STEP-BY-STEP SYETEMS
NO. 1, $35 \mathrm{CA}, 355 \mathrm{~A}, 36 \mathrm{CA}$ OR $35-\mathrm{E}-97$ 200 POINT LINE OR TRUNK FINDER 3 NTRE

CHANGES

B. Chanses in Apparatus
B.i Superseded

A Network, 178A
Superseded By
Figures \geq and 16
A Network
Consisting of 2-542D Capacitors, and 1-KS13490 L2 Resistor, 150 Ohms, Figurss 2 ard it option G
D. Descripticn of Changes
D. 1 Figures 2 and 16 are revised to show the replacenent of the 178 A contact protection network with a new pigtail network. The new coded apparatus is desiznated option G and 1 s rated standard. The old contact protection network is designated rption J and is ratedmen. Disc.
D. 2 Note 109 , Recora of Figures, Wiring and Apparatis Changes, is revised to show the changes noted in D.I.
D.3 Note 106 is revised to show the addition of option G.
D. 7 Referenve to 360 A as added to the titia, notes 104 and 108, the rating box, and CADs 1 ana 2.

EELL TEEEPHCNE IABCRATORIES, INCORPORATED
DEET 5225-LCE
WECC DEPT 5152-RTO-WEA

Page 1
1 Page

STEF-EX-STEP STSTEMS
 NO. 1, 350A, 355A, OR 35E97
 200 POLNT LTNE OR TRONK FINDER 3 WIRS

CABMOES

D. Descripeion of Changes

D. 1 Pis. 16 and Fig. 2 are modiried to provide connection to the Jack Accese Circuit for Automatic Call Thru Test
Set.
D. 2 Note 103 is modialad to show the use of this circuit, with
prepay coin lines and long line equipment, in a $35 E 97$ office.
D. 3 Prior to issue 9D, use of this circuit in 350A offices was standarc.
D. 4 Prior to Isaue 9D, the rating Of Fig. 15 and Note 108 was Aty Only.
F. Changes in CD Sections
F. 1 Under 4. CONNECTIHG CIRCUITS add:
4.23 Jack Aceess Cirwuit EOr Automatic Cail Thru Test Set -SD-32523-01.

BELL TEUEPHONE IABORATORIES, INCORPORATES

DEPT 2363-MFC-RJJ, IF.

STEP-BY-STEP SYSTEMS

NO. 1, $350 \mathrm{~A}, 355 \mathrm{~A}$ OR 35 E 97
200 POINT IINE OR TRUNK FINDER
3 WIPE

CHANGES

D. DESCRIPRION OF CHANGES
D. 1 In Fig. 2 at the cross-connecting infomation for lead "S", connecting to Selector Circuit or Post Pay Coin Trunk Circuit or Register Trunk and Link Circuit or Converter Trunk Circuit, is adaed.
D. 2 In CAD I, connecting information is changed.
F. CHANGES IN CD SECTION
F. 1 Under 4. CONNECTING CIRCUIT add:
4.21 Converter Trunk - TOUCH-TONE Ca.11ing - SD-32326-01.
4.22 Register Trunk and Link - SD-32353-01 - (Trunk Portion).

BELI THELEPHONE LABORATORIES, INCORPCPATED

DEPT 2363-00-RJJ, Jr

CHANGES

B. CHANGES IN APPARATUS

3.1 Added:

> 1 - Ks-i4603, LlA C Resistor "M"Option
C. CEANGES IN CIRCUIT REQUIREMENTS OTHER THAN THOSE CAUSED BY CHANGES IN APPARATUS

```
C. 1 The residual requirement for the \(221 C p\)
(C) relay Fig. 16 was \(s-4\) prior to issue 7D.
```

D. DESCRIPIION OF CHANGES

```
D.1 Provision is added to have single party
    message reve service for 255A and 35Eg7
offices.
```

D. 2 Option "K" is added and existing wiring
is desiqnated option "M". Option "K"
is used when the busy sleeve voltage exceeds -2.4 volts but does not exceed -4.3 volts. Notes 103 , 104 , and 109 are revised to show these changes.
D. 3 Prior to issue 7D, Note 202 was standard.

Prior to issue 7D, Note 202 was standard.
D. 4 Prior to issue 7D, the title, the Eating
of the circuit, and Notes 104 and 108
D. 4 Prior to issue 7D, the title, the Eat
of the circuit, and Notes 104 and In
made reference to 360 A offices.
D. 5 Prior to issue 7D, the " S " end "LO"
leads in Fig. 2 were designated: mo
Selector Circuit.
D. 5 In Fig. 15 the "V" option must always
be furnished and therefore should not
be idencified as an option. Reference to
"V" in Fig. 16 has been renoved and terminal 9 is connerted to the sleeve lead without option. This is done on a no recora basis.
D. 7 Prior to issue 7D, Note 301 read: If convenient, use voltage limit as measured on busy finder sleeve lead with any
standard voltmeter of at least 1000 ohms per volt; otherwise compute sleeve conductor resistance.

```
D. }8\mathrm{ Prior to issue 7D, the title of Fig. 16
    did not refer to high sleeve potential
operation.
```

D. 9 Prior to issue 7D, reference was made to Fig. 16 in Note 104.
D. 10 Under CONNECTING CIRCUITS the following was added.
4.21 Trunk Circuit - SD-31493-01*
E. CHANGES IN DESCRIPTION QF OPERATION
E. 1 Prior to issuc 7D, the working limits were:

> Finder Bank Terminal to Holding Ground
> Fig. 2 Fig. 16

Max Busy Sleeve Potential $2.4 \mathrm{v} \quad 7.0 \mathrm{v}$ Max Ext Sleeve Conduc Res 13.0n 35.0Ω

Finder Bank Ter-
minal to Holding

Ground
Fig. 2
Einder Bank Ter-
minal to Holding
Ground

Fig. 2	Fig. 16	
Max Busy Sleeve potential	$-2.4 \mathrm{v}^{\prime \prime} \mathrm{M}^{\prime \prime}$	-7.0 v
$-4.3 \mathrm{v}^{\prime \prime} \mathrm{M}^{\prime \prime}$		

The voltage drop of the sleeve conductor from bank terminal to holding ground shall not exceed the above limits as measured on the finder bank terminal with any standard voltmeter with a minimum resistance cf 1000 ohms per volt.

[^0]BELI TELEPHONE LABORATORIES, INCORPORATED

DEPT 2363-MPC-FCK

STEP EY STHP SYSTHMS
NO. $1,3504,355 A, 3604$ CR $35 E 97$
200 POINT LNNE OR TRURK FTNDER 3WIRE

CHARGES
C. CIIANEWS IN CIRCUIT EEQUIRKMENTIS

OIHER TTEAN TTHCSE APPIYIIK TO
ADDED OR HEMOVED APPARATUS
C. 1 The Readj. hold. requirement 23.5 for D relay, was added to $C R$ teble.
D. DESCRIPTICN OF CIRCUTH CHARGES
D. 1 The io lead in FIG. 2 pre. Fiously shown comrecting to selector repesters is
removed and shown connecting to selectors only.
D. 2 Note 104 is revised to remove reference to single party message rate service in $355 A$ offices, since this presently used only with s-wire finders, also to ciarify the information covering the use of FIG. 9 with X OPIION and FIG. 13 With 4 and W OPIICASS.

BELL TELEPHONE LABCRAIVRIES, ITCORPORATED

DEPT. 2335-WCS -FRE MT

STEP BY STEP SYSTEMS
NO. $1,350 \mathrm{~A}, 355 \mathrm{~A}, 360 \mathrm{~A}$ CR 35 E 97
200 POINT LINE OR TRUNK FINDER
3 WIRE

CHANGES

B. Changes in apparaius

B. 1 Aaded

In Fig. 16
49A Varis=or
63A, 15 R Resistor
82A, 150 R Resistor
C. CHANGES IN CIRCUIT REQUIREMENTS OTHER THSN THOSE APPLYING TO ADDED OR PEMOVED APPARATVS
2. 1 Note 5, Page 1 Added.
C. 2 Changes in "Direct Current Flow

Regt." and "Cireuit Preparation"
dita for relays (B) and (i) are shown for Fig. 16.
C. 3 Circuit preparation data fo: the "C" relay js shown separately for Fig. 16.
D. DESCRIPTION OE CIRCUIT CHANGES
D. 1 Figure 16 and Test Note 5, Page i were added to provide hjgh sleeve conductor resistance operation.
D. 2 Note 202 is changed to show fusing information for high sleeve operation.
D. 3 Note 104 is changed to show the modification for the high sleeve feature.
D. 4 Note 109 is chenged tc record the addition of "Special Fig." i6.
D. 5 Figure 16 is entered in Options Used table.
D. 6 The "Working Limits" were crenged to include the limits for Fig. 16.

Al. other headings under Changes, no change.

1. PURPOSE OF CIRCUIT

1.1. The purpose of this circuit when used
as a line finder is to establish a
connection from a calling subscriber's line
to a first selector, to a trunk eircuit or to a selector-repeater and when used as a trunk Einder its purpose is to establish a connection from the trunk to other trunks
or repeater circuits. When serving two classes of lines or trunks any level or levels in the multiple banks can be arranged to extend a class indication to the succeeding circuit.

2. WORKING LIMITS

2.1. The maximum external resistance of the sleeve conductor or the maximum voltaje drop in the sleeve conductor from the finder bank terminal to the holding ground shall be as indicated below. The measurements may be taken with any standard voltmeter with a minimum resistance of 1000 per volt.

Fig. 2 Fig. 16
$\begin{array}{lrrr}\text { Max. Busy Sleeve Potential } & 2.4 \mathrm{~V} & 7.0 \mathrm{~V} \\ \text { Max. Ext. Sleeve Conduc. Res. } & 13.0 \Omega & 35.0 \Omega\end{array}$

3. FUNCTIONS

3.01 To find a subscriber's line or rrunk
in a group of 200 lines or trunks
when a cali is originated.
3.02 To extend the tip, ring and sleeve
leads of the criginating circuit to the succeeding circuit.
3.03 To place a momentary ground on the line finder bank sleeve terminal when the Iine or trunk is found for the purpose of making it busy and to hold the connection until a ground is supplied froma connecting circuit.
3.04 To advance the start lead to a succeeding finer when the finder is in use or is made busy from the associated selector circuit or (MB) key.
3.05 To open the multiple chain circuit when the finder is busy.
3.00 To return the finder to normal when the finder fails to find the originating line or trunk.
3.07 To operate an alarm in the alarm circuit when the switch fails to restore in a predetermined time interval after the release magnet is energized.
3.08 To advance the start lead and open the multiple chain circuit when the finder switch is removed from the frame.

Page 1
3.09 To return the Einder to normal at any stage of the operation when the originating subscriber or operator disconnects except when the connection is held by an operator's trunk circuit.

3.10 To provide access to the line finder

 by means of the test jack.3.11 To extend a class indication to the succeeding circuit from any level in the line finder multiple bank.

```
3.12 To remove the pulse repeating ard
    coin test function of the coin trunk
when the calling line is equipped with a
dial prepayment long line circuit.
```


4. CONNECTING CIPCUITS

When this circuit is listed on a key sheet the connecting information thereon is to be followed:
4.01 Subscribers Line Circuit - SD-32133-01×
4.02 No. 702 PBX Line Circuit - SD-66402-02*
4.03 Tandem Trunk Circuit - SD-31534-01*
4.04 Selector Circuit - SD-30200-01*
4.05 Prepay Coin Truns Circuit -SD-31592-02*
4.06 Message Register Trunk Circuit -SD-31493-01*
4.07 Outgöng Trunk Circuit - SD-31315-01*
4.08 Outgoing Repeater Circuit -SD-31779-01*
4.09 Selector Repeater Circuit -SD-31914-01*
4.10 Switch Trouble Alarm Circuit -SD-32239-01
4.21 Test Circuit for 200 point Finders -SD-31524-01*
4.12 Intercepting Trunk Circuit from Local Selector Multiple - SD-31767-01*
4.13 Intercepting Trink Circuit from Connector or Toll Selector Multiple -
SD-31337-01
4.14 Intercepting Trunk Circuit from Plugging-up Line Circuit -
SD-31339-01*
4.15 Outgoing Trunk Circuit for Intercepting Service - SL-31965-01*
4.16 Dial Long Line Circuit for use with prepayment Coin Line - SD-32053-01*

4.17 Group and Alarm Relay Circuit -SD-32154-01

4.18 Outgoirg Pulse Correcting Repeater -SD-31892-01.
4.19 Incoming or outgcing Pulse Correcting Trunk Ckt. - SD-31929-01
4.20 Two Way Sleave Repeating Ckt. -SD-32063-01
*Typical Circuit

DESCRIPTION OF OEERATICN

5. FINDING LINE OR TRJNK

5.1 Vercical stepping

When the receiver is removed from the switchnock at the calling atation or a trunk is seized, the line relay in the associated line or trunk circuit operates. The operation or this relay connects batitery through the winding of a reliay of this circuit to the sleave terminal of the 1'ne finder bank anc also operates a gronp start reiay in the group and alarm reiay sircuit. This group start relay connects ground to a segment of the commutator corresponding to the level in which the line or trunk is located and $\equiv 150$ grounds the scart lead to operate reiay (A) of the finder circuit. (A) grounds the 's' lead, opens the release circuit and operetes the stepping relay (C) which operatse the vertical magnet and steps the shafe up until the commutator brush reaches the segment is which is groundec. When this segment is reached, (E) operates in series with the secondary winding of (C). This holds (C) in the operated posicion to prevent further stepping. (E) transiers the locking circuit for (B) from the off normal grourd to a circuit which is grounced ior each operation of the rotary magnet. (E) is made slow in operating to give a short time between the last vertical step and the first rotary step to prevent snagging of wipes due to vioration. The release circuit is opened by the operacion of (E) to preclude the release or partial release of the shaft and reoperation of (A) before the release Of (E) in which case the rotary magnet would energize without the shaft being centered on any bank level and probably cause jamming or the stationary dog or snagging of the wipers on the bank terminals. The opezation of (E) also transfers the stepping circuit foom the vertical to the rotary magnet

5.2 Rotary Stepping

The rotary majnet steps the snaft around until one of the sleeve wipers reaches the terminal which is connected to battery thru the winding of a relay in the

Line or trink circuit. During the rotary stepping of the switch. the iocking circuit to (B) and (F) is opened on the release of the rotary magnet for the purpose of preventing a false operation of these relays when the wipers are stepped over a busy or grounded S or SI terminel, in which case a circlite is closed from ground at the benti terminale, through the primary winding of (B) or (P) anc (C) relays to grounci. This tends to cperate spring \#1 on relays (B) and (F) on the opening of the efrcuit in the secondary winding of relay (c). If the S wiper ifinds this battery, (F) is operated in series with the primary winding of (c) suffioiently to close contacts 1 and 2 and (c) is helic operated to provent further stepping.

5.3 Cut-Thru to Cailing Line or Trunk

On the Closure of contacts $]$ and 2 on relay (F), its secondary winding is energized. The relay then fully operates and locks to the sleeve Iead. The operation of this relay closes the tip and ring through from the line or trunk to the selector, repeater or trunk circuit, opens the operating circuit of (B), opens the release circuit and operaves (D) closing the sleeve lead through from the selector, repeater or trumk circuit to the line or trunk circuit; closing the locking circuit for (F) in multiple with convacts on the rotary magnet; ojening the test circuit to the "S" wiper, copendig the multiple chain circuit, transferrine the "in" or "ST" stant lead from relay (A) to the "out" or "IS" start leac and secondary wincing of relay (D) ; removing battery from (C) anci (E) and the vertical magnet, and releasing (c) by short-cincuiting its P vinding, This ailows (E) co release. The battery is removed from the seccndary winding of (c) for the purpose of preventing Its operation of the release of the finder switch. Rattery is nemoved from the vertical magnet to prevent a false operation if (: $)^{\prime}$ releases before (C) due to the itfference in the releasing time of these two relays. (G) is made slow to release for the purpose of holding a ground on the sleeve lead aurdag the time required by the onnecting selector, trunik or repeater circuit to connese ground to the sleeve lead. If the SI Wiper finds the batiery on the bank remanil, (B) will operate in semes with the primary winding of (C) suffictently to close contects 1 and 2 . The closing of these contacts energizes the secondary winciing and fuily operates the relay. The operetion of this relay transfers the T, F, and S ieads from the $T, ~ R$, and S wipers to the T-1. $\mathrm{R}-1$, and $\mathrm{S}-1$ wipers and also clones the atrcult for operating (F). Upon the operation of (F) the circuit functions as described when battery was found by the S wiper.

5.4 When Fig. 16 is Used

Resistances A and B provide a potential of approximately 4.5 volts at the winding of (C) to insure release of (C) when testing a busy line on the sleeve of wincre a potential up to 7 volts may appear. One half of a varistor (A) allows current from a line calling for a finder to flow and hold relay (C) while the other half presents a high resistance to the shunt path thru the other sleeve bank to the sleeve of a busy line.

6. RELEASE

6.1 Release Before Cut-Thru to Calling Line or Trunk

When the originating subscriber or operator disconnects before the line is found, ground is removec from lead "ST" releasing the (A) relay of the finder. This closes a circuit for energizing the release magnet. In case of a false ground on the start lead, or if for any other reason the calling line is not found when the start lead is grounded the switch will go to the eleventh rotary step closing the rotary step springs. This connects ground from the V.O.N. springs through (A) to the winding of (\vec{F}), operating same, and then through the front contacts of (F) and of the rotary magnet and (E), to hold the magnet operated and thus prevent future at"empts at stepping. The operation of (F) operates (D) on its primary winding releasing (A) which is siow to release. (D) operated, releases (F) since no ground is received from the selector. (A) and (F) released, releases the switch but (D) remains locked to the start lead as long as the latter remains grounded, thus extending the start to the next switch.

6.2 Release After Cut-Thru to Calling Line or Trunk

When the originating subscriber or operator disconnects after the line is found, the associated selector, repeater or trunk circuit functions, removing ground from the sieeve lead allowing (F) to release, ciosing a circuit to energize the release magnet. (B) which may be operated and (D) which is operated are held until the finder returns to normal. The purpose of the secondary winding of (D) is to hold the relay operated if the finder is returned to nommal at a time when the start lead is advanced through this finder circuit and has started a succeeding finder, until the fin inder thus started has found the line or trunk circuit.

7. NORMAL POST SPRINGS

The normal post springs operate on various levels to perform function in various combinations as described in Note 104 on the drawing. Typical applications follow:

```
CD-33013-01 - ISSUE 4-D
```


7．1 Class of Service Indication＂Y＂and ＂W＂Options

The normal post springs provide for two class indications to the succeeding circuit，for example，if both postpay coin and flat rate lines are assigned in one line finder group the normal post spriags may be adjusted to make contact on levels assigned for postpay coin lines．

7．2 Class of Seruice Indication on Speci－
fied Levels and Restricted Service
Indication on Cther Levels．＂Y＂and
＂T＂Options
The normal post springs are adjusted to operate on levels assigned for class of service tone incication．Operation of the normal post springs connects ground from the sleeve lead to the＂A＂lead to succeed－ ing circuits．When the normal post sprirgs do not operate，ground from the sleeve is connected to the＂RS＂lead which provicei restricted service indication to succeeding circuits．

7．3 Dial Prepayment Coin Long Line
 Indication－Fig． 15 and＂Y＂Apparatus and Wiring －
 H．
 When dial prepayment coin long Iine circuits are inciuded in a coir line finder group it is necessary to remove the pulse repeating and coin test feature in the as－ sociated coin trunks since the pulses are repeated，coin test is made，and talining battery is supplied by the long line eir－ cuit．Coin long line circuits must be assigned by line finder levels and the normal post springs must be adjusted to

operate on these ievels．when the normal post sprinzs operate lead＂F＂is transterred from lead E ＂to lead＂D＂to operate a relay in the coin trusk froin the selector sleeve ground which is connected to lead＂F＂． When the circuit is normal the＂ E ＂lead is connected to the＂F＂lead to provide means for making the ilne finder busy if the as－ scciated selector is made busy．

8．TEST JACK
The test jack is provided for making routine teste of the inder and to monitor on the fincer tip and ring．
－s案

9．（MB）KEY

The（NB）key is operated to take the finder one or service，its operation advan－ ces the start lead and opens the chain cir－ cuft．The（MB）key may be operated while the sinder is cut－thru on a call，at the completion of＇the call the sinder will re－ store to nomal without interfering wth the call．
10．FELEASS SIGNAL
Battery for the reiease magnets is
supplied through a stepervisory relay in the alarm circuit for the purpose of provid－ ing an alarm if a finder fails to release． This relay is also used for obtaining a peg count of the number of originating こョils．
11．CONTACT PROMECTION
The contact protection network（A）is provided for the purpose of protecting the contacts that make and break the circuit to the stepping mazriets．

BELL TELEPHONE LABORATORIES，INCORPORATED

DEFT．2315－AWK－RCD－GD

Page 4
4 Pages

[^0]: * Typical Circuit ,

