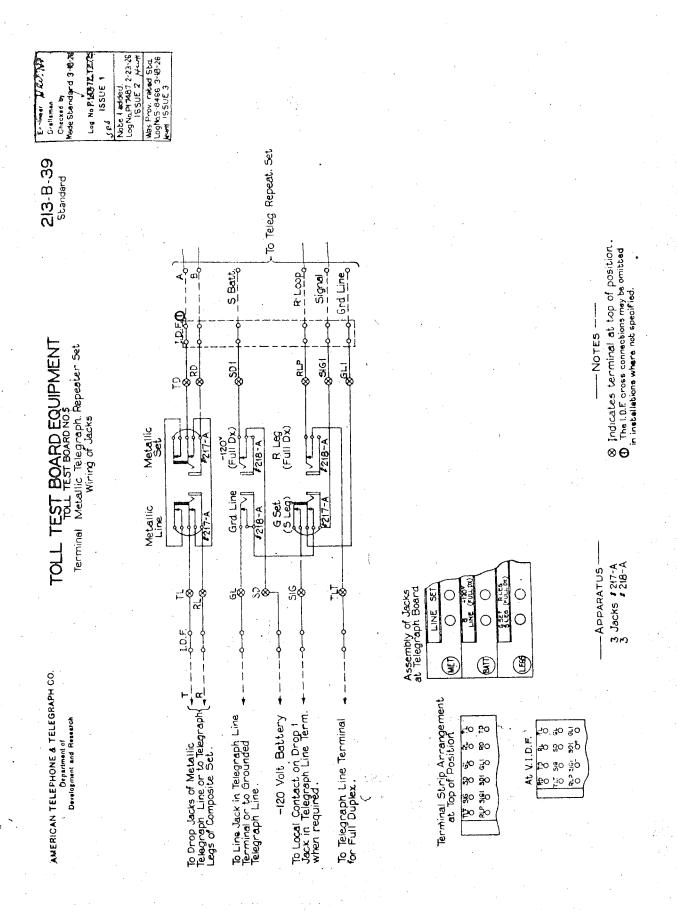
TOLL TEST BOARD EQUIPMENT

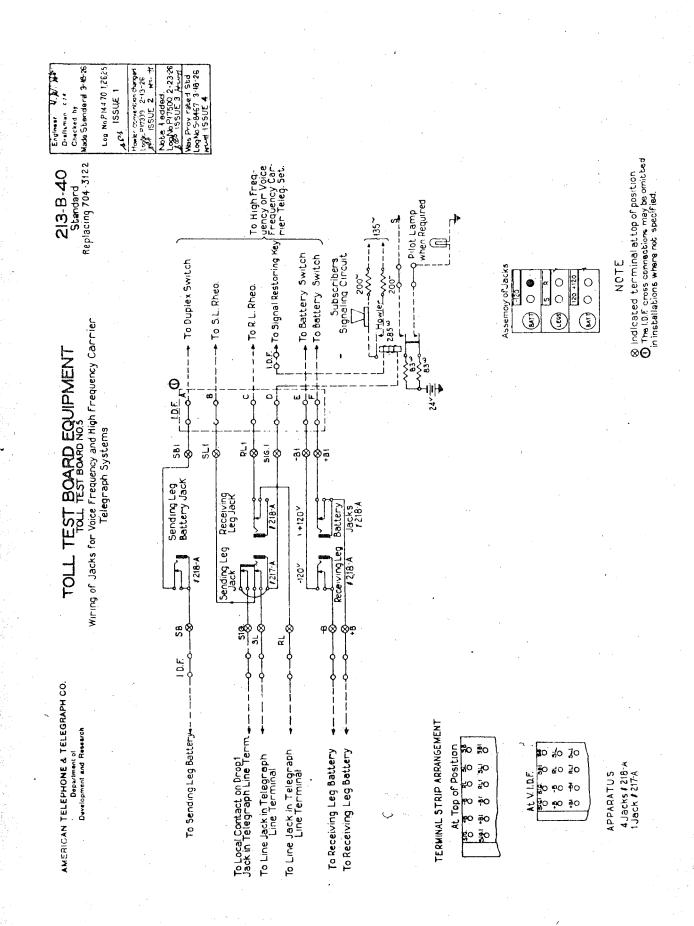

Typical Arrangement of Panel for 4 Wire Terminating Circuits.


213-B-35 Standard


Engineer W. W. M. Orafter en uik Charles opk Made Standard 3.18,71 LogNc P144 tc.1.2625 des ISSUE 1 Designations strips


Designations strips were removed from:
Listiack mountings.
Lightar 1756 2-23-28
Lightar 155UE 2 | 13
Was "Provisional Rated "Standard"


Log No. S 8462 3,18,26



Amer Tel. & Tel Co. Dept. of Dev. & Res.

TOLL TEST BOARD EQUIPMENT

Typical Arrangement of Jack Panel for Terminal Telegraph Test Positions.

Engineer 2 474 213-B-41 Standard Replacing 7.04-2070 Draftsman

Checked by Made Standard 3 1826 LogNo P.14452 1,2625 Figure 31 and 2 were added to 1980 R 19378 2-13-28 363, 1950 E 2 11

Was "Provisional" Rated "Standard"

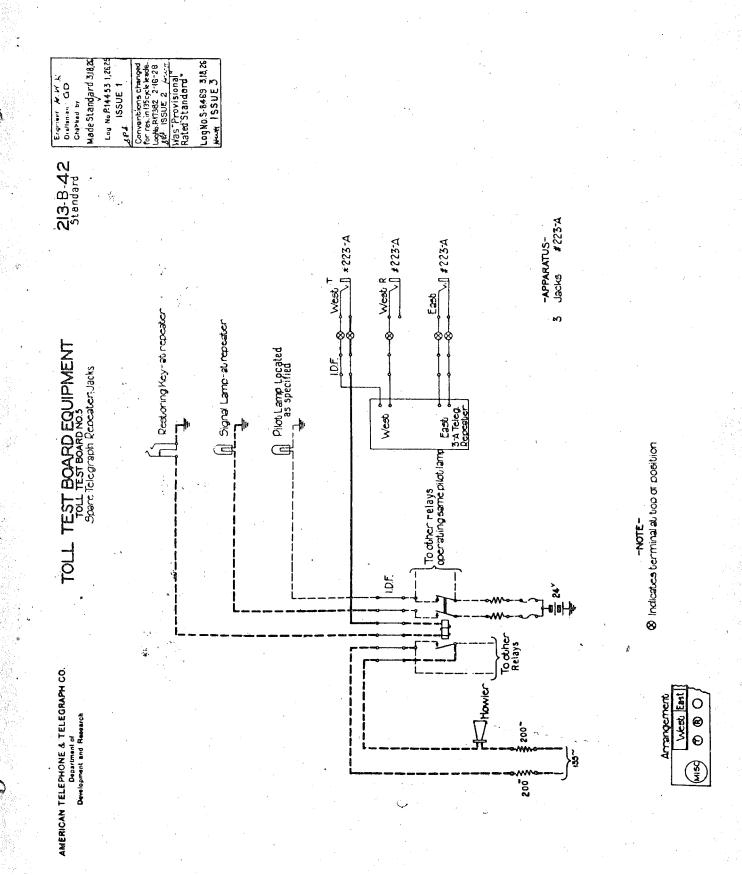
HWY ISSUE 3

LogNo.5-8468 3,1826

Apparatus Panel Dust Shield € 00000000000000000000000000000€ @00000000000000000000000 @०००००००००००००००००००००० MOCOOOOOOOOOOO ັຕ @<u>000000000000000000000000000000</u> <u>®000000000000000000000000</u> <u>\$\$0000000000000000000000000000</u> Jack Space (M) OOOOOOOOOOOOOOOOOOOO 3%, Piling Rail Keyshelf . Assembly Floor Line

~NOTES~ Capacity 24 Telegraph Repeaters Line Terminals Designations shown are for Polar Duplex Telegraph. Other Designations may be specified as follows. 48 Miscellaneous Jacks 48 Interposition Trunks

Voice Frequency or Carrier Telegraph Systems


(BATT) O 3 00 120 +120 00

No.102-A Metallic Telegraph Repeater Set Jacks

Fig.1

Fig.2

AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Research

TEST BOARD EQUIPMENT TOLL TEST BOARD NOS Metallic Telegraph Line TOLL

LOG NO P.14466 12623 Designations TLand TD were bl. and MD Logico P47364 2-18-28 213-B-43 Chatteren Standard Chacted by Replacing 704-2093 Made standard 3,18.26 LOGNO.S.8470 3,18,62 Enomer 21.14. Is Draftemen Checked by

To Telegraph Board or Telegraph Repeater Set - d To Telegraph legs of Metallic Composite Set

- NOTES -

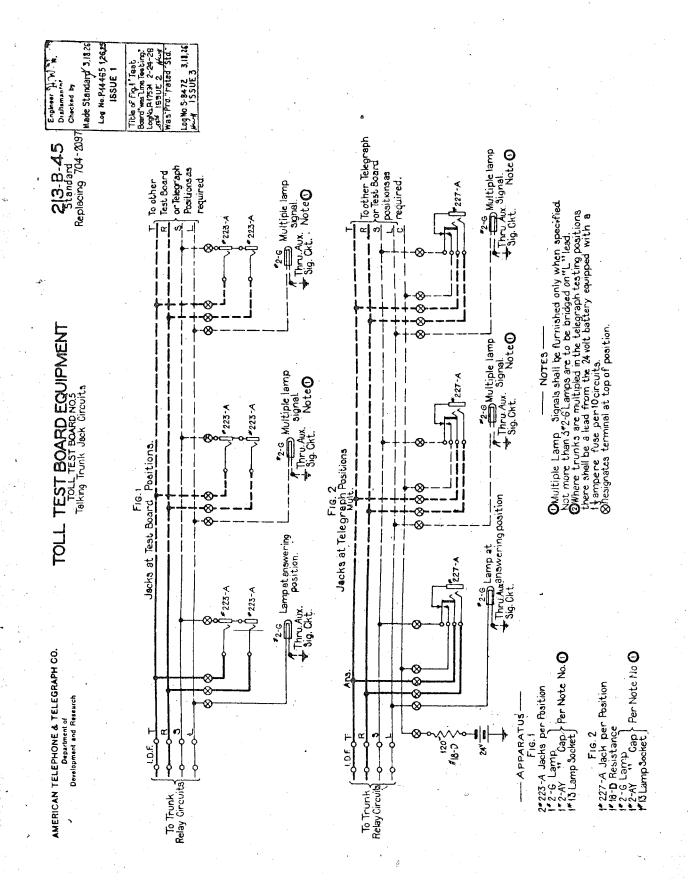
& Indicates terminal at top of position

- APPARATUS -2 Jacks # 217-A

Arrangement of Jacks 00 00 Amer. Tel. & Tel. Co. Dept. of Dev. & Res.

TOLL TEST BOARD EQUIPMENT

213-B-44 Standard Replacing 704.3011 Checked by


Typical Arrangement of Jack Panel for Metallic Telegraph Line Circuits

Made Standard 3.18,26 29No P14449 1,2625 ISSUE 1

Designations TlandTD were Miland MD LogNoR17590 2-24-26 MILAND STORY STORY Was "Provisional" Rated "Standard"

LogNo.S-8471 3,18,26 ISSUE 3

Apparatus Panel -Dust Shield <u>®○○○○○○○○○○○○○○○○</u> ~ NOTES ~ Capacity 288-Metallic Telegraph Lines 48 Interposition Trunk Jacks 48-Miscellaneous Jacks 62-C Jack Space 63-B Jack Space * Piling Rail Keyshelf Assembly -Floor Line

Checked by Made Standard 3-18-26 LOD NO. P14443 1, 26,25, ISSUE 1 DE IBBUE 2 Oraffeman 213-B-46 Standard Replacing 704-2038 Fig.1 HounT poixible of Park Circuit 10.F TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO.5
Relay Circuit for Twd Way Ringdown Trunkl Circuit or Par Trunk to Stop-by-Step or Panel Machine Switching Office. E-15/5 89-H 1M.F. 300 3500世日 629 AMERICAN TELEPHONE & TELEGRAPH CO. Development and Research 1.0.F To Ring-down Trunk orto Subscriber's Lina machine Switching Office Grout in

-- NOTES -There shall be one lead from the 24 volt battery equipped with 1% ampere fuse per each three trunks.

When used as a Trunk to Step-by-Step machine Switching Office connect to Line Switch with multiple on a non-reversing Connector to give free incoming Service from the Step-by-Step Office.

When used as a Trunk to Panel Machine Switching Office, a standard free Line Circuit should be used in the Machine Switching Office to give incoming Service to the Test Board.

Log No. P.144+5 1,26,25 LOGNO. S. 8474 3.18, 26 Checked by Made Standard 3,18,20 Relay E-337 was E-2 Loglic P17511 2-23-2 Arts 1550 E 2 H Was Provisional Rated Standard ISSUE 1 213-B-47 · Standard Replacing 704 - 2098 • Fig. No. 3 To Talking Trunk Aack Circuits œ TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO.5 Relay Circuit for Two Way Trunk to Toll Switchboard NO.1 623 œ AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Research Thru Aux.Sig.Ckt Jack at Toll Swbd. | 1√

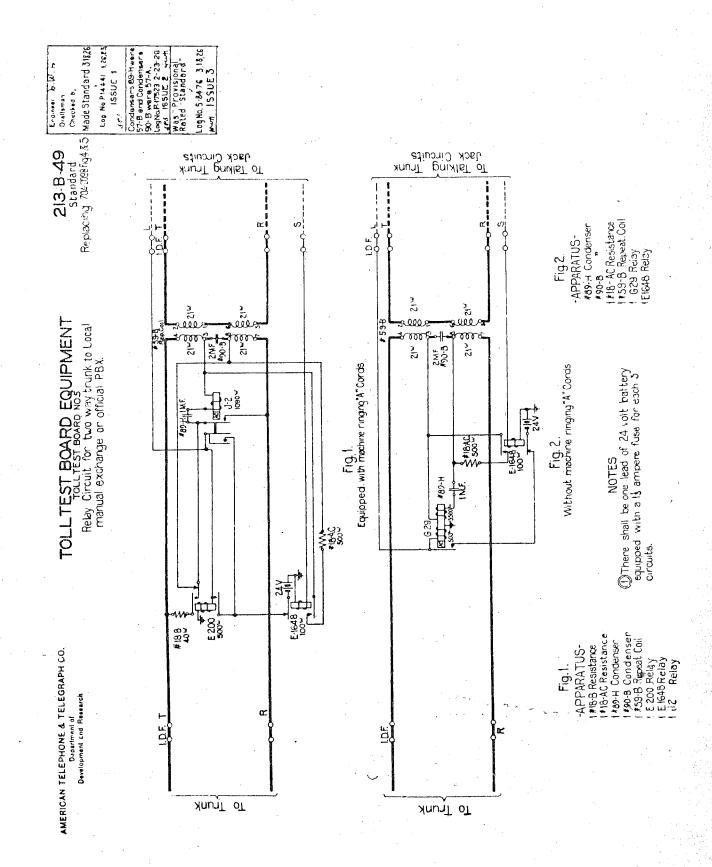
- NOTES -

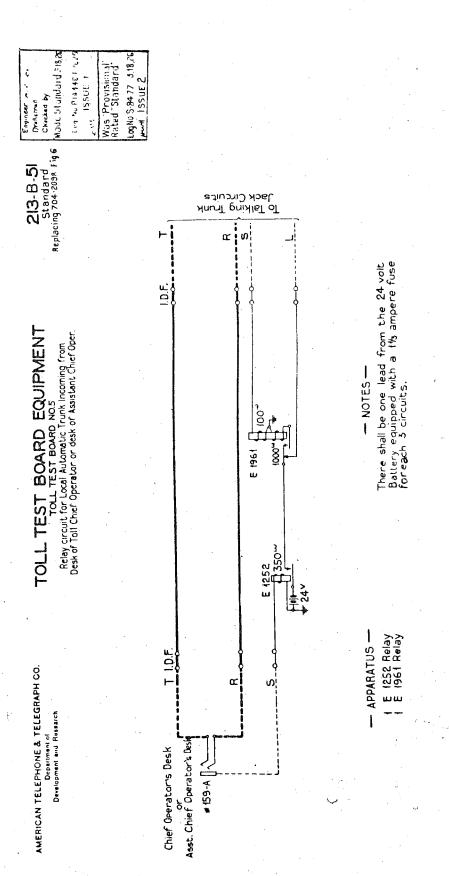
 There shall be one lead of 24 volt backery equipped with 1% ampere fuse for each 3 circuits.

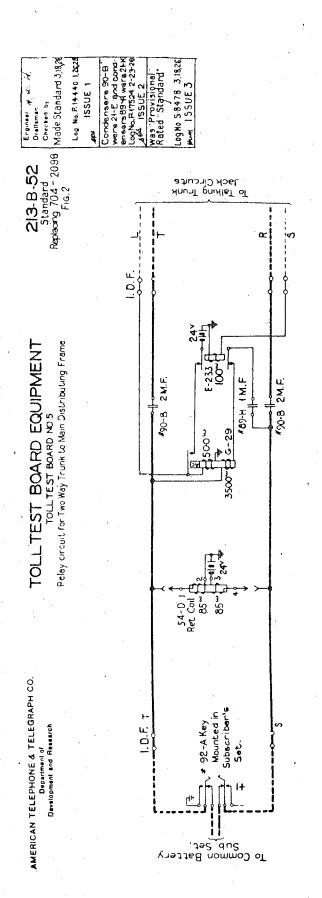
- APPARATUS -1 Relay E 23
1 Condenser # 21-K
1 Relay E 337
1 Relay E 234
1 Relay E 234

Notes 2 and added. Raley SPL. B per 0-79940 was B-58 LogNo.R17512 2-23-28 J. St. 195UE 2. Hund LOGNO 5-8475 3,18,26 Log No. P. 144 14 1 2528 Made Standard 3.18.25 Eros ver # 1674. And ISSUE 1 Vas "Provisiona Rated Standord 213-B-48 Standard To Talking Trunk α S 1.D.F. TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NOS Relay Circuit for Two Way Trunk to Toll Switchboard N93 Outgoing Ringdown Incoming Automatic 6 Per. D 78441 See Note 3 (1) 6-8 0-8-9 8 <u>4</u>8 8 Per D 78450 E*971 AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Research 8 E 361 1.0.F Anuni on Male of Jack Circuit

~NOTES~

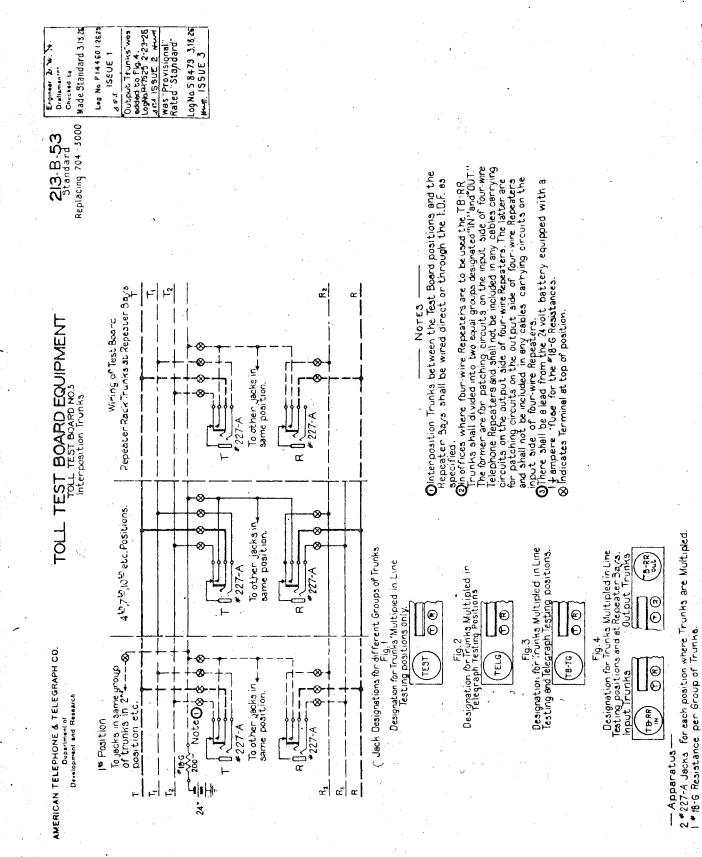

Thru Aux. Sig Ckt.


- There shall be one Lead from 24 Volt Battery equipped with a 1/3 Amp. Fuse for each 3 Relay Circuits.
- (2) Not more than three 2-6 Lamps are to be bridged on it Lead.


Relay E 971
Relay E 576
Relay E 1520
Relay E 1520
Relay 3xl Sper D 28441
Relay 3xl Sper D 78450
Relay 3xl Sper D 78450
Relay Store S

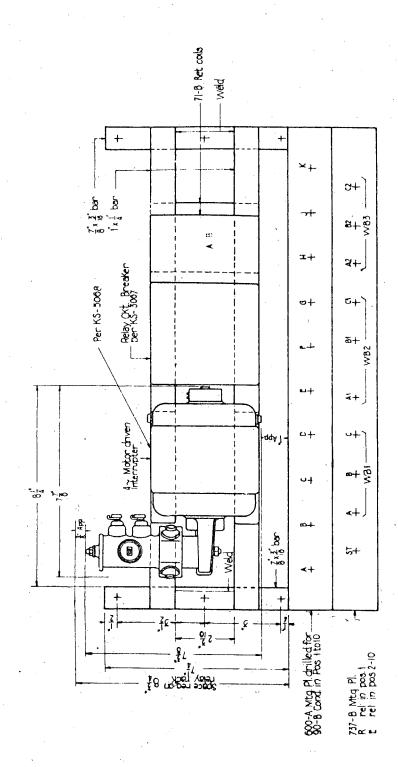
APPARATUS

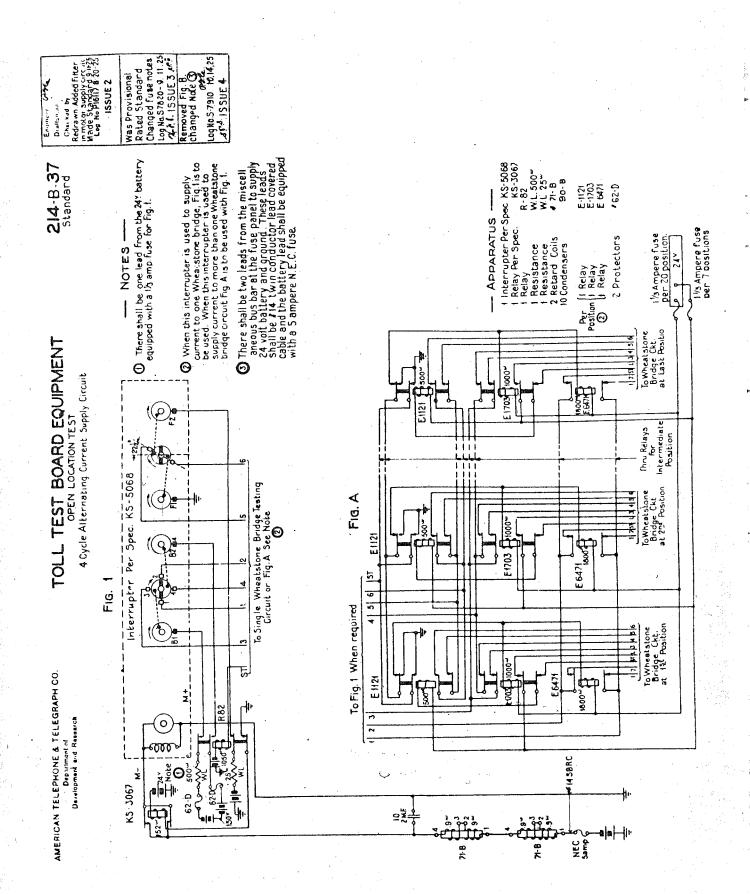
There shall be one Load from the AC Bus Dar equipped with a 1/3 Amp. Fuse per 23 Trunk Circuits. There shall be one 6-B Res. Lamp per each 5 Circuits.

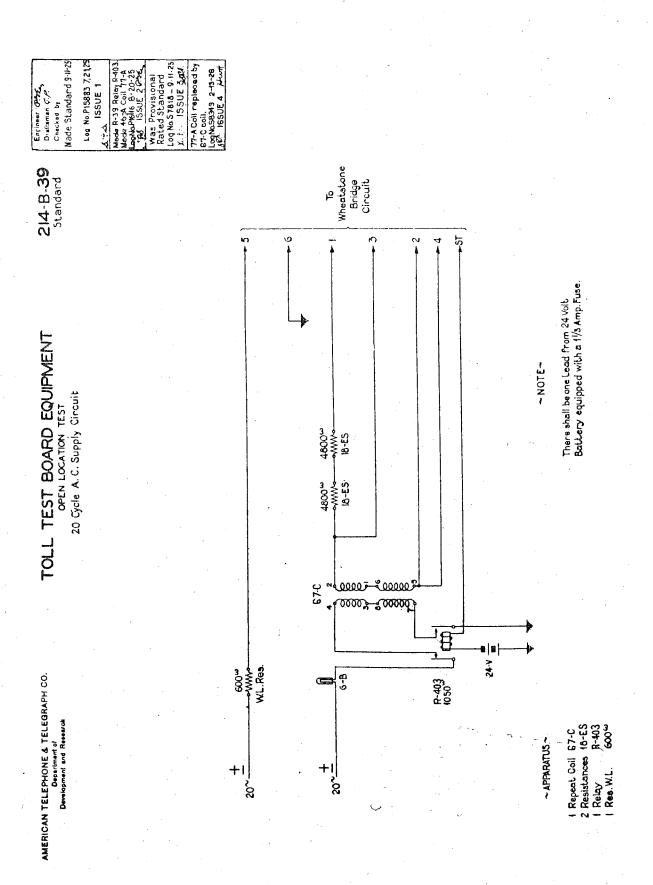


O There shall be one ead of 24 volt battery equipped with a 1/3 ampere fuse for each 3 circuits.

- APPARATUS -- APPARATUS -- 2 #90-B Condensers | 489-H Condenser | 6-29 Relay | E-23 Relay | 54-0 Ret. Coll or |

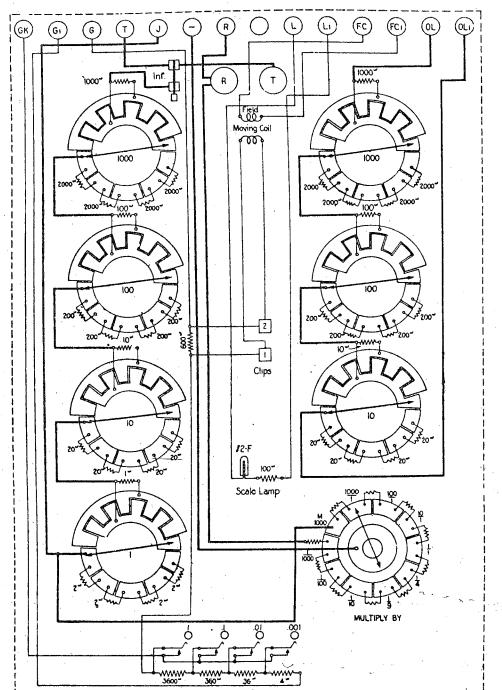



AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Research

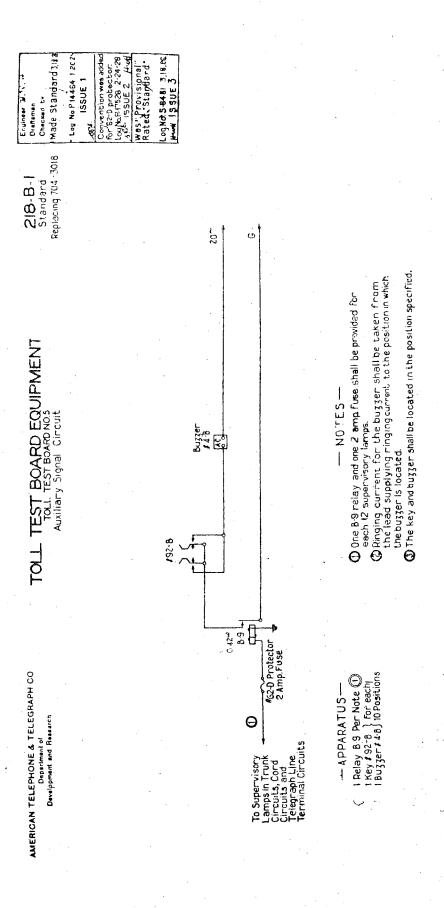

TOLL TEST BOARD EQUIPMENT

Assembly and Equipment 4 Cycle Absupply Circuit

214-B-36 Chellman AKS
Standard Chellman AKS
Standard 214-B-36 Represent to show of 2-1-25 Spec. KS-5068
Log No. Res-3068
Log


AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Development and Research

TOLL TEST BOARD EQUIPMENT WHEATSTONE BRIDGE PER KS-3011 Circuit Diagram


214-B-100 Engineer Profitsman Checked by

Made Standard 9-11-25 Log No P14568 2.2.25

Was Provisional Made Standard Log No.57819-9.11:25 Apr. ISSUE 2

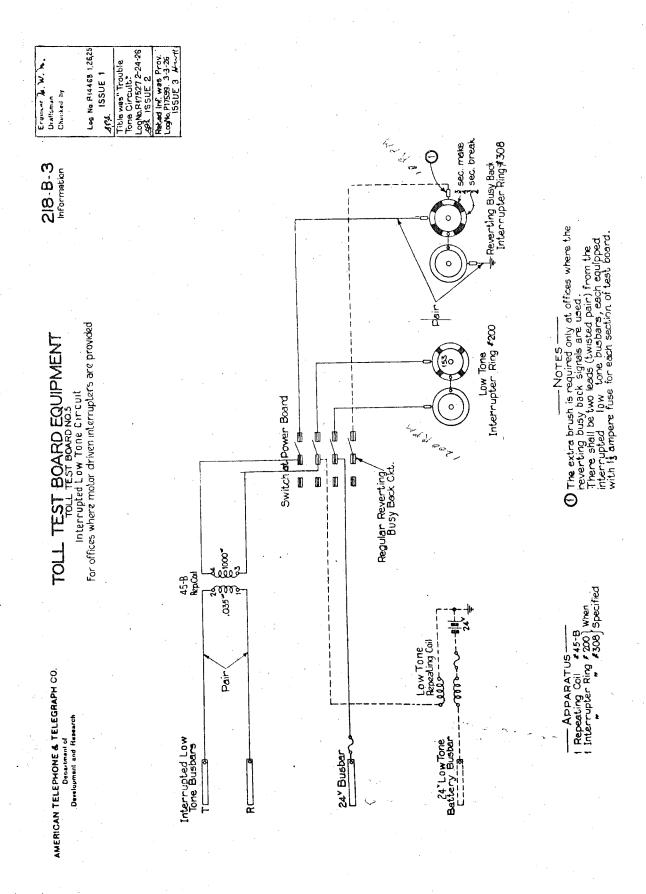
NOTE: This drawing shows relative position of apparatus as viewed from bottom.

AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Devotopment and Research

TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NOS Ringing Circuit

LOG NO 5-8482 3:18.26 218-B-2 Craftones 77. E. Standard
Standard
Replacing 704-3025 Wade Standard 3,1828 LOG No P14465 1,26,25 ADS ISSUE 1 Was "Provisional, Rated "Standard

APPARATUS


20~ Grounded Ringing Circuit

For Each Position Resistance Lamp # 6-B Bryant Receptable # 101401

8-9 (A) # 6-B To Voltmeter or Telegraph Testing Position # 1 or Telegraph Testing Position # 2 To Voltmeter \$ \$

NOTES

 \otimes indicates terminal at the top of position.

AMERICAN TELEPHONE & TELEGRAPH CO. Department of Development and Research

218-B-4 Standard

Title was "Trouble Tone Circuit for of-ices without Ringing Machine." Chestral 62 Vade Standard 3,11,8 1 ... Nn P-14548: 2-25 OGNO. R17528 2-24-28 Was Provisiona Rated Standard Luguest As w. w A OF ISSUE 1

.09110.58483 3,18,26 H-HISSUE 3

,,,0001 **√**00000000

Interrupted Iow Tone

Busbars.

œ

100 S Low Tone Busbar 1050° Spl.* 18 per D-78817

Switch at Power Board.

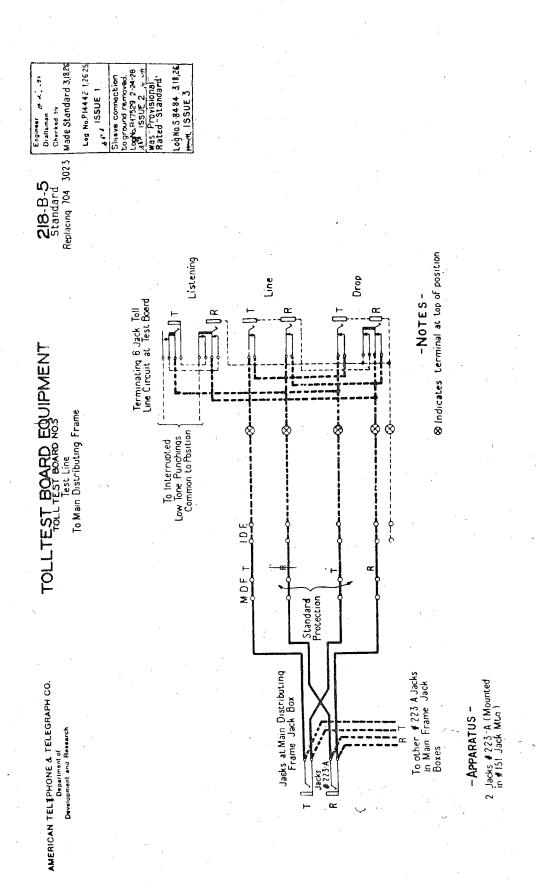
To Reserve Circuit

There shall be one lead from 24" battery equipped with a 1% ampere -NOTES.

fuse for each circuit. In offices where an interrupter is provided for supplying 153 PPS tone omit the spl. flc2-C relay and spl. fl8 type resistance and use "X wiring. Where no tone is available use."Y wiring.

1 Repeating Coil #45-B

Per Office


1 Relay Spl. # 162-C per D-79767. 1 Resistance #18 per D-78817.

APPARATUS

Relay 178-AF 3 Relays #162-B.

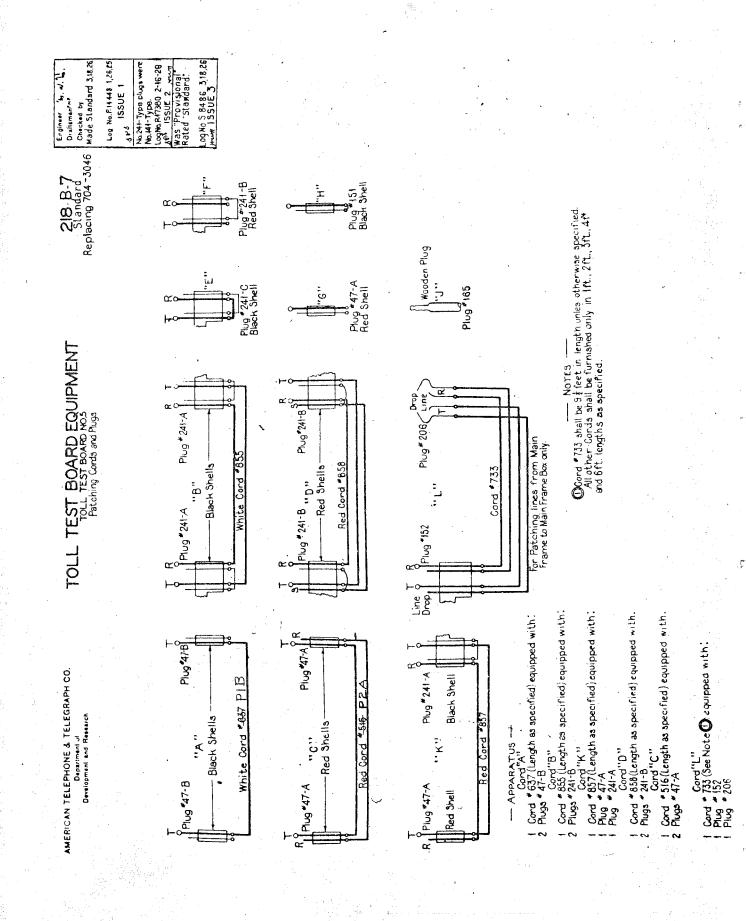
pecial Kelay Adjustment.	Reease	0.0
	Non-Operate	.027
al Kelay	Operate	-036
Speci	Relay	#162-C
٠.		

TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO. 5 Interrupled low tone circuit for offices where motor driven interrupters are not provided.

AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Develoument and Research

TOLL TEST BOARD EQUIPMENT TOLL TEST BOARD NO.5 Telephone Loop For Printing Telegraph Subscribers.

984 04338 2 17-28 064 1551) 2 -11 Made Standari, '140 1 508


714450

09140 5-84.85 3,18,26

218-8-6 Standard

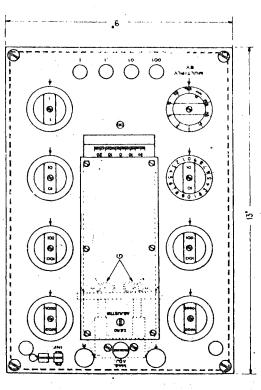
521 To auxiliary signal circuit E1748 24 MOF To Common Balbery Telephone Set Through loop switch board at substation

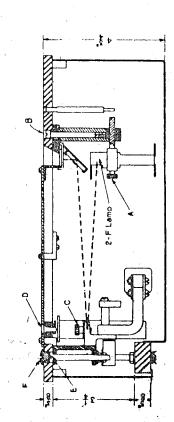
Lanps Ŏ 0 0 0 (Self)

AMERICAN TELEPHONE & TELEGRAPH CO.
Department of
Department and Research

L TEST BOARD EQUIPMENT ASSEMBLY OF WHEATSTONE BRIDGE Per, spec JKS-3011

was Provisional Mace Standard LogNos: 821-9 11 25 A. J. J. S. S. E. J. P. Mounting for 2: Flamp improved Made Standard 9 112 LOG No' 3'5593 5-27.25 APS ISSUE 1


0340.5 8679 3,23,28


219-B-65 Standard Replacing 154-A-18

Thumb screw A provides adjustment of elevation of 2-F Lamp holder and rotation of lamp.tg'show single

Screw B provides adjustment to keep lamp zero adjustment, respectively of gavanometer.
Thumb screw Cland cips 6 provida for removal of galvanometer element.

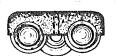
Cap F must be removed to provide access to screw E

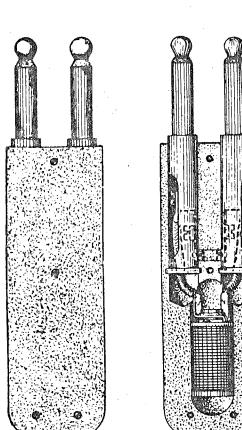
Am:Tel:&:Tel:Co Dept.of Dev.and Res

No. 217 RESISTANCE PLUG 38-Y-1468

Information

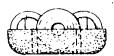
Engineer 201 Draftsman P.W. Checked by 202 April 5,1922 ISSUE 1

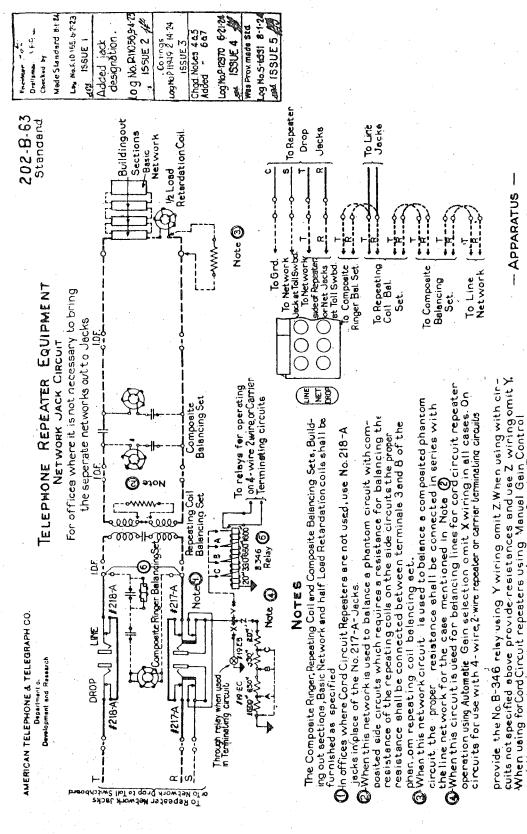

Added Assembly
May 9.1922
ISSUE 2


Added No. 217-D Plug

Log No.P-10105 4-25-23 ISSUE 3

Added precision accuracy of plugs.


Log No. R11026 9-4-23



ASSEMBLY

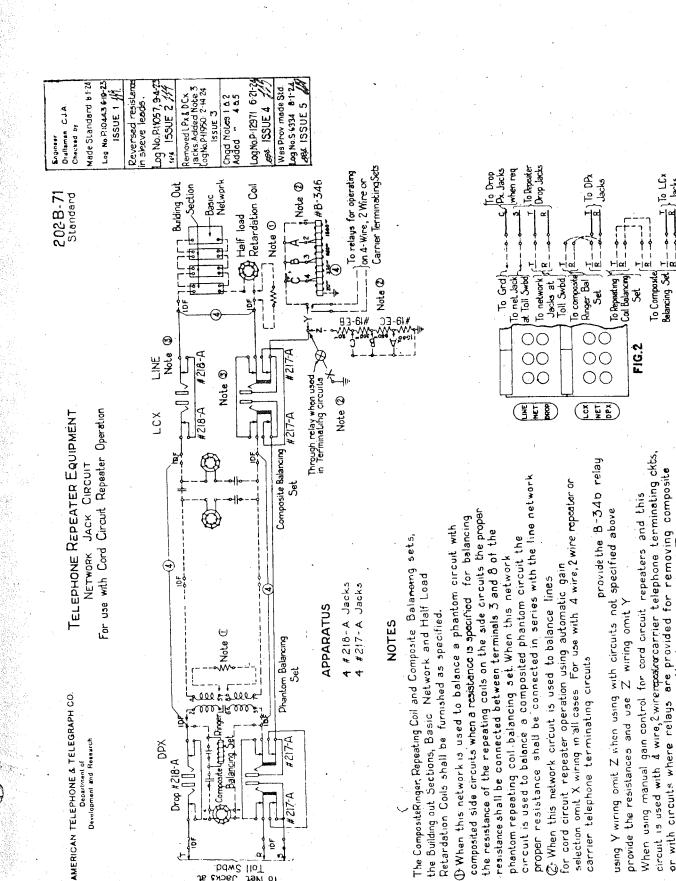
NOTE

700" # 217-A ± 1 ohm 1130" # 217-B ± 1.6 " 1800" # 217-C ± 2.6 " 600" # 217-D ± 1 "

2-Jacks-No.218-A-2-Jacks No.217-A- (Note) - APPARATUS

and this network circuit is used with 4 wire or Carrier Terminating

circuits or where relays are provided for removing composite


this network circuit is used for balancing lines

ringer balancing sets use X wiring omit Yand? In offices where this network circuit is used for

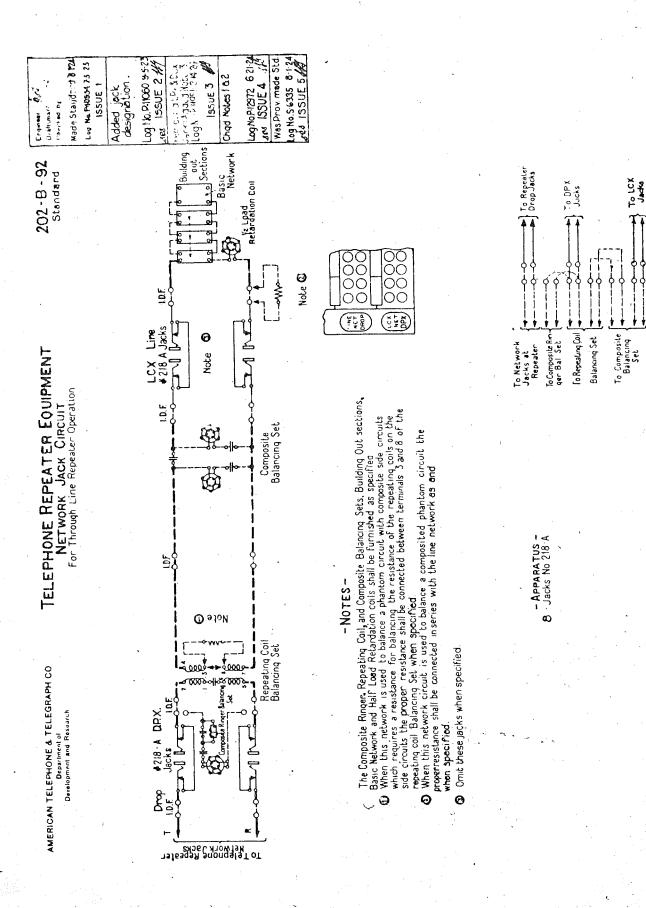
the 2-wire repeated, 4-wire or carrier berminating circuit. shall be connected in place of the balancing network aquipment drop or network equipment (6) When the B-346 Relay is used,

used with through line repeaters only omit the jacks when specified using only the repeater net and net jacks associated with the repeater circuit for picking up the repeater net

Three conductor patching cords shall be used with this circuit.

To Net Jacks Toll Swbd

(3) Omit these jackwhen specified


(4) When the Biste relay is provided, the 2-wire repeaten 4-wire or carrier berminating circuit

(5) When the Biste relay is provided, the Balancing network equipment

(5) Three connector, paterting conds shall be used with this tircuit.

ringer balancing equipment use X wiring omit Y and Z

Network

To Line Network