A1 DIGITAL DATA TRANSMISSION SYSTEM WORD GENERATOR CIRCUIT SD-1G005-01
 ANALYSIS AND CLEARANCE OF TROUBLE

1. GENERAI

1.01 This section describes methods and procedures to be followed in the analysis and clearance of typical troubles which may be encountered in the word generator circuit.
1.02 This section is reissued to incorporate material from the addendum in its proper location. In this process marginal arrows have been omitted.
1.03 These trouble indications usually occur from failure to meet the test and adjustment requirements described in Section 314-505-502 covering out-of-service tests of the word generator. The suggested procedures for location of the troubles are classified in the same order as the requirements listed in Section 314-505-502 under the following headings.
A. Adjustments
B. Dipulse Output
C. Synchronization

Under the following heading, Tables A through R are found. These tables may be used to locate a defective varistor.
D. Varistor Tables
1.04 Care should be used to prevent damage to varistors by avoiding the direct application of the heat of a soldering iron.
1.05 Reference to schematic SD-1G005-01 drawings JlGOOOL-90 and ED-16018-90 will be helpful in applying the procedures of this section.

2. APPARATUS

2.01 Waterman Systems Rakscope (S-12-C)
KS-16305

3. TROUBLE CONDITIONS

A. Adjustments

3.01 When a square wave cannot be obtained at the BCAl test point by adjusting the TMG potentiometer to meet the requirements of Test A, Step 19, of Section 314-505-502, it is probably due to one of the following reasons.
(a) No sine wave at the OSC test point, which may be due to:
(1) Defective tuning fork
(2) Faulty V2 electron tube in timing (TMG) circuit
(3) Faulty V2 electron tube in start (ST) circuit
(b) No square wave at terminal 1 of the BCAl counter. This may be due to a faulty V1 electron tube in the timing circuit.
(c) No square wave at terminal 3 of the BCAl counter may be caused by:
(1) Faulty V1, V2, or V3 electron tube in BCAl counter.
(2) Shorted CRI varistor in BCAl counter (see Table L) .
3.02 When a rectangular pulse cannot be obtained at the ST test point by adjusting the ST-SL potentiometer to meet the requirements of Test A, Step 22 of Section 314-505-502, it is probably due to one of the following reasons.
(a) A BCA counter may be faulty if a square wave is not obtained at each of the BCA
test points. Starting at lowest counter, no square wave at terminal 1 of the counter would indicate the next lower numbered counter is faulty. This condition may be due to:
(1) Faulty V1, V2, or V3 electron tube in BCA counter.
(?) Shorted CRl varistor in BCA counter (see Table L).
(b) No square pulse at terminal 1 of the ST-OUT, DIP MOD may be due to an open CR55 varistor.
(c) No square pulse at terminal 3 of the ST-OUT, DIP MOD may be due to a faulty V1 or V2 electron tube in the ST-OUT, DIP MOD circuit.
3.03 If a square pulse cannot be obtained at the DAT test point by adjusting the DATSL potentiometer to meet the requirements of Test A, Step 24, of Section 314-505-502, it is probably due to one of the following reasons.
(a) A square pulse on terminal 1 , and not on terminal 9 , of the word matrix
(W MTX) may be due to a faulty VI electron tube in the W MTX.
(b) If a square pulse appears on terminal 9 of the W MTX, and not on terminal 1 of the D OUT circuit, refer to Tables G and H.
(c) A square pulse at terminal 1 and not at terminal 7 of the D OUT circuit may be due to a faulty V1 or V2 electron tube in the D OUT circuit.
3.04 Inability to remove two of the pulses when switch Sl4 is operated to position 32, as stated in Test A, Step 27 of Section Section 314-505-502, is probably due to one of the following reasons.
(a) No square wave at the BCBl test point is probably due to:
(1) Faulty V1 or V2 electron tube in BCBI counter.
(2) Shorted CRI varistor in BCBI counter.
(b) If a square wave appears at the BCBI test point and circuit is still not functioning properly, it may be due to an open CR37 varistor.
3.05 Inability to remove pulses when switch Sl4 is operated to other positions as stated in Test A, Steps 29 to 33 inclusive, of 314-505-502, is probably due to one of the following reasons.
(a) No square wave at the $B C B$ test point associated with its particular counter.
This condition may be due to:
(1) Faulty V1 or V2 electron tube in $B C B$ counter not producing square wave.
(2) Shorted CRI varistor in the above mentioned counter.
(b) When a square wave is obtained at the $B C B$ test point, and the circuit is still not functioning properly, the trouble may be due to an open varistor CR36, CR35, or CR34, corresponding to counters BCB2, BCB3, or BCB 4 , respectively.
3.06 When the requirements of Test A, Step 34, of Section 314-505-502 cannot be met (that is, the start pulse does not double in width, or more than doubles, when switch Sl5 is operated), the trouble is probably due to a faulty varistor. (Refer to Table K.)

B. Dipulse Output

3.07 When dipulses cannot be made to meet the requirements of Test B, Step 20 , of Section 314-505-502 by adjusting the LEVEL potentiometer, it is probably due to one of the following reasons.
(a) If a dipulse does not appear at the data output jack, or if the one-halfinch peak-to-peak deflection cannot be met, it may be caused by a faulty V3 electron tube in the ST-OUT, DIP MOD circuit, or a faulty varistor. (See Tables C through J.)
(b) If the dipulse is misshapen and the replacing of $V 3$ electron tube of the
ST-OUT, DIP MOD circuit does not remove the trouble, refer to Tables M, O, Q, or R.
3.08 When the requirements of Test B, Steps 22 through 29c of Section 314-505-502 cannot be met because more than one (or no) dipulse appears corresponding to each operated switch, it may be due to a faulty varistor in the word forming network. Locate by referring to Tables C through J.
3.09 When the requirements of Test B, Step 31 of Section 314-505-502 cannot be met,
it may be due to more than one (or no) start dipulse appearing. This is probably caused by a faulty varistor. (Refer to Tables A and B.) If the start pulse is misshapen, refer to Tables N and P.
3.10 If the sine wave described in Test B, Step 33, of Section 314-505-502 cannot be obtained, or the one-half-inch peak-to-peak amplitude cannot be achieved by adjusting the RATIO potentiometer, it is probably due to:
(a) Faulty V2 electron tube in ST circuit.
(b) Shorted CRI or CR2 varistor in ST circuit.
(c) Faulty V3 electron tube in DIP MOD circuit.

C. Synchronization

3.11 If the matching and error counter counts errors, failing to meet the requirements of Test C, Step 21, of Section 314-505-502, it is because word generators 1 and 2 are not in synchronism. This condition may be due to:
(a) Faulty Vl or V2 electron tube in ST circuit of word generator 2.
(b) Faulty V3 electron tube in W MTX circuit of word generator 2 if supplied with a start pulse gate.
(c) Open CRI or CR2 varistor in W MTX circuit of word generator 2 if supplied with a start pulse gate.
D. Varistor Tables
3.12 The following tables provide the necessary information to locate an open or shorted varistor in the word generator.
3.13 The following oscilloscope adjustments are to be made before tables are used. Connect oscilloscope SYNC input to word generator SYNC test point, set SYNC-SEL switch to TRIG EXT HI, insert oscilloscope probe into BCAZ test point, and adjust sweep to obtain four cycles of square wave. (Fig. l.)
3.14 Switch S-14 of the word generator should be on position 16 .
3.15 The data output jack or start output jack referred to in this heading are
located in the jack and connector circuit.
3.16 All observations will be made at the data output jack, unless otherwise
specified.
3.17 While using tables, oscilloscope is to be terminated in 600 ohms.
3.18 In reference to the Bits Appear column of tables, the diagram below will show the position of bits on oscilloscope.

Pos

$\begin{array}{llllllllllllllll}\mathrm{ST} & \mathrm{B} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & B^{\prime}\end{array}$
(That is, see Fig. 2 which shows bits in positions [Pos] 1 and 13.)
3.19 To clarify the use of the tables, take the following case as an example. Observations are being made at the data output jack. Switch 1 is operated and bits appear in positions 1, 2, 5, and 6. Next look at the start output jack. It is found that the start pulse is not normal; bits appear in positions ST, B, l, 2, 3, 4, 5, and 6. Turn to Tables A and B and under the Switches Operated column it is noticed that no switches are to be operated. Therefore, restore switch l to its off position. It is noticed that bits still appear in positions $S T, B, 1,2,3,4,5$, and 6. Since the above combination of bits does not appear in the Bits Appear column of Table A or B, go on to Table C. To use Table C, observations are to be made at the data output jack with no switches operated. Looking at the data output jack with no switches operated, it is found that no bits appear; therefore Table C cannot be used. Table D requires the start pulse to be normal, therefore Table D is of no help. Since the operation of switch 1 produced the trouble condition, looking down the Switch Operated column of Table E, it is noticed that switch 1 appears twice. The first row it appears in, it is noted that bits appear in positions $S T$ and 1 ; the second row where switch 1 appears, bits appear in positions 1 and 2. Therefore Table E cannot be used because it was originally determined that the operation of switch 1 produced bits in positions $1,2,5$, and 6. Table F has switches 1 and 3 operated in all rows, therefore operate switches 1 and 3 . Doing this produces bits in positions $1,2,3,4,5$, and 6 . Looking down the Bits Appear column for this combination it appears in the row where varistor CR38 is shorted; therefore the trouble has been located.

TABLE A

Switches	Bits	This
Operated	Appear	Varistor
None	Pos ST,7	Open
None	Pos ST,3	CR38
None	Pos ST,1	CR39
None	Pos ST,B	CR40
		CR4l

Note 1: Observations are to be made at the start output jack.

Note 2: If any one of the varistors CR38 to CR4I are open, any observation at the data output jack while using Table A will appear normal.

TABLE B

Switches Operated		Bits Appear	This Varistor Shorted
None	Pos	ST, 3, 7,11	CR48
None	Pos	ST, 1, 7, 9	CR49
None	Pos	ST, 1, 3, 5	CR50
None	Pos	ST, 1, 3, 5, 7, 9, 11, 13	CR51
None	Pos	ST, 1, 3, 5, 7, 9, 11, 13	CR52
None	Pos	ST, 1, 3, 5, 7, 9, 11,13	CR53
None	Pos	ST, 1, 3, 5, 7, 9, 11, 13	CR54
Note 1: Observations are to be made at			
Note opera duce	In	Table B, with no sw 51 to CR54 being sh e symptoms.	es d pro-

TABLE C

Switches Operated	Bits Appear		Remarks
None	Pos ST, B, 3, 4,7,8,11,12	$\begin{aligned} & \text { CR24 or } \\ & \text { CR25 } \end{aligned}$	To determine which varistor is shorted, observe dipulseat start output jack. If double start pulse appears, CR24 is shorted.
None	$\begin{aligned} & \text { Pos } 1,2,5, \\ & 6,9,10,13, \\ & \text { B' }^{\prime} \end{aligned}$	$\begin{aligned} & \text { CR22 or } \\ & \text { CR23 } \end{aligned}$	
None	Pos ST, 1,3, 5,7,9,11,13	$\begin{aligned} & \text { CR2O or } \\ & \text { CR21 } \end{aligned}$	To determine which varistor is shorted, observe dipulse at start output jack. If a start pulse, a blank, and another start pulse appear, CR20 is shorted.
None	$\begin{aligned} & \text { Pos B,2,4, } \\ & 6,8,10,12, \\ & B^{\prime} \end{aligned}$	$\begin{aligned} & \text { CR18 or } \\ & \text { CR19 } \end{aligned}$	

TABLE D

Switch Operated	Bits Appear	This Varist Open	This Varistor Shorted
1	Pos 1,9	CR32	CR28
2	Pos 2,10		
1	Pos 1,5	CR28	CR32
2	Pos 2,6		
3	Pos 3,11		
4	Pos 4,12	CR33	CR26
5	Pos 5,13		
6	Pos 6, ${ }^{\prime}$		
3	Pos ST, 3		
4	Pos B,4	CR26	CR33
5	Pos 1,5		
6	Pos 2,6		
7	Pos ST, 7		
8	Pos B,8	CR30	CR29
9	Pos 1,9		
10	Pos 2,10		
7	Pos 7,11		
8	Pos 8,12	CR29	CR30
9	Pos 9,13		
10	Pos 10, B^{\prime}		
11	Pos 3,11		
12	Pos 4,12	CR31	CR27
13	Pos 5,13		
11	Pos 7,11		
12	Pos 8,12	CR27	CR31
13	Pos 9,13		

Note: Start dipulse must be normal to use Table D.

TABLE E

Switch Operated	Bits Appear	This Varistor Open
1	Pos ST, 1	
5	Pos 3,5	CR22
9	Pos 7,9	
13	Pos 11,13	
1	Pos 1,2	
5	Pos 5,6	CR21
9	Pos 9,10	
13	Pos 13, ${ }^{\prime}$	
2	Pos B, 2	
6	Pos 4,6	CR23
10	Pos 8,10	
2	Pos 1,2	
6	Pos 5,6	CR19
10	Pos 9,10	
3	Pos 3,5	
7	Pos 7,9	CR24
11	Pos 11,13	
3	Pos 3,4	
7	Pos 7,8	CR20
11	Pos 11,12	
4	Pos 4,6	
8	Pos 8,10	CR25
12	Pos 12, ${ }^{\text {' }}$	
4	Pos 3,4	
8	Pos 7,8	CR18
12	Pos 11,12	

TABLE F
$\left.\begin{array}{|cccc|}\hline \text { All switches in a group must be operated. } \\ \begin{array}{c}\text { Switches } \\ \text { Operated }\end{array} & & \text { Bits Appear } & \text { This Varistor } \\ \text { Shorted }\end{array}\right]$

TABLE G

All switches in a group must be operated.		
Switches	Bits	
Operated	Appear	This Varistor Open
1,5	Pos 5	CRI
	Pos 1	CR5
9,13	Pos 13	CR9
	Pos 9	CR13
2,6,10	Pos 6,10	CR2
	Pos 2,10	CR6
	Pos 2,6	CRIO
3,7,11	Pos 3,7	CRII
	Pos 7,11	CR3
	Pos 3,11	CR7
4,8,12	Pos 4,8	CR12
	Pos 8,12	CR4
	Pos 4,12	CR8

Note: Start dipulse must be normal to use Table G.

TABLE H
All switches in a group must be operated.

| Switches
 Operated | Bits
 Appear | $\frac{\text { This Varistor Open }}{\text { None }}$ |
| :---: | :---: | :--- | | CRl6 |
| :--- |

2,6,10 None | CRI7 |
| :---: |
| |
| |
| Provided a bit ap- | pears only in position 1 when Sl is operated

$4,8,12$
None
Provided a bit appears only in position 1 when Sl is operated

CRl_{4}

Provided a bit appears only in position 1 when SI is operated

TABLE I
All switches in a group must be operated.

Switches Operated	Bits Appear	```This Varistor Shorted```
1,2,5,9,13	$\begin{aligned} & \text { Pos } 1,2,5,6,9,10, \\ & 13, B^{\prime} \end{aligned}$	CRI
1,2,6,10	Pos 1,2,5,6,9,10	CR2
3,4,7,11	Pos $3,4,7,8,11,12$	CR3
3,4,8,12	Pos 3,4,7,8,11,12	CR4
$1,4,5,9,13$	$\begin{aligned} & \text { Pos B, } 1,4,5,8,9 \text {, } \\ & 12,13 \end{aligned}$	CR5
2,5,6,10	Pos 1,2,5,6,9,10	CR6
3,7,8,11	Pos 3,4,7,8,11,12	CR7
4,7,8,12	Pos 3,4,7,8,11,12	CR8
1,5,8,9,13	$\begin{aligned} & \text { Pos } B, 1,4,5,8,9 \text {, } \\ & 12,13 \end{aligned}$	CR9
2,6,9,10	Pos 1,2,5,6,9,10	CRIO
3,7,11,12	Pos $3,4,7,8,11,12$	CRIl
4,8,11,12	Pos 3,4,7,8,11,12	CR12
1,5,9,12,13	$\begin{aligned} & \text { Pos B, } 1,4,5,8,9 \text {, } \\ & 12,13 \end{aligned}$	CR13

TABLE J

TABLE J		
Switches Operated	Bits Appear	This Shorted
1 to 13	Pos $1,5,9,13$	CR16
1 to 13	Pos $2,6,10$	CR17
1 to 13	Pos 4,8,12	CR15
1 to 13	Pos $3,7,11$	CR14

TABLE K

Switch Operated	Bits Appear	\qquad
S15	ST, and three dipulses for double start B, 1, 2	CR48
Sl5	ST, and three dipulses for double start B, 3, 4	CR49
S15	ST, and three dipulses for double start $B, 7,8$	CR50
Note 1: Observations are to be made at start output jack. Note 2: CR51 to CR54 varistor being open show no obvious symptom of trouble. The double start repetition rate changes but it cannot be noticed unless timed or measured.		

TABLE L
All switches in a group must be operated.
This

| $\begin{array}{c}\text { Switches } \\ \text { Operated }\end{array}$ | Bits Appear | |
| :---: | :---: | :---: | \(\left.\begin{array}{c}Varistor

Shorted\end{array}\right\}\)

TABLE M

Switches Operated	Bits Appear	This Shorted
None	Positive half of all bits appear. (See Fig. 3.)	CR42
	Negative half of None	CR43
	(See Fig. 4.)	

TABLE N

Switches Operated	Bits Appear	$\begin{aligned} & \text { This } \\ & \text { Varistor } \\ & \text { Shorted } \\ & \hline \end{aligned}$
None	Start dipulse and positive half of all other bits appear. (See Fig. 5.)	CR44
None	Start dipulse and negative half of all other bits appear. (See Fig. 6.)	CR46
Note: Observations are to be made at start output jack.		

TABLE 0

$\begin{gathered} \text { Switch } \\ \text { Operated } \end{gathered}$	Bits Appear	$\begin{aligned} & \text { This } \\ & \text { Varistor } \\ & \text { Open } \end{aligned}$
1	Position 1, but it appears as a positive going square wave with a dipulse superimposed onit. (See Fig. 7.)	CR42
1	Position l, but it appears as a negative going square wave with a dipulse superimposed on it. (See Fig. 8.)	CR43

Switches Operated	Bits Appear	This Varistor Open
None	Start pulse appears as a positive going square wave with a dipulse superimposed on it. (See Fig. 9.)	CR44
None	Start pulse appears as a negative going square wave with a dipulse superimposed on it. (See Fig. 10.	CR46
Note: Observations are to be made at start output jack.	Observations are to be made at output jack.	

TABLE R

Switch Operated	Bits Appear	This Varistor Shorted
1	Position 1, but positive half of dipulse is larger than negative half. (See Fig. 13.)	CR47
1	Position 1, but negative half of dipulse is larger than positive half. (See Fig. 14.)	CR45

TABLE Q

Switch Operated	Bits Appear	This Varistor Open
1	Position 1, but the dipulse ap- pears unbalanced. (See Fig. ll.)	CR45
1	Position 1, but the dipulse ap- pears unbalanced. (See Fig. l2.)	CR47

TYPICAL NORMAL OSCILLOSCOPE PATTERNS

FIG.I

FIG. 2

TYPICAL TROUBLE OSCILLOSCOPE PATTERNS

FIG. 3

FIG. 4

FIG.II

FIG. 6

FIG. 13

FIG. 7

F16.14

FIG. 9

FIG. 10

Fig. 1 through 14

