
ELECTRON TUBE DATA SHEET WESTERN ELECTRIC 426A ELECTRON TUBE

DESCRIPTION

The 426A is a three-electrode inert-gas-filled miniature cold cathode tube for use in relay, voltage regulator or rectifier circuits. This tube is especially suitable for use in control circuits such as in triggering, counting or switching apparatus.

CHARACTERISTICS

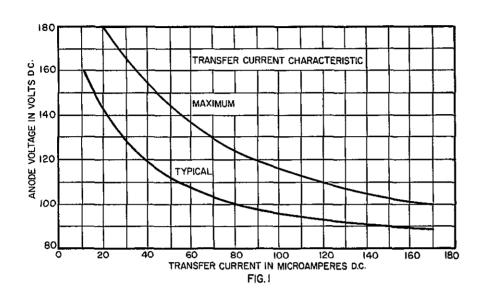
Peak Anode Voltage · · · · · · · · · · · · · · · · · · ·	 	180 volts
Average Cathode Current · · · · · · · · · · · · · · · · · · ·	 · · 7.5	60 milliamperes
Average Life, Approximate · · · · · · · · · · · · · · · · · · ·	 · ·10000	10 hours

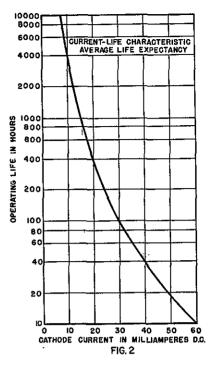
File: Cold Cathode Section

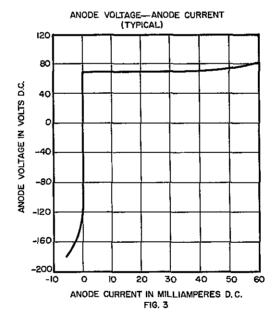
426A - PAGE 2

Forward Peak Anode Voltage				•	•					•		•			180	volts
orward Cathode Current (Note																
Peak · · · · · · · · ·															60	milliamperes
Average · · · · · · ·															30	milliamperes
Averaging Time · · · ·		•	•	•	٠	•	•	•	•	•	•	•			2	seconds
'eak Inverse Current (Note 2)																
Anode · · · · · · · ·																
Starter · · · · · · ·																
mbient Temperature Limits.		•		٠	•	•	•	•	٠	٠	•	٠	-5	5 to	+85	centigrade
tarter Breakdown Voltage	<u>Life</u>									•	Mir 65				Max. 85	
										•	. 65		7	<u> </u>	85	volts
Starter Voltage Drop at 3 Mil	llia	 mpe	res	3 (1	Not	е 3) .			•	· 65	 5 3	7	— 2 3	85 72	volts volts
Starter Voltage Drop at 3 Mil Anode Voltage Drop at 10 Mil	lliam	 mpe per	res es	1) 8 (No	Note:	e 3 s 4) . &	5).		•	· 65 · 53 · 63	5 3 3	7 6 6	— 2 3 9	85 72 75	volts volts volts
Starter Voltage Drop at 3 Mil Anode Voltage Drop at 10 Mil Fransfer Current	lliam liam	mpe per	res es	1) 8 NO)	Note ote:	e 3 s 4) . &	5)	•	•	. 65 . 53 . 63 See	5 3 3 8	7 6 6 Figur	— 2 3 9	85 72 75 Pag	volts volts volts
Starter Voltage Drop at 3 Mil Anode Voltage Drop at 10 Mil Fransfer Current Ionization Time, Starter Gap	lliam liam	 mpe per 	res es	1) 8 (No	Note ote:	e 3 s 4) . &	5)		•	. 65 . 53 . 63 See	5 3 3 e I	7 6 6 Figur 1	— 2 3 9 e 1,	85 72 75 Pag	volts volts volts e 3
Starter Voltage Drop at 3 Mil Anode Voltage Drop at 10 Mil Fransfer Current Ionization Time, Starter Gap Deionization Time, Main Gap	lliam liam (Note	 mpe per e 6)	res es	1) 8 (NO	Note:	e 3 s 4) • & • •	5).	•	•	. 65 . 53 . 63 See 	5 3 3 e I	7 6 6 Figur 1	— 2 3 9 e 1, 0	85 72 75 Pag	volts volts volts e 3 milliseconds
Starter Voltage Drop at 3 Mil Anode Voltage Drop at 10 Mil Transfer Current Ionization Time, Starter Gap Deionization Time, Main Gap	lliam liam (Note	 mpe per e 6)	res es	1) 8 (NO	Note:	e 3 s 4) • & • •	5).	•	•	. 65 . 53 . 63 See 	5 3 3 e I	7 6 6 Figur 1	— 2 3 9 e 1, 0	85 72 75 Pag	volts volts volts e 3 milliseconds milliseconds
Starter Voltage Drop at 3 Mil Anode Voltage Drop at 10 Mil Fransfer Current Ionization Time, Starter Gap Deionization Time, Main Gap. Inverse Current at -120 Volts	lliam liam (Note	 mpe per e 6)	res es	1) 8 (NO	Note:	e 3 s 4) • & • •	5).	•	•	. 65 . 53 . 63 See 	5 3 3 e I	7 6 6 Figur 1	— 2 3 9 e 1, 0	85 72 75 Pag	volts volts volts e 3 milliseconds milliseconds
Starter Voltage Drop at 3 Mil Anode Voltage Drop at 10 Mil Transfer Current Ionization Time, Starter Gap Deionization Time, Main Gap. Inverse Current at -120 Volts	lliam liam (Note	mpe per e 6)	res es Po	(No (No	Note ote: nt:	e 3 s 4	& (N	5).	7)		. 65 . 53 . 63 See 	5 3 3 e I	7 6 6 Figur 1	2 3 9 e 1, 0	85 72 75 Pag - - 3	volts volts volts e 3 milliseconds milliseconds milliamperes
Starter Breakdown Voltage. Starter Voltage Drop at 3 Millande Voltage Drop at 10 Millander Current Ionization Time, Starter Gap Deionization Time, Main Gap. Inverse Current at -120 Voltameter Current at -120 Voltameter Current Action Voltameter Current Action Voltameter Current	lliam liam (Note	mpe per e 6)	res es Po	ote	Note otes nt:	e 3 s 4 ·	(N)	5).	7)		. 65 . 53 . 63 See 	5 3 3 9 1	7 6 6 Figur 1	2 3 9 e 1, 0 6	85 72 75 Pag - - 3	volts volts volts e 3 milliseconds milliseconds milliamperes Any Position

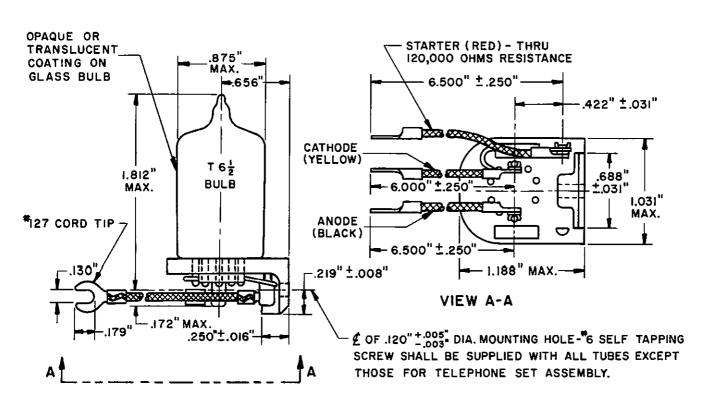
HANDLING


This tube contains a small amount of krypton-85 gas which is a by-product radioactive material. The amount of krypton-85 is less than five microcuries, which is too small an amount to require any special care in use.


Atomic Energy Commission regulations require that the individual tube carton for tubes containing by-product radioactive material be appropriately marked. The marking includes the statement that tube disposal should be in approved manner.


Approved instructions for disposal of tubes containing krypton-85 are as follows:

Tubes to be disposed of should be broken or crushed in a well ventilated place releasing any resulting vapors to the outside atmosphere. The residual broken or crushed tubes should be disposed of in a normal public trash disposal system. Tubes should be disposed of at a rate of not more than 100 each week from any one location. Avoid breathing vapors from broken tubes.


- Note 1: In the "Absolute System" the maximum ratings specified are limiting values above which the serviceability of the device may be impaired from the viewpoint of life and satisfactory performance. Maximum ratings, as such, do not constitute a set of operating conditions and all values may not, therefore, be attained simultaneously.
- Note 2: Sufficient resistance must be used in series with the tube to assure that the electrode currents do not exceed the maximum rated values.

- Note 3: Starter voltage oscillations of approximately 1 to 10 kilocycles and 12 volts peak-to-peak will be present at starter current values below 0.05 milliampere.
- Note 4: Approximately 95% of tubes will be within limits of ± 2.8 volts from the bogey value
- Note 5: Anode voltage oscillations of approximately 5 to 20 kilocycles and 3 volts peak-to-peak will be present at anode currents within the ratings.
- Note 6: With 15 volts starter overvoltage (15 volts above starter breakdown voltage) with tube in total darkness.
- Note 7: Negative anode voltage applied through 8000 ohms. Starter connected to anode through 100,000 ohms.
- Note 8: Tube is permanently mounted on a plastic angle bracket. Pin connection are terminated in flexible connector leads.

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.