

Vol. 2, No. 2.
NEW YORK, MARCH 1, 1883.

Copyright, 18*3, by Georae Worthington.
Entered at Post Office, New York, as Mail Matter of the Second Class

LIfe's Gane.

Life's Evil Geuius wilh the sunless wing And our white Guardian Angel sit and phyy Their silent game of skill from day to day,

Where thoughts are pawns, and decels are quecens and kings.
Aud every move on that strauge chessboard brings
Some change in us-iu what we do or say ;
Till with our life the winner sweeps away
The last few pawns to which his rival elings.
We seem permitted, ever and anou,
To catch a glimpse of that great fatal game
By which our soul shall be or lost or won.
We watch one nove, then turn away in slame;
But though we lack the courage to look on,
The game gres on without us all the same.

A New Secondary Battery.

Some experiments have recently been unde with a [orm of secondary battery invented by Messrs. Liardet and Donnithorne, London, Eng., the main features of which, as stated by the inventors, are the intermixture of porous lead, deposited either by direct action by means of a galvanic current, or by the action of spelter, with oxides and salts of lead such as may be produced from galena or other lead ore, as the acting substance of the plates to accumblate the current. This mixture is placed on very thin plates of pure lead, which serve as conductors, and is kept in position by porons plates. Great stress is laid npon the purity of the lead and lead compommets, as by this means the inveutors seek to avoid local action and to increase the intensity and durability of the battery. The experimental set of cells consist of 50 elements, each of which has an aren of onc-t welfth of a stuare foot, the weight of the set being 315 lbs . The cells, having been charged with a dynamo, are reported to have given a current of 12 amperes with an electromotive force of 95 volts; or, in other words, two have given a sufficient current for one small arc lamp or 25 incandescent lamps. Upon the occasiou of our visit to the laboratory at No. 38 Holborn viaduct. this battery suppied seven Edison inc:utescent lamps with a current. The inventors elaim that they have prodnced a secombary batery or accumbiator of
power of any other. So far as the laboratory experiments have gone, their results appear to be sufficient to encourage the inventore in procecding with the work of practical development.

Electrle Lighting in Mills.

By C. J. H. Woodisury.

Althnugh the cruder forms of electric light were made carly in this century, precoding the locomotive, the telegraph and illuminating gas, yet the neehanical refinements devised within a few years have been necessary to master many of the practical and economie dilliculties, and render it fe:sible to bring electrie lighting from the laboratory to the commereial wordd, ereating an eloment in manufacturing athairs.

Although our object is to consider clectric: lighting solely in regard to its employment for induatrial purposes, a better understanding may be reneloed by examining some of the principles involved in its production.

The aceumulation of electricity by means of a dynamo machine is based upon two principles: Fitst, that when a wire is moved across a magnet through the field of force, the power exerted agrainst the attraction of the magnet is converted into electricity. Second, when an electric current is passed through insulated wites coiled around a piece of iron, the iron is magnetized.
In a dynamo machine the magnes are very feebly magnetizet; but when the armature is revolved it generates au electric curreut, which passes throngh the wires around the magnets, inereasiug their strength and enabling them to produce a stronger current in the armature, and this in turn mble to the strengtlo of the magnets, the armature and the magnets reacting on each other until the limit of the capmeity of the magnets is reached, after several humbed revolutions of the armature. When the motion of the armature is stopped the margets lose neanly all their magnet ism, as soft iron will not retain magnetism like sted.
Permaneat steel masucts were origimally used for this purpose; but clectro magnets are capable of holding twenty times as moch magnetism as permancent magnets.
'This is the rough ontline of dyamonathenes. Their construction is not so simple a matter, involving numerous problems upon matters which canot be considered heve.
Electricity for lighting might be fumished by galvanic: batteries, but the cost would amount to twentytive times as much as when gene:aled by a dynamo.

There are two mothats of contertine clectricity into light. The ate light is chictly due to dhe glowing of
produced by the current overcomiug the resistance offered ly the space bet ween the carbon poles, whereby the encergy of the electricity is converted into licat.

The cathons are slowly volatilized and partially burned. The intensely heated vapor adds to the illumination, but the combustion of the burning carbon interferes with the light, as the are light is more brilliant when enelosed in a glass receiver and removing the air. The incandescent light is protuced by the eurrent overcoming the resistance offerel by a filament of carbon and raising it to a temperature sufficient to rensler it luminous.

The immetiate destruction of the carbon is prevented by regulating the quantity of the current and enclosing the carbon in a glass liulb and exhuusting the air, so that it canmot burn.
Both the are and the incambescent light is due to the ghowing of intensely heater carbon. In the are; light the ineandescence is destructive to the carbon; and in the incandescent lamp the object is to make the catbon as enduting as possible under the conditions of brilliancy, which are essential for satisfactory results. The are lampsare placed at openings in the eonducting wires, and the carbons [orm a portion of the circuit. The electrieity passes through the lamps in order, and the tension is redueed a certain amotunt at carblanp.

In the ineandescent system the lamps are hung in wires swing down from the main conductors, so that the current is divieled, an epual portion massing through cach lamp. The comparison is sometimes made that the main conductors could be represented by the sides of a larder, while the position of incan. rlesecnt lamps would be in the middle of the rounds of the ladiler.
In the are light, where the camon is heated to destruction, the total quantity of lisht for a given expembiture of chetrieity is about nine times what it is in an incancesecont light working at a commercial rate. In an incundescent lam 1 the question of emelirance of the carbon is the seromel factor in determining the mose atrisalshe bitliancy for the lishlat.

Aceordinir to lowells experimeuts on the Edison light, if the electrieity supplied to a 16 -tawde power Enlicon lamp be increased one-fouth, the candle power is donl let, but the condurance of the lamp) wonld be reduced.

The golden mean of the true ceonemy between expeuse of renewals of lampsand that of power can be reached only by long experience.

I presmme that the present intensity of brillianey which has been adoped is at about the minimmo cost for the present eon-tuction of carhons.

The mit of memsurement of light is expresserl in candle powre, which is the light furnished by at stambard wax eathe hurnines 190 grains por home.
by an argand burner consuming five cubic feet of gas per hour.
With the incandescent lamp the light is uearly uniform in all directions.
In the arc light the terminals of the carbous are different, the lower carbon consuming to a slarp point, and the upper one is blunt and the end concave. The light emitted from these ends is not alike; the upper carbon laving the nost heated surface, about nine:tenths of the light is thrown downward below a horizontal plane. The power of arc lights, as generally stated, is that of the strongest rays which are thrown down at an angle of 45 degrees, which is about twice the brilliancy of the average light. Nearly half of the light is held loack by the white glass tubes, and the arc lights being further apart an excess of light is necessary to secure sufficient diffusion at extreme points, because the intensity of light diminishes as the square of the dis: tance.

The value of electricity for lighting mills is based upon the character of the illumiuation desirch, each mill being, to some extent, a law unto itself.

Onc of the first items of consideration is the influence of electric light upon the operative, considered as a machine to be kept in good condition, in order to obtain the best results. As the electric light does not require any air to support combustion, it does not injure the air in a mill.

On the other laand, Dr. William A. Hammond states: "A gas burner consuming four cubic feet per hour produces more carbonic acid gas in a givell time than is evolved from the respiration of cight adult human beings."

This is an important matter in night work, when the air becomes so impure that it prevents the operatives from doing the amount. of work which they do if the air was pure.

Gas lights increase the temperature excessively. In the basement story of a mill 400 by 65 feet, and 15 feet high, were 450 looms on heavy colored cotton goods. The room was lighted by $4 \overline{0} 74$-foot gus burners. When these werc used it was stated that the temperature increased 25 degrees in an hour. Now the room is lighted by 35 electric lights, and the increase in temperature, if any, is not enough to be indicated loy an ordinary thermometer. In two other mills the rise in temperature, after lighting the gas, varied from 11 to 13 degrees.
The economy of any light increases much more rapidly than the temperature. A large gas light furnishes more light for a given quantity of gas than a small one.

Nine years ago I made some experiments upon the efficiency of kerosene burners, and obtained similar results.

The temperature of the upper carbon in an clectric are light is estimated at 6,000 degrees Falurenheit, and the lower one at 4,500 degrees, but this estimate refers only to the special light experimented with which were used small carbons, and the general result to day is probably greater than the one given above.

This high temperature furnishes much more light rays from a given amount of heat than a lower temperature would give.

Dr. Chas: W. Siemeus, in an address delivered before the British Association in York, England, last August, stated that in a gas burner only one per cent. of the calorific energy of combustion produced light; while in the incandescent light it was three and seven-tenths per cent., and in the are light it amounted to thirty-threc per cent. Whether subsequent investigation may not modify these results is an open question, but the general statement that the electric light contains a much smallev proportion of the heat rays than the gas will be qucstioned.
lt is stated by Mr. W. Pickering that the injurions effects of artificial light upon the eyesight are due to heat from lights, and not to the light itself.

Anotler matter of value in electric lights is the ability to distinguish tints. The light from the tips of the earbons is white, and the light of the are between them is a bluish-purple, so that the general tint of the are is that bluish-white, which has a very white appearance.
Where the use of shades of color is involved, electricity furnishes the only artificial light which can be feasibly used; and in such cases where the operation of a certain department would otherwise be limited to the duration of sunlight, the ccouomy from the use of the electric light is, to a certain extent, proportionate to extra profits aceming from this extension of the time of labor.

In other departments of manufacturing, the aid to the production of perfect work, by this improved illumination, is a source of additional revenuc, becauso the proportion of damaged goods usually made when the mill is badly lighted, is thereloy diminished.

expenee.

The cost of mantenance of a system of lighting benrs little relation to its intrinsie worth. The item of cost of lighting is a small fraction of the whole operating expense, and what is desired is to light a mill so well that there will be no difference in the character of day and night work, either in quantity or quality. Any expenditure beyoud that is unwarrantable.

The question of the cont of lightiug by electricity is subject to nany legitimate variations, of which the question of power is most variable. In n storm mill, where the dypamo is driven by the same engine that runs the mill, it should only be eharged with its share of fuel, but not with any other expense of power, wherever it does not infroduce any new expenditures in the why of plant, repairs, or labor in the engine room.

Some mills have departments whteh ate only run by daylight, where work is thrown oft at sundown, and so eompensates for the steam requirier by the lyammo. For example, in ome mill usinur electric lights, the power used in the nepping room is slightly more than is required for the dynamo, so when the machinery in that rom is stopped, the dyuamo can be started without bringing any cxtra load on the engine. Most factorics are diven by water power, with supplementary stean power during the low water in the summer months; the electric lights would be required during the shorter clays of the year, at a time when there is usually an abundance of water, and the extra power can be used by the dy. namo by the usc of more water, withont requiring any additioual expense.

It is difficulf to make comparison betwen varions methods of illumination, because a change of light is always made an excuse for more light.

The majority of mills are lighted with gats made by the destructive distillation of petroleum, and of about 80 candle power, whieh is generally reduced to focamble power by mixing air widn it, and burned through one foot (nominal) luruers, which consume about $1 \notin$ feet per hour.
The annual cost of oil gas per burner is from seventy-five cents to one clollar. In all these estimates, interest at six per cent. forms one item in cost. One largo corporation, with exeeptional privileges, makes its coal gas at an annual cost of fis cents per burner. Another corporation, inland, makes its cona gas as $\$ 1.25$ per thousand feet, at an immual cost of $\$ 1.79$ per huruer, aels burner consuming 1,493 cubie feet unumally.

Of two large mills in the same city, mantacturing similar goods, the more modern one makes nil gas at an anumal cost of $\mathbf{7 9}$ cents per burner, white the older one burs coal gas at $\$ 2.65$ per burner.
Sometimes, when the gas-making apparatus is not manged with skill, the goots are ellmaged from soot which settles on them.
The louger time liry is required, the average cost is ance.
essened, because with the addition of operating expernses, the interest on plant, being a fixed amount, becomes a smaller proportion of the whole cost. In electric lighting, the cost of plant is so much that interest is an important item, and when the mill is rum nights, the relative cost of electric lighting is materially diminished. Λ white cotton mill, running 60 hours a weck, generally uses light 300 to 350 hours a year; where they run 66 hours a week, lights are requited 400 to $4 \div 0$ hours a year. A dark mill requires about twice the number of lights that is sufficient in a white mill, and uses light ahout 100 hours a year more than an white mill.

An are light, as generally used in mills, requires about one horse-power. Mr. James Renfrew, Jr., at Aclams, Mass., has found, by test, that the 40 light Brush dynamos in his mills each require $\mathbf{3 6 . 6}$ horse power. The lights were running in a satisfactory manner, but no photometric tests were made.

The cost of are lights in several steam mills running 400 hours per year, is $6 \frac{1}{2}$ cents per hour, of which $1 \frac{1}{2}$ cents are for carbons, and 5 cents for at tendance. coal, depreciation and inferest. When a mill runs nights, the hourly cost is diminished.

The ratio of substituting electric liglits for gas is, quite variable, being one are light to from ten to twenty gas burners. In one mill lighted by kerosene the ratio was one are lamp to eight kerosene lamps.

In a colored mill, one are light will light the looms on 700 to 1,400 square feet of floor, but in a white mill the same ligltt will be sufficient for looms on 1,000 to $2,000 \mathrm{square}$ feet of floor. The reflected light from white walls and ceilings adds very materially to the diffusion.
A card room 48 by 100 feet, containing 64 cards, was satisfactorily lighted by one are light. The end of the room was extended nbout 40 feet, and the light was not satisfactory toward that end of the room, becuuse there was no end wall to serve as a reflector.

It is convenient to compare the cost of electric: lighting with the expense of gas in the same place, although it must be remembered that gas does not furnish as much or as good light, and is therefore not so valuable where fuality of light is of importance.
In a wenve toout, on very fine work, 24 arc lights replaced 202 six foot hurners, which consume ($2 \Omega 2 \times 6$) 1752 feet per lour, so one are light represents the consumption of (1752+24) 78 feet of gus per hour. A careful estimate shows these are lights to le costing $6 \frac{1}{2}$ cents anl hour, so this are liglating system represents gas at 89 cents per thousand. A similar estimate in another mill gives the amoual cost of gas $\$ 2,188$ and electricity at $\$ 1,19 \%$, or equal to gas at 90 cents a thousand. The annual saviug to that mill in lighting expenaes by the use of electricity makes a profit of $\$ 1,603$, which represents 6 per cent. on \$17, 716 , without making mention of my im provement in work or proluction due to that light. In both of these establishments the lights were used alout 450 hours per year. Other estimates give the cost of arc lighting equal to gas at from 05 cents upwath per thousand. In the case of incandeseent lighting the cost is more difticult to estimate, because they are run at all degrees of brilliancy, affecting both the power and the life of the lamp.

Boalh the Etimon and the Maxim lampe are gharantecel to average 600 lours; yet in the Nery York Postofliee the average record of the Maxim lamps is stmed to be 1.850 hours up to September first, aud 15 lamps had already burned $3,4 \overline{5} 6$ hours.

The ferty boat Jersey City, belonging to the Dennsylvania Railroad, is lighted by the Maxime lights, and their meord has been given to me as averging 1.6 fis hours, and the lampes sill hurnines.

The data for the above was taken with lamps in use and does wos represent their ultimate endur-

Mr. Timothy Merrick, of Holyoke, authorizes me to re the fats respecting his experience with the ErliIn system in the Merrick 'Thead Company's mill, amber 3. This mill runs all night dive nights in e weck for tilly-one wecks per ycar, using light s69 hours per annum. It was lighted by 9 burners city gas, costiag 程 13 net, which amonmed to per month. 95 Edison 13 burners (8 caudle ower) were sulstitutcel for the gas. In the first ove hours five lamp cartons had broken, and Octoer 200th they had been in use 1,278 hours, and 11 hat roken.
Allowing that the lamps average six months' use, he cost of lightug is made up as follow:

190 lumps,	1900
Interest and depreciatiou.	15330
6 II. P., at \$10	6000
Ammal cost Edison light	403: 60
Mouthly	
Monthly cost g	

The results from these lumpsare very satisfactory, and certainly in excess of what would lave been obtained if the lamps had been foreed beyond their normal capacity.

The Holyoke Water Power Company furnish water power very cheaply; and the result may be lateresting if we hold the Edison Company to their minimum guarantee ; and also charge the dyuano with four pounds of coal per hourly horse power.

4.78-100 renewals of 95 lumps equals 454 	
Interest und depreciation.	531
30.74 tons coal at ${ }^{\text {5 }} 5.75$.	17681
Aunual cost Edisou light	\$784 31
Montlily	

ich is equal to gas at 65 cents per thonsand. he mill is situated at the lase of a high bank, and is only eleven fect six inches between floors, so it is very hot in summer, amb Mr. Merrick informed me that it would have been inpossible to run the mill nights during the extremely hot season last summer, if the help had been suljected to the heat and vitiated air from the burning gas.

It must le kept in mind that an instance of a mill runuing day and night is au extreus one in favor of the eleetric lights; but the data are givea and the matter cim be estimated to suit other times of operation.

The Electrical Exhibition, Royal Aquarium.

This exlitition, which is rapidy aproaching completion, eeems likely to surpats, in eleetric light appliances at all events, anything which hats gone beforc. The chief novelty in machines will prohably be the exhibit of Messrs. Ferranti, Thompson and Ince. We luve on more thatu one occasion spoken of the Royal Aquarium as being, perlips, the most accessible place, from all parts of London, for the purpose it is now being devoted to. As far as we are able to judge, success must be assurel.-Landon Eltectrical Reviern.

The Pall Mall Guzette says that the making of the eleetrical railway bet ween Portrush and the Giaut's Causeway marks an era in the listory of locomoIf the sanguine hopes of its projectors are zed, it will be not less remarkable in the hisof Iretand. Nature luas left her destitute of those stores of force in the shape of coal mines, with which Engliand and Sicothand have been so plentifully favored, but she has dowered her with an ineshaustible supply of force in the shape of waterfalls, which have run to waste from before he days of Finn D:C , it until now. "The costless
draimge of a wilderness." which, on Chandiau rivers, Mr. Hussey Vivian found hasy converting, almost withou hie interventoon of a human hand, thems of rough hewn timber iuto tivished doors and windows and all manner of woodwork, has never leen harnessed to the service of mau in Ireland. The whent of an electrical age promises to change all thith, and the lortrash lailway may be the forermmer of the great things which are yet to come, when the lrisin have learned to employ the dramage of their litls io driving the machinery of their mills. Turbines phanted on the River Bush are $t 0$ generate the electricity which is to drive the Hamerars from Portrush to the Giants Chuseway.

At the last meeting of the Royal Socicty a commuuicaliou was made ly Professor 1). E. Hughes.F.R S., on the nature of magnctism. The anthor propounded a theory of magnetic action whiel he has been led to by umerons experiments, some of which he showed to the Socicty. The conclusions of Professor Inughes are in his own words: " 1 . Trat each molecule of a piece of iron, steel, or other magnetic metal, is a separate and indepeodent magnet, having its two poles and distribution of maguetic polarity, exactly the same as its total evident maguetism when noticed upon a steel bar-magnet. 2. That each molecule or its polarity can le rotated in either direction upon its axis by torsonal stress, or by physical forces such as maguetism and electricity. 3. That the inherent polarity or magnetism of each molecule is a constant quantity like gravity; that it can neither be augmented nor destroyed. t. That when we have external neutrality, or no apparent magnetism, the melecules, or their polarilies, arrauge themselves so as to satisfy their nutual attraction ly the shortest path, and thus Form a completectosed sircuit of attruction. © That when maguetism leceomes evident, the molecules or their polarities have all rotated symmetrically in a given direction, producing a north pole if rotated in this direction as regarls the piece of stect, or a south pole if rotated in the opposite direction. Also, that in evident magnetism, we lave still a symmetrical arrangement, but one whose circles of attraction are not completed except through an external armature joining both poles."

Electric Lights for the Bridge.

The contract for lighting the Brooklyn bridge has been awarded to the United States Illuninating Company, which is the local organization of the United States Elcetric Lighting Company. Seventy powerful arc lights will be distributed on both sides of the bridge, and these will all be run from machines situated on the Brooklyn side and driven loy special engines. The contract includes not only the dynamo maclines and lamps, wires, aud lamposts, but also the engines used for driving the machines Two separate circuits ure to be used which will feed alternate lamps ou both sides of the bridge, so that if any accident sloond befall one of the engines only the alternate lamps will be extinguished. The contract calls for the completion of the work within sixty days.

A New Electric Light Company,

An application las been filed at Harrisburg, Pa., for a charter for a new electric light company, to be located at Pittshurgh. The incorporators are promineat busiuess men of Pittslourgh, and the company is (0) develop the patents of the Rev. J. J. and Thomas J. Me'Tighe, the well-known inventors, whose new form of lynamo machines are said to possess cousiderable merit, a description of which we shall give in acst edition.

New Model of Callaud's Sulphate of Copper Battery.

Callaud's Sulphate of Copper Battery (Dumoulin. Froment Model). -In this battery, made by Messis. Dumoulin and Froment, the sulphate of copper is placed in a glass jar, in the bottom of which there are two holes. By this arrangement the sulphate of copper can easily be removed, and the liquid be more or less stirred up, without bringing the solution in iomediate contact with the zinc. The piercing of the two holes can be easily done, and at very little cost.
The positive pole is formed by a copper wire, rolled in the shape of a spiral at its lower end, and consequently is without weld, solder, or any possible break in its coutinuity. A protection of rubber, sufficiently thick, formed by a simple tube slipped over the end of the copper wire, covers it from the boitom to outside the outer jar. The zinc is suspended by two hooks, which are simply passed through two holes made in the top of the jar, and which rest on the edge of the outer jar.
This battery has one peculiarity which can be of a certain use as regards attending to it-namely, the difference generally noticed between the level of the liquid inside and outside of the glass jar. If the battery is in good condition, the liquid in the jar is lower than that with the zinc, thus showing that the solution of sulphate of copper is concentrated, or nearly so, and that of zinc sulphate is not so; this case proves the battery to be in good working condition. If, on the contrary, the heights of the liquids are equal, or cven if the sulphate of copper should be higher thau the other, it is because the copper solution is not concentrated enough, or that the sulphate of zinc solution is overcharged with salt.
The constunts of the battery thens made do not dif. fer at all from those of the ordinary callaud ($\mathrm{E}=$ about 1 volt, $R-6$ to 8 ohms), because the positive pole is always kept in the volution of sulphate of copper, whle escapes from the jar through the two holes.

Atlantic Cables.

For some time past there has been a new Atlantic Cable Company rumored, but no definite steps have apparently been taken to proceed with the manufucture and laying of more cables. This threatened opposition was based on the supposed control by one company in America (the Western Union Company) of the existing cables. In order to do away as far as possible with this notion, an independent mariue telegraph office is about to be opened in New York. The Direct United States and the French Atlantic cables will be worked from this office, quite independently of the existing land lines in Amcrica, and at the sanne time will be open to receive messages from any of the land telegraph companies of the United States. As the existing cables, thanks to the duplex system of working, are sufficient for a much larger traffic than there is at present, it is probable that the new office will obviate the necessity of laying more Atlantic cables for a considerable time to come. While upon this subject, we may mention that Dr. Muirhead has just successfully "duplexed" the Jay Gould Cable across the Atlantic.

A Throat Electric Lamp.

At the last meeting of the Leeds and West Riding Medico-Chirurgical Society, Mr. Margetson, of Dewsbury, England, exhibited an incandescent lamp, designed by himself, and used by him since October last in examining the mouth and thront. The globe was about half the size of a walnut. It can be held in the mouth for two minutes without discomfort from the heat.

REVIEW

OF THE

elegraply and $\mathfrak{T e l f}$ plowe，
（AN ELECTRICAL JOURNAL） PUBLISHED SEMI－MONTHLY AT 23 PARK ROW

P．O．玉о天，sese．
＇O．WORTHINGTON，
Editor and Proprietor．

SUBSCIIIPTION．

United States and Canada，$\$ 200$ per annum，in vance．
Great Britain and otlrer foreign countries，$\$ 2.50=$ s．$=13$ francs，in advance．Postage free．

ADVEIRTISING．

Transient rate，35c．per line each insertion． ＂Business specials，＂50c．a line．

EDI＇TORIAL ANNOUNCEMENT．

We invite correspondence from Electricians，Inventors nd the Telegraph and Telephone fraternity on matters crtaining to electrical and screntific subjects，and all fucts f special interest in connection therewith．
Those desining to recommend their goords can do so to ny extent in our alvertising columns，but vee will not ublish for pay anything of that nature in our reading olumns．
Subscrbbers can at any tine have the maiting culdress f their paper changed by sending both old and new W．m．Davoson $\boldsymbol{\&}$ Sous， 121 Cnumon Street， Tondon，England，are our acmedited representativex or Great Brilain．
e Widitor does not hold himself responsible for opin－ expressed by his correspondents．
No notice is taken of anonymous communications．
dealers supplied with this paper bx
The American News Company，New York．
The American News Company，Denver，Col．
The American News Company，Kansas City，Mo． The American News Company，St．Paul，Minn． The New York News Company，New York． The New England News Company，Boston，Mass， The Central News Company，Philadelphia，Pa． The Western News Company，Chitcago， 111. The St．Louis News Co．，St．Louls，Mo．
The Cincinnati News Company，Cincinnati，Olifo． The Pittsburgh News Co．，Pittsburgh，Pa． The Baltimore News Company，Baltimore，Md． The San Francisco News Co．，San Francisco，Cal． The Montreal News Company，Montreal，Canada－ The Toronto News Company，Toronto，Ontario，Canada． Wim．Dawson \＆Sons，London，England．
J．N．Duquet，Quebec，Canada．
H．A．Kramers \＆Son，Rotterdam，Holland．
Berthold Mendel，Berlin，Germany．
F．D．Osborne，Calcutta，East India．
F．Knauff，Mosoow，Russia．

NEW YORK，MARCH 1， 1883.

CONTENTS．

New Secondary Battery
Page
Electric Lighting in Mills．
$.17-18-19$
Electrical Items
New Electric Light Co
Patents of Hahl and Gray upon Elevator An neiators．
trical Energy（continued）．
Electric Iight．By F．H．N．
Telegraphic Items
＇「elephonic Items：
Thompson－Houston System，
Electrical Patents．
Miscellaneous Items

19

20
21

22

The Patents of Augustus Hahl and Elisha Gray Upon Elevater Anmunchators．

The llaht patent was issued Marelı 10，1804，while Gray＇s application was pending in the Patent（）ffice． Interference was afterwards instituted between IIalil＇s patent and Gray＇s application，which resulted in favor of Gray as to the broad principle of an electric an－ nunciator traveling upon au elevator car，and means for signalling from the differeut floors while the car is in motion．
Gray，however，conceded priority of invention to Hahl upon the specitic device of a flexible or folding cable，which has bceu adopted generally．
These patents are both owned by the Western Elec－ tric Company，and several suits itave beco brought upon them in St．Louis，Chicago，mud Now York． In these suits the defendants have settled or ceased to contest the matter before the final hearing．

In May，1881，the Western Electric Company bronght suit against the Chicago Electrie Manufac－ turing Company．This suit was contestel vigorous－ ly to the end in the Circuit Court for the Northern district of Illinois，and was clecided in favor of the validity of both parties by Judge Blodgett．

The opinion rendered December 20，1882，is pub－ lished in full in the Federal Reporter of Felbruary 6，
1883．The Court，after defining the inventions and reviewing the interference proceeding which were had in the Patent Office，continues as follows：
＂These concessions and diselaimer left the Gray patent covering only the general principle of con－ necting the annumeiator in the moving ear of an ele－ vator with sigunl keys on the respective floors of the building and the battery by the meatis shown，but conceded prority of the flexible cable method to Habl．
＂The defense of want of novelty rests mainly on the patents of IIolmes aud Corey for similar devices， and the analogous devices of Foster and the gas tulse， by which gas is cartied by menus of a flexible tube to burners in an elevator car．
＂As to the Holmes and Corey patents，it is suffi－ cient to say that they were put in interference with the Hahl patent before the I＇atent Oftice，and the commissioner on proof decided that the invention of Hahl was prior to that of cither Holmes or Corcy． This decision of the commissioner may not be so wholly conclusive upon all the world as to prevent the citation of the deviecs of IIolmes and Corcy as anticipaling the Hahl patent，but no proof is intro－ duced on this trial which was not before the com－ missioner，on this interference，and it scems to me there can be no doubt that the decision of the com－ missiouer was correct upon the testimony in the matter then before liin，and that his award of priority to IIahl sufficiently disposes of the IJolmes and Corey devices for the purposes of this casc．
＂The Foster patents are for deviees for trans－ mitting signals by means of puelmatic tuhes．
＂Neither of them show the application of the de－ vice to au anuunciator in the car of an elevator while in motion，and even if they lath shown such application to the Foster device I do not think a person could，without invention，from any hint or suggestion in the Foster device，by mere merhanical skill，adapt the system of elcetric calls used in lanals device to an elevated car．The same may be said of the flexible gas pipe．
＂Neither air，working through at thexible pumatie tube，nor gas，passing through it for the purpose of illumination，is the electric fluid，and it reguired something more than was done．either by Foster with his pnemmatic tube，or whoever applied the gas tube， to apply electrieity to the operation of an annuncia－ tor in a car in motion．
＂The proof slows dhat siner the Milal and Gray patents，this device has been gederally adopted for
that almost simultaneously quite a number of in－ ventors，two of them at least，Gray and Holmes，well known to the public for valunble inventions in the field of electric science，had given their attention to the subject matter，covered by the devices now be－ fore us，is evideuce that it required something more than mere mechanical skill to accomplish the result attained by this patent．
＇As to the second point，that this device slows only a mere aggregation of parts and produces no new result，it is sufficient to say the result produced is the transmission of signal．s to a car，inhem in motion， which wat new and had never been produced until this combination，and that some of the parts in this combination perform a new function，and the whole combination produces a new result．
＂As to the objection that the Gray patent was ir－ regularly issued，it is，perhaps，not material to the purposes of this case to consider that point seriously， because the defendant in this case is shown by the proof to only use the flexible cable method，covered by the Hahl patent；but I have no doubt that under Section 4,904 of the Revised Statutes the Commis－ sioner of Patents had the right to declare an inter－ ference between Gray＇s application and the Habl patent，as the statute expressly gives him the power to declare an interference between＇any pending ap． plication and any unexpired patent．＇
＂So，too，it seems to me that both patents are suf－ ficiently definite in their statements to describe and cover the inventions elaimed．
＂There is no controversy in this case on the ques－ tion of infringements．
＂The proof shows that the defendants have used， and are using，the flexible cable method shown and deseribed in the lathlputent．
＂I ean，therefore，see no reason why the com－ platimat is not entitled to a decree and to an account－ ing．＂

Electrical Energy．

［Continued from page 4．］

Numcrous attempts were made，after the an－ nouncement of Volt a＇s invention，to improve the form and action of the apparatus．These endeavors have continued，with more or less success，to the present day，of which the storage of electical energy is an instance．

Two months after the aunouncement by Volta of his invention，Messrs．Nicholson aud Carlisle de－ composed water its constituent gases by means of Volta＇s pile．
In 1801，Dr．Wollaston pronounced that the oxida－ tion of the metals in a voltaic pile is the cause of its electrical cffects；later in the fance ycar，he turnell the power of an electrical machine into a continuous current while decomposing water by frictional electricity．

In 1801，Gantherot observed the action due to polarization on which clectrical storage is supposed to depend．

In 1802，in the very infaney of voltaic electricity， an artificial mugmt was employed to decoupose water in place of the direct galvanic or voltaic current． ＇Jhis is of interest in connection with the employ－ ment of magneto－electricity in eharging accumula－ tors．

In 1808, lkiller，of dena，devised a secomlary battery making use of the curvents due to polarization． Whem an eloctric curront is sent through acidulated water，with platimum plates as electrodes，a tim of oxygen covers the positive clectrode，and a film of hydrogen eovers the negative electrode．One of these two substateres being clecho positive and the other electro－negative，they act in the liquid like two different metals ；the ligdrogen plays the part of zine，

Withdrawing the charging lattery and comecting : two plates thus covered with tims of gas, by a aducing wire, an electric current is oltained. e direction of this current is from the liydrogen n to the oxyren film through the conducting
electrodes thus covered with condensed gaslms are said to be polarized.
When a cell will platinum plates is infroduced o a voltaic circuit it is found that the batlery-tur1t, though strong at first, gradually weakens. is is due to the opposed current of polatization. The electro-motive force of the film-covered plates in the opposite direction from the current charging am, and may be far greater than that of the battery arging them. It may give a more brilliant spark d overcome resistances insuperahle to the charging ttery.
This form of battery was discovered by litter. me writers aceredit the invention to Gautherot in 01, as consisting of a phial coutainiug salt and ater, with a stopper through which passed two ver wires. Gautherot was followed by Erman, a erman, who was in turn followed by Jitter of na.
In 1805, Brugnatelli deposited gold on silver edals by voltaic action by immersing them in amonirrate of gold.
In 1812, Zambioni constructed a pile of altervate yers of tin foil, paper and peroxide of mangase. In 1826, Nobili, by the electrolysis of a solution of e acetute of lead, deposited peroxide of lead on ates of metal.
In 1833, Faraday set the whole theory of storage electrical energy on a firm basis in a series of pers communicated to the Royal Society. He said at "the decomposing action of a current is conor a constant quatitity of electricity, notwithg great variations in its sources, in its intensiin other circumstinces." He showed by merous experiments that elcetricity und chemical linity are the same force differently modified; by owing that the amount of decomposing effects in I substances agrees with their chemical equivalcuts. o those not acquainted with the nature of chemical mbinations it may be desirable to state that the ements of bodies always unite in definite proporons. For instance, eight atoms of oxygen unite with le of hydrogen to form water, and one atom of ygen unites with tive of potassium to form potass. The eight parts of oxygen which combine with one hydrogen to form water combine in the proportions 83 with copper, 58 with tin and 103 with lead ; ad the same amount of electric force that is renired to separate 8 parts of oxygen from water will, y secondary action, separate copper, tin aud lead on their combinations with oxygen in the proporon of 32 with copper, 58 with tin and 103 with ad.
Furaday carefully eollected the results of the tion of a yinc plate and a plate of phatinum in lute acid.
The quantity of oxygen and hydrogen evolved lowed the amount of water decomposed. The eight of the zine plate was diminislacd, und the eight of water decomposed, as 9 is to 32.31 ; these umbers correspond with the equivalents of water ad zinc.
In 1837, Schonbien, of Basle, announced the fact rat plutes coated with peroxide of lead posscssed motive qualities.
840, Murray deposited various metals on arbon surfaces by galvanic action.
In 1841 , Alfred Smee enunciat ed the laws regulatag the character of metallic deposits by galvanic ction.
In 1842, Grove invented his gas battery. This rrangement consisted of platinized plates enclosed
in tubes, and arranged in pairs. One plate of each pair being surmomed with oaygen gas and the other with hydrogen gats, the lower extremities of the plates heing in acidulated water.
[To be Curtinmed.]

It is stated that the Swan United Electric Light Company, of Loudon, have sold to the Russian Government, for $£ 100,000$ in casli, the exclusive right to use their invention thronghout the Empire, and to sell their lamps. There can be but little doubt that the employment of the clectric light in the larger cities and towns of Thussia could be made a most lucrative State monopoly. The company's paid-np capital is $\pm 160,000$ in 80,000 shares.

The Bell telephone appears to be rapidly triumphing over its competitors. A suit which has attracted much attention has just been deeided in its favor in Eugland in the Court of Appeals after Ω hard fought legal battle. The trial in the lower cout before Mr. Justice Fry oceupied sixteen days, and in the Court of Appeals before the master of the rolls, Lord Justice Lindley and Jord Justice Bowen, it occupied wine days.

The United Telephoic Company, owning the Bell and Edison patents sued to restrain an infringement of their patems. The defendants maintained that Bell was not the iuventor of the telephone; that a German, llerr Reis, in 1862 published iu a German scientific jourmal an illustrated description of an insirument invented ly him for the reproduction of musical sounds by electro-magnetism, a copy of which journal found its way to the library of the Iustitute of Civil Engineers in Eugland. Second, that the invention of Mr. Bell had been exhibited, and so published, in England, by Sir William Thomson, of Gilasgow, shortly before the date of the patent ; und, third, that the specifications of Mr. Edison's patent for a transmitter, involving the principal of the microphone, were improperly drafted, claiming the phonograph also, which was not comprised in the provisional specitications, $-a$ fatal fault under English law. The decision in the inferior court was for the plaintiffs on all points except that regarding the Edisoa patent, and both parties appealed. There is, however, a provision of English law enabling an inventor to enter a disclamer of a part of the tinle or specification so as to save a patent. This was done in the present case, and the sole question lefore the Court of Appeals was the validity of the Bell patent.
The result of the trial was, as stated above, a trimmph for the Bell telcphone and its owners. It was held that the invention of the Reis instrument, or toy, had been published in England, hut that it was so different from the Bell instrmment that such publication could not be considered an anticipation of the latter. The instrument exhibited at Glasgow was made by Mr. Bell. In 1876, when Sir William Thomson was iu attendance at the Centenuial Exhibition in this conntry, Mr. Bell exhibited his tele phone to him, and gave him an instrument to take home. At the next meeting of the British Association, Sir William Thomson spoke cuthusiastically of the invention, and exbibited the instrument given him by l'rofessor Bell, although he could not make it work, nor could anybody else. This was before the English patent was secured. The court held that this was nevertheless a publication, and the decision would have gone against the owners of the Bell patent but for the fact that the instrument actually patented contained improvements upou the instrument then exhibited of such importance as justified holding the patent good.
Thus the Bell telephone holds its own in England as in this country. There have been some big fights over it in both countries, and there will be more, for it is well worth fighting for.

We extract from the Brooklyn Fagle some exceediugly interesting remarks upon electric light matters by the able contributor who signs himself "F.H. N. :"
Dr. Siemens, speaking of the cost of electric light, (incandescent principle), says: "From the experience of large installations, I consider that electricity can, roughly speaking, be produced in London at a cost of about one sliiling per 10,000 Ampere volts or Watts (746 Watts being equal to one horse power) for an hour. Hence, assuming that each set of four incandescent lamps in series required 200 volts electromotive force and 60 Watts for their efficient working, the total current required for 64,000 such lights is 19,200 amperes, und the cost of the electric energy lost by this current in passing through $1-100$ th of an olim resistance is $£ 16(\$ 80)$ per hour."
"At Brunn, in Lower Austria, a theater has been lighted with fifteen lundred lamps, each having an intensity of sixteen candles. At Holborn threemachines, each capable of furnishing one thousand incandescent lamps, have been placed in position, and unusual success is being had. The lamps in use, however, which, it is claimed, have a minimum life of one thousand hours, are said to cost three shill. ings. From this a high authority calculates that the cost of lamps alone will amount to one-half that of gas, which, it is said, will give a like intensity of light at three shillings the thousand cubic feet. There is a very important point, however, in this incandescent system of electric lighting es developed by Edison that many are apt to overlook. That is the transmission of power over the same wire or through the same electric main whence comes the current for lighting purposes. In the district whose boundaries have already been given, innumerible small steam engines are used for running elevators and working slafts. Now, it has been demonstrated that an electrical force equal to, say, ten horsepower, may be economically transmitted a short dis-tance-say a mile's length, perbaps more. Each of these small engines, beside its first cost and interest on the money expended, etc., requires the employment of an engineer. For a tithe of this expenditure, if Mr. Edison's expectations are not too sanguine, the required power may be transmitted through an electric main. To be sure, this power nust first be generated by means of the combustion of coal at the central station, but there it is generated in inmense boilers and through engines of large diinensions. But these engives are required to work the dyaamo-electric machines that supply the light at night, and would lie unemployed through the daytime if power was not also needed. Now, even admitting that electric lights are more expensive than gas jets of the same intensity -and that this is true when electricity is generated on a grand scale has not yet been proved beyond peradventure even admitting this, the amount received for the auxiliary supply of power over the same wires during the day-time that supplied the light by night would go far, if it did not entirely eliminate this extra cost, and enable the light company to reduce the clarge for light below actual cost.
The continuous and often unnecessary use of technical terms by those who essay to describe electrical diseoveries and improvements, even in popular publications, prevents many who would otherwise be interested in the suljject, but have not the time at their disposal to master the technicalitics, from keeping themselves abreast of the times.
In an article recently published in a popular periodical, which had substantially for its theme the question as to whether or not carburetted hydrogen gas, such us is generally used, was to be preferred to the electric light, the author-no doubt an able man in his specialty-produced a perfect labyrinth of inextricable mazes of technical explanations. Such expressions as molecular tensions, molecular disturbances, photo inetrio tests, and so fortli, seemed to
p out from every line; but when he said "You "1 readily perceive that the Nth power of" so d so is equal to so and so, no doubt most readers laid the publication in despair, and, as the autbor, as they could see, came to no conclusion as to , gas or the electric light, was to be preferred, ew no more of the subject in question than they before.
Such an explanation reminds one of a case said to ve been tried recently in a Georgia court. A negro, ving discovered a lost coon in the possession of other negro, had him arrested for petit larceny. ter heariug the evidence on both sides, the learned dge rose majestically, and thus decided the point law: "At common law this yer animile wos per hal property; but, inasmuch as the law conceives at everything attaches to the land, it would not be ceny, independently of the statutes, to sever and rry away, with felonious intent, a animile from a e or from a barn. But, if this yer animile were vered at one time and carried away at another, er an interval of time, a larceny would be comtted; for the property would become by the severce the personal property of the owner of the realty, d rest as such in his possession before the asportaon."
" Dat's all wery well," said the plaintiff, after ho d patiently listened to the learned disscrtation, but what we wants to fin' out is, who gets de coon!" There are, however, some terms whose significance is absolutely necessary to understand in order to lly comprehend descriptions of mechanical applices of the electric current. The most important of ese are the terms work, energy and potential. ork, in its physical sense, might not inappro fately, perhaps, be described as that capacity for something that can be measured. We will e that a laboring man has been employed to it a trench through a field. In a certain time, and der certain conditions, he will have performed a rtain amount of labor that' can be measured, and will exhibit a certain amount of exhanstion. Or t us suppose a stout-bodied lad to set himself to the sk of throwing a given number of cricket balls just far as lie can. The first he throws, we will say xty yards, the second less, and so on, until lie aches the last, and is so fatigued with his previous forts as to be unable to throw it but a short distance. The great tidal streams throughout the country, or lat generated at the coal mines, where fuel is chcap, uld be transmitted hundreds of miles and sold for mere song. In an address delivered in Glasgow me years since, Professor Siemens, the eminent ectrician, said that in England a menns of transitting power by electricity must soon be the allaportant question of the day. "What are the Engsh to do," he inquired, "when their coal is exausted 9 " Of Ningara Falls, he said, "the anount water falling over Niagara is equal to $100,000,000$ ns an hour, falling 150 feet. The amount of coal quired to raise such a weight up to the point from hich it fell, which is a measure of the amount of ower yielded by that water in falling, would reuire the consumption of $260,000,000$ tons of coal, hich is the amount of coal now consumed by the atire world. Now, if fifty per cent. of the power sed to drive the first dynamo machine could be re overed from the second, and hence if the whole Niagara could be utilized, it might be dis. over the United States so as to give from terfall alone a power equal to the present enre mechanical force of the world, estimating that ne-half the coal used is solely for mechanical puroses. The means by which Professor Siemens could draw the power from the falls would consist f a series of flumes from the edge of the descent of ie American Falls to the level of the water below

At the present state of efficiency of the transmitting machines, such an enterprise would, of course, be out of the question; but such a consummation would not be more extraordinary in the fulure than the transmitting of a mechanical movement by electricity, as is accomplished in the telegraph, was in the past.

But the dynamo electric machine, in its present state of efticiency, is capable, as has already been sait, of utilizing the power of a runuing stream toward lighting with electricity the towns that lie adjacent. to it. Alreacly the town of Gorlalming, on the liver Wey, in Great Britain, is thus being lighted. Coal is here very expensive, siuce it must be brought from a great distance. Mr. Alexander Siemens, referring to this scheme in a letter, says that they hat some diffieulty with the stream driving their water wheel at first, owing to floods, but that with the assistance of a small steam engine, working as an auxiliary, they lave succeeded in working the light very satisfactorily, having seven large voltaic are lights and 300 small incantescent lights in use, the water power doing the major portion of the work. The only difficulty experienced in this instance was irregularity in the light, owing to irregularities in speed. Doubtless, when they get their turbine whecls in position, with adjustable sluices for regulating the quantity of water flowing in, all this will be rectified, and they will be enalled to dispense with the services of the auxiliary engine altogether. In a country like Ireland, for instance, where coal for the most part must be imported, the power transmitting machine must in the future prove of inestimable value. Iter water power, which, as estimated by Sir lobert Kaue, amounts to one million and a gutarter borse power, may, through the agency of this machine, be distributed through the country in the shape of clectricity, and supply her mills with power and her eitics and villages with light and even heat, instead of being as now permitted to rum uselessly to waste.

Take, for iustance, the case of Dublin, which has cauals on both the north aud south sides. Low pressure turbines could, and no doubt will, in the near future, be established so that they will drive dynamo electric machines, through the instrmentality of which the whole city will be lighted. In the mage neto electric machine the field is produced by the presence of a powerful permanent magnet consisting of several pieces of stecl that have been magnetized. In the dynamo machine the nagnetic field is produced by an electro magnet which itself is excited by the currents it generates. I'hese are produced by what might be ealled an necumulative action. One current sustains and increases another, and when all act simmtancously on the electro magnet they serve to increase the total effects until the iron is salurated with magnetism. These gencrators as las already been said, may be worked by a stem engine, in which the energy of the coal, or at least a small part of it, is turned into steam and the steam is turned into electricity, or the gencrator may be worked by water power. At Craigside, near Neweastle-on-Tyne, where Sir William Armstrong lives, the power of a stream near by is turned into electricity by the interposition of an electric generator and the louse is lighted, as its owner says, "by the river running through the grounds."

The storage batterices of Plate, brush ant Fante, though their present etliciency has, perhaps, been greatly exnggerated, will cloubtless in the future play a very important part as adjunct to the clectric generators, if not as an independent electric distributors.
The iden, lowever. that the storage and secombary batteries or electric accumulators hold the currents with which they are charged until such time as they are needed, is a mistaken one. Electricity, as cvery
lion results until the fincoming current ceases, at which time a reverse chemical action takes place which produces electricity.

The future possibilities of these secondary latteries secm to be almost unlimiterl. Practically speaking, it might be described as the missing link that was needed to insure the dynamo ngainst accident, even if it served no other purposc. For wherever machincry is used, and it is necessary both where the dynamo is worked by steam and water power, there are likely to be occasional breaks, and the secondary battery is kept charged and in juxtaposition to the dynamo may, for a time, at least, take its place in distributing the electrie current, thus giving time for necessary repairs. The value of such service, especially where light is being supplied, may readily be seen. In the City of New York, for instance, we have seen the are lamps which supply certain strects with light, suddenly grow dim and the section they essayed to light, remain in darkness for a portion of the night. Such accidents rarely happen in the use of earburetted hydrogen gas, and the arlvantages of the latter as a constant illuminant, would be greatly iucreased in comparison, were it not for the fact that the scondary battery is expected in the future to make the utter extinguishment of these lighte a rare occurrence.

Western Unlon Plans for the Transmission of Messages 0ver the City.

The lense recently made by the Western Union Telegraph ('ompany of the large building on the southwest corner of Fifth avenue and Twenty-third strect is the lirst slep in the material improvement of the company's service in this city. The large building at Broadway and bey street, which contains the head offices of the company, is the great center of telegraphic communicalion. Hambreals of wires streteh out from it to all parts of the comitry and to the thirty branch offices in this city. The operating room, which cxtends over the enture seventh story of the buikling, is a great receiving and clistributing rescrvoir of messages. Despatches from out of town are received there and telegraphed again to the branch offices nearest to the street numbers to which they are acldressed. The branch offices in turn pour all their contributions into this room for transmission. The city system includes hundreds of miles of wire, the use of which is at times interrupted by storms and by contact with other wires, and by fires. Frequently the local business is too great for the wires. The expense of operating also, is a considerable item.

A few years ago Gen. T. T. Eckert, the Vice-Pres. ident and Geveral Manager of the company, made a study of the pneumatic tube system of London, and became convincel that it was practicable in this city. The first experiment was made by conneeting the Stock and Cotton Exchanges with the main offices by puemmatic tubes. The result was exceedingly satisfactory to both the company and its patrons. The service was perfomed more quickly, greater aceuracy was sceured by avoiding retransmissions, and expenses were diminished. The next step was to connect the uain oflice of the company with the offices of the newspapers belonging to the A asociated Press. The company now proposes to increase its pneumatie tuhe service, and partly to that end has leased the building mentioned.

To be Consolidated.

The Mutual District Telegraph Company and the Distriet lelegraph (ompany, of Boston, are to be consolidated at an carly ilay. Mr. D. J. Hearn, of the former company, has heen offered the position of

Electric Ecceutricities.

iommetimes a vague conviction of uncertainty, fed chictly in the unsatisfactory outcome of ated theories, will steal over the wisest minds I set them a wool gathering, amb so it cammot be rtling that colts in the wirle pasture of matters ctric should occasionally lose their bearings and pe around for a little light.
Possibly the feature of intensest interest surround5 the seience is the delightful "go-as- you-pleate" tuncer in which many of its teachers treat the same bject; and, whilst scores of instances conld be ed to prove this position, it will probably suffice to ention the failure of a recent electric congress to termine the value of an ohm, a value that seems ed and immotable in the primer of electric engiering.
IIowever, this is not intended as a philosophical isertation, and the sooner we come to the core the ppier for all coucerued.
It is generally supposed that trees, branches and eu leaves, when they come in coutact with a clatrged re, will inveigle and convey away a certain porin of the current, and so far as heavily saturated egraph wires are concerned, a very small limb has eu known to denoralize a very long circuit.
A sanc electrician would hardly be so cancless as to low many limbs to touch his wire and expect it to tork, certainly not unless they were exceedingly inceessible, and in that case he would not by any eaus effect ignorance of the cause when lie found necessary to double his battery, at least not to him. lf.
But when we come to a telephone wire the condiem to be clanged, or at least not thoroughly tood.
Thas been suspected that the use of induced or agneto currents might linve something to do with ese peculiar conditious, and doubtless, as evidence scomes more available, some of the preconceived otions upon the subject will have to le materially odified.
The disuse of iusulators upon many telephone lines as already become a phenomena of progression in ie art, and there may be much to be learned upon te same subject in the near future.
These items may lielp a little.
A line six miles long was receatly constructed in suth-west Texas connecting the two ranches of a rge cattle farm.
A route lind been surveyed through the dense live ak, mesquite and hackberry (all are bad for telcraph lines), which it is intended to cut out in the oursc of time frecing the line, lut at present the enire line lies and cuts into the tops of these trees in housands of places, and they were all green when he wire was placed.
Now these bells ring out at either end chear aud oud, and us for talking, if the subscriber who " never ;ets no connections no liow," could stand and listen, lis ears would tingle with unsuppressed delight. Another case.
A line runs from the central office in Sun Autonio o the Government depot, two and one-half miles disaut, and is grounded to the commou supply watersipe of that suburb with a number eight copper wire ;oldered securely of course.
wire is of number 14 steel. About one hunurds from the depol the wire forks and runs, :iy, one hundred and fifty yards further to the quarers and is grounded to the same water pipe by a somewhat smaller copper wire.
We will call the exchange A, the depot B, and the quaters C.
Now arcording to the theories upon this subject,

When of rings he will get B of course, and it should seem that A would not gret enotigh current to simnlate a taste, but the fact exists that he rings up A at the same time, that no switch is necessally and the talking facilities between all thre ate in mo wise reducet.

That the theory is correct in the main, can hardly be doubted, else the exchange wonld ring up many subscribers when only one is wanted.
careful investigation in this case furnishes no reason for calling into cuestion the perfection of all details.

Ouc more instance may not be aniss.
A wire was run some three humbed yards from the exchatme and properly grounded at the subscriber's place of linsiness, the bells rung all right at either end amd through to each other, but whilst the sulseriber land no alificulty in hearing the exchange the latter coubd not get a sylable from the subscriber.
Of course there are many ways of accountiog for this, but in view of the consideration that the subseriber's hattery was in good condition, and that the resonant rumble in the transmitter was on tine, exeept when the main line was discometeded, the limit of possibilities, the average inspector will suspect, was somewhat circunscribed, and in truth it resolved itself iuto contact with a tin gutter somewhat nearer the exchange that the subscriber.

This latter latet, however, adde nothing to the lucidity of the topic.

Referriug to the first instance, the conclusion is inevilalle that a line could be strung unon trees for possibly fifty mics or more and would still be available for telephonic purooses, and it cau bardly be questioued that as experiment brings confidence, the mind of the military electric engineer of the future, to say nothing of others who may find themselves in an urgent strait for rapid communication, will not be perturbed by the absence of insulators, provided his carpet-trunk is well supplied with plenty of light wire and a pair of guttu-pereha tubes. J. K. D.
San Autonio, Texas, Feb. 15, 1883.

Telephonlc Progress in Canada.

A Moutreal contemporary states that the Bcll Telephone Company has at the present, telephone offices in about 100 towns and places in Cauada, and employs a staff of more than 250 men, the number of subseribers amounting to 4,250 . The company possesses at Montreal a large factory, where all the instruments and apparatus used in Canada, arc manufactured. The number of subseribers in the principal towus is as follows: Nontreal, 866; Toronto, 525; Ilamilton, 320; Ottawa, 250; St. John, N. B., 255; Winnipeg, 250; Quebec, 240; London, 230; Halifax, 170; Victoria, 13. C., 130 . During the last year the compauy laid nearly 1,000 miles of telephone lines.

The Telembione in Italy.-On the 31st ult, , there were in use in leome, 651 Telephones; in 'Turin, 454; Naples, 418, aud in Milan 890.

The nunual meeting of the New Fork Electrical Socicty will be held in the rooms of the society in the Metropolitan T. and T. Building, corner of Greenwich and Liberty strects, on Friday evening, March 2. Among the busiuess to be transacted will be the election of ofticers and stauding committees for the cusuiug yeur.

The Problem of the Telephone.

That the American Bell Telephoue Company is master of the telephoue field must be acknowledged. Every telephone user knows it. Every would-he user knows it. Frery telephone inventor knows it.

The recent consolidation of telephone interests, the massing of capital, the successes in court, bave made this compauy a tower of strength. With a capital of $\$ 10,000,000$, swelled by premiums to $\$ 18,000,000$, with legal advisers, and experts schooled in the art of telejhony from the beginning, and with judicial prejuclice in its favor, it appears futile for a rival to attempt a contest with so powerful au opponent. If the chaims of the Bell patent are to be construed by every court as covering any and all methods of transmittiug speech clectrically, then telephonc inventors must be content with the bare possilility of disposing of their inventions to the controlling power; but if, on the other hand, the Bell patents are found to cover only a specitic method and apparatus for trunsinitiong speech, then there is a field in which inventors may worls with prospects of a reward.

It is held by some that the Bell patent covers only the method of and apparatus for thasmiting speech electrically by means of undulatory currents of clectricity. It is held by the Bell counsel and experts that there can be no other method, while it is claimed by others that another metbod and other apparatus may be employed to accomplish the same end. In all these plases of the telephone problem there arise questions for which there is now no answer. The most intricate points of law as well as the most sul. tile physical principles are involved; and now the question is, as to the advisability of pursuing telephoue investigations for purely monetary consideratious. Any one familiar with the present status of telephonic apparatus can readily see that there is no greater ficld for study, and nouc that has greater promise of profit in it, than that of telephone inveution.

Let the legal aspect of the matter be as it may, it is positive that the accomplishment of certain improvements in the telcphone would yield a far richer har. vest than has beea reaped by any inventor in this line. It should be no source of discouragement to the determined and intelligent inventor that hundreds, aud probably thousands, have reached toward the prize with a grasp too short, for it is only a faithful iudex of the great value of the prize that so many have striven for it.

The results to be attained are continuity, uniformity, and reliability of action, increased volume of sound, freedom from external disturbances, increased distances, and belter service for less money. IIow all his is to be accomplished we shall not attempt to suggest, but a few of the obvious things to be done are to reduce the delicacy of the apparatus, to incrense the current used on the line wire and to use a current of lower potential, and to isolate the telephone wires from other line wires carrying heavy currents.

Why should not the telephone speak ont in the ordiary conversational tone, and why should it not be spoken to in the same tone, without the necessity of being near the instrument? Why should not the distance over which conversation is carried on equal telegraph dislances y Of course, we know that electricians and ploysicists have struggled with these problems, but what are the results?
If we are to have a long distance telephone, the induction coil inust be discarded, because the secondary current avails itself of every avenue of escape from its conductor, and everything with which it comes into contact-the insulators, the air, even contiguous wires-rob it of some of its strength, so that in attempting to communicate by telephone over long lines the current is lost, little by little, at every insulator, and all along the line until it is finally insufficient to affect the receiver.

If a battery current of the strength used in telegraphy be employed, evidently something besides carbon must be used for electrodes in the transmitter, or the instrument under some conditions might yield an electric light instead of transmitting speech.

Some are of the opinion that speech can be trans-
mitted by means of an interrupted current on a broken circuit. If this is possible, a proper apportionment of the periods of contact and periods of separation of the electrodes of the transmitter should give increased volume of sound, and permit of the use of a battery current on the line.

The fact that more than five hundred patents have been issued for telephonic improvements will naturally discourage inventors, but let the student of telephony consider that there is a great similarity bet ween many of the telephone inventions; that the variations are mostly structural, and not in principle; that the majority of inventors are wedded to certain accepted theorics; and finally, that most if not all of them are in the same groove, and that to obtain new results there must be a radiend departure from the reigning iden; then he will look for uteans and methods differing from those of his predecessors.

In what the telephone of the future will consist we cannot predict; but it should be capalle of talking and being talked to, as one person talks to another; and a man in New York sloould be able to tramsact business orally with another in Chicago or San Fran-cisco.-Scientific American.

The annual meeting of the National Bell Telephone Company of Maine was held at Lowell, Mass., last week. The report of the Treasurer showed that the company had connected January 1, 1883, 3,708 sulbscribers, a net increase of 803 made during the year 1882.

The subscribers are distributcd as follows:

Augusta..	12
Bath.	
Bangor	2
Biddeford.	67
Boothbay.	
Calnis	
Fitcliburg.	260
Lewiston.	230
Lowell.	950
Portland.	
Rockland.	42
Waterville.	40
Worcester.	. 826

The company has a total of 2,243 miles of wire. The net earnings for the year were $\$ 80,931.96$, of which $\$ 59,298$ has been paid out in dividends, leaving a surplus of $\$ 27,033.96$, which, added to surplus on hand January 1, 1882, $\$ 9,710$, makes a surplus to date of $\$ 37,343.96$. It is predicted that the increase of 1883 will exceed that of 1882 . The following officers were elected for the ensuing year: W. A. Ingham, President; Charles J. Glidden, Treasurer and Secretary: Loren N. Downs, General Manager, Lowell; Franklin J. Rollins, Clerk, Portland, Me.
During the month of January the telephone companies handled 21,158 extra-territorial messager, as follows: Union, 1,144; National Bell of Maine, 1,850; Bay State, 7,333; Boston and Northern, 10,831.

Telephoning by a Beam of Light.

Prof. Alexander Melville Bell, father of Mr. Alexander Gralam Bell, the inventor of the Bell telephone, and his brother, Mr. Charles James Bell, of Toronto, Canada, have been in the city since Ionday. In the course of n half-hour talk yesterdny rof. I3ell was asked :
"If the question may be allowed, Prof. Bell, is it twe that Mrs. A. Graham Bell is a deaf mute ?" "She is, and yet she talks almost perfectly. You would hever know slae were deaf if you met her: Deaf mutes are clumb only because they are deaf. There is no local defect to prevent utterance. When they know how to control their vocal organs they
engaged in teaching the visible speech to 2,000 pupils iu Boston, my son made the experiments which led him finally to the sending of audible words through the electric wire."

- The popular impression is that the sound is in some way conveyed over the wire, just what is the fact ?"
"The fact is, that it is a beantiful example of the convertibility of forecs from one form to another. Thus, you give the first viluatory mechanical motion of the air which is imparted to the membrane carrying the iron. This motion is converted into clectricity in the coil of wire surrounding the electro magnet, and at the receiving end is first effective as magnetism, which is again converted into vibratory motion at the iron fumature, which motion is imparted to the air, and so receives again a sound wave in the air like the original one."
"I have heard sounds conveyed by a beam of light," said the Professor.
"Articulate sounds ?"
"Yes, words. No practical application has yet been mate of this, but there will be."

We do not have sunshine enough for this to beany special value in Cincimati, but the reportorial instinct was aroused, and the question, "Ilow did you manage it ?" followed.
"It was in Boston. The wires were stretehed from the top of the Institute of Techuology to some other ligh buildiug, the name of which escapes ine. The sun's rays were received in a parabolic reffector. My son spoke against the back of a diaphragm, the front of which was silvered. The vibration of the voice created vibrations in the cliaphnagm, and consequently in the rays of light reflected from the mirror, and these sloped themselves into articulate sounds."

The Thomson-Houston System of Electric Lighting In Boston.

The loston Aderiver celebrated its removal to new and enlarger quarters on Monclay by issuing a twenty-page paper, coutaining a review of the primei. pal business enterprises of Boston. From this we learn that the American Electric and Illuminating Company of that city, which uses the Thomson and Ilouston arc-light system, is making rapid progress. The company was incorporated last May, and began operations in September. It has now 200 lights in use in Boston, with contracts for 100 more. The central lighting station is situated in the hasement of the Massachusetts Charitable Mechanic Institute, on luntington avenue. The motive power is communicated to the dynamos by means of a one hundred and fifty horse power Wheclock engine, two fifty horse power Lawrence engines, two rotary Wing engines, one of thity and one of one hundred horse power. The last named engines are the first of the kind ever made or used for this purpose, which will work with a direct attachment to the dynamo. The total lighting capacity of the present central station of the company is about 1,000 lamps, of 2,000 candle power ench. There are about ninety towns and cities in New England now dependent entirely upon gas, for which the company has already procured a number of charters, and it is intencled to establish sub-companies throughout the New England Shates as rapidly as possible. The total mumber of are lights in use in the United States is said by the Adrerfiver to be over 75,000 .

Frictional Electrieity in the Press Room.

We looked into the pres room of one of Bostons large printing establishments this weck. The fore man was furions and the proprictor sermowfor Pric tional eledricity in the printed shects of paper as
trouble. It is an interesting and not uncommon phenomenon, and is not, easily explained nor easily controlled. It has puzaled Profs. Bell and Wadman, and the best electricians we have about here. The packing upon the press cylinder seems to act as an inductor, and the paper leaves the press thoroughly electrofied. We watched a press running of $1, \% 0$ per hour. Suddenly the priuted sheet clung about the cylinder as though paster upon it, and had to be torn off in strips. Again, we lifted a few freshly printed leaves, and they ripped and crackled like the stitehes in an old coat. Then we saw a lot of cardboard being printed. The sheets stuck together as solid as a brick, ant could not be separated until the clectricity had partly passed off. A piece of printers. brass rule plated in this pile of cardionard, with an end projecting, threw of sparks when approached within an inch by another piece of rule. Two shects sucked together when hekl fourteen inches apart. Wet rags placed around the delivery table and led into a bucket of water charged the water with electricity in forty minutes so that a positive slock was felt upon a hand beiug immersed in the pail. Elec. trical currents were felt in the hands and arms upon landling apile of paper cight minutes after being printed. The bother to the printer is a considerable one. It entails inconvenience and a serious loss. Valuable work is frequently spoiled by the electricity packing the leaves so closely as to offset the fresh ink. Then the presses have to be slowspeeded with frequent stoppages. Nothing so demoralizes the pressman as the mystery of frictional electricity when under full headway.

Electric Bicjeles.

Blectricity has long been threatening to disphace gas as an illuminant. It is now entering the field against the horse as a means of traction. Two cminent electricians clain to be able to bottle up twolve horse power in a storage battery weighing three hundred weight, and they promise to produce in a few months a perfectly practical electric tricycle, capable of rumning fiftecn or twenty miles without recharging the accumblaters, and able to ascend all such hills as are now possible for the foot tricycle, and even steper gradients if auxiliary foot genring be used to help the electro-motor when the incline is great.

The weight of batteries will not exceed the weight. of a second rider, and it will run at the rate of seven miles an hour. As the new motor will never go lame, or shy, or break its knces, or eat its head oft when not employed, it is likely to prove a dangerous rival to the horse. The quadruped, however, which has survived steam need not fear extinction by elec-tricity.-Pall Mall Gazette.

Subscribe for the "IRevien of the Telegmaph and Teielihone."

Mr. Willian Baxter, inventor of the celebrated Baxter engine, who has lately completed a contract for lighting certain streets in Jersey City, N. J., states:
"We are ruming $\overline{5} 6$ lights (one 20 nud two 18 -light dynamos). These are driven by a Baxter atomatic cut of vertical enrine, 12×12 cylinder, 240 revolutions per mimute, follos. steam, cutting off at onefourth siroke. The consumptiou of coal is less than two lbs. per hour per lighi, the latter heing the Fuller clectrical compatys standard lights of 2,0 on cantle grover math. We are using ordimary anthatite coad. costing et. 60 per lom celivereal in bersey tity. The ahowe consmmption of fuel inchules also the heatingr by stean of the buiding (ofx 100 feed) in which the

lnidex of Inventions for which Letterts Patent of the Cinited States were granted in tile Week Ending Fisbuatiy 236, 1883.
231.169 Electrife induction machine; Addison G. Waterhouse, New York.
: $\mathrm{H} 1,1$ iz Electrie light ; EIWard Westom, Newark, N.J.
2it.042 Electric logomotive; Charles G. Curtis and Prancis 13. Crocker, New York.
271,1i.5 Electromotor: schuyler S . Whecler, Charles G . Curtis and Francis B. Crocker, New York.
2iti, 1il Incandeseent electric hamp; Edward Weston, New nik, N. J.
 non, Pa.
2Tl,05: Magazine elcetric lamp; Alenzal T. (ifford, P'rovidence, K . I.
Zon, 0 on M Multiplex telerraphy; ©harles seldon, Toledo, O,
zall, 40 Optical attachment for printing telegraphs; Win.
I. Mecausland, Philadelphia, la,
:ein, res Receiver for telephones; Samued II. Bartlett and Henry E. Waite, Now York.

Week Ending Feb. 2, 1683.

2in1.59s Automatic testing apparatus for telegraphic firealarm stations, George F. Bulen, Jersey City, N.J.
: $21, \% 63$ Antomatic fire exthguishing and alarm system,
('harles E. Buell, New Haven, Com,
$211,9 \%$ Antomatic switel-stand, Oliver J. True, Port Clinton, and Hemry II. Ioughton, Elyria, o.
: 21,610 (incuit closer for telephone recivers, Edward C. Dean, Washington, D. C.
2it1,9\% Commutator for dynamo-electric machines, Elihu Thomson, New Britain, Comn.
2itithe Dynamo and makneto-electric machiuc, Chas A. Necley, New York, N. Y.

27,972 Dynamo-electric machine, Willian Baxter, Jr., Jersey City, N. J.
271,979 Dyaamo-electric machine, Ebenezer Gordon, New York, N. Y.
$2 \pi 1,691$ Electrte regulator and atarm for incubators, F . Roosebrook, Elmira, N. Y.
 nati, 0 .
$2,1,004$ Electric gas-lightiug burner, Ilenry J. Warren, West Bridgewater, Mass.
$2 \pi 1,70 \tau$ Electric hotel annunciator and fire alarm, Albert T. lless, Des Moines, Ia.
2in, 1118 Electric current regulator, Elihu Thomson, New Britain, Conn.
$2: 1,839$ Electrical conductor, Perry G. Garducr, Jr., J. W. Leroy and Giles K. Tinker, North Adams, Mass.
: 71, , ¿21 Blectric brake-setting apparatus, Jesse B. Low, Pulaski, N. Y.
zil, 005 Electric gas-lighting burner, Charles II. Crockett, Iboston, Mass.
$2: 1,810$ Electric are lamp, William L. Dudley, Covington, Ky.
Z(61,88: Electro-magnetic car signal, John W. Marley, Chicago, Ill.
271,904 Electric mail conveyer, Eberhart Nicolaisen, New York, N. Y.
2r1,913 Electric switch-board, Thomas J. Perrin, Brooklyn, N. Y.
$2,1,014$ Electrical switeh-board, Thomas J. Perrin, Brooklyd. N. Y.
${ }_{211,825}$ Fastening for electric circuit wires, Henry G. Fiske, Springtield, Mass.
Fiske, Springineld, Mass. A. Edison, Menlo Purk, N. Y.
aiti,092 Galvanic battery, Abncr M. Itosebrugh, Toronto, ontario, Can.
2in, i1: Manufacture of incandesoent electric lamps Thomas A. Edison, Menlo Park, N. J.
$2 \pi 1, \pi 50$ Manufacture of covered or insulated wire, Joseph D. Thomas, New York, N. Y.

2il, \{k M Montl-piece for tclephonc trammitters, A trons. Nichols, New haven, Comn.
: $21,0,28$ thailroad traiu telegraph, William T, Waters, Atlanta. Ga.
: 2,616 Regrulator for dynamo-elcetric muchine, Thomas A. Edison, Menlo Park, N. J.
: $2=1.6=4$ leguhator for dynamo-electic maclines, John F. Ott, Newark, N. . .
Ott, Newark, N. .n. ersey city. N. J.
anitios Secondary battery, Mfred laia, Rahway, N.J.
dicias secondary battery, charles placide, Nezeraux, Paris, Fiance.
:íl, $\$ \$ 0$ secondary buttery, dames A. Maloney, WashingTon, D. C.
$2 ; 1, i 33^{2}$ Tripod standard for lighting rods, T. U. Pattee and T. D. Ridge, Greencastle, Ind.
: in1,878 Telephone, Charles T. Loring aud G. W. Pierce, Boston, Mass.
: in, \&2 T Telephone transmitter, Edward A. Shoettel, Brooklyn, N. Y.
The American Iron aud Steel Association officially amounces that the quantity of pirs iron made in the United States, in 1882 , was $4,623,000$ tons, which is most 500,000 tons more than was ever before made in one year in this count.ay.

The Pennsylvauia Railroad Company has tried the Brush are light for illuminating its yard near the Union Depot, in Pittsburgh. 'The experiment proving successinl, the company has recently added to the number of hamps.

Compared with 1874, Philadelphia shows an increase of 150,000 in population, and has 280 miles of paved strects more than it had at that time. There are also 55,000 more dwellings than there were then.
Business Notices.

The aftention of persons interested in local telerraph and telephone organizations is respectfully called to the electric lighting system of The Fuller Electrical Company; aud the practicability of making arrangements with that company for the introdaction of its apparatus, either in isolated plants, or
through the formation of local companies desiring to engage in the business of electric lighting. The specially valuable feature of this comprany's system may be seen by examination of its apparatus in Boston, Woreester, Providence, Hartford, New York City, Brooklyn, Jersey City, Paterson, Philadelphia, Lancaster, Scranton, Byracuse, Rochester, Buffalo, Pittsburgh, Wheeling, Steubenville, Xenia, Dayton, Grand Rapids, Chicago, Springfield, Belleville, St. Jouis, St. Paul, and many other smaller places throughout the country. Correspondence is invited.

Tife Fuller Eleotrical Company.

 44 East 14th Strect, New York City.A Dictionary of Electricity, by Menry Greer, N. Y., Agent College of Electrical Engineering, 122 East 26th strect, New York. Octavo, \$2.00. Professol Edison says of it: " It is exceedingly valuable to all interested in electrical science. Leaving out the old glass machine, sealing-wax, amber experiments, \&c., de., and inserting cuts and descriptions of the recent wonderful inventions, makes it exceptionally interesting to electricians and telegraphers. Nearly every electrical inventor and manufacturer in the world will find a description of their invention or apparatus in it."

Storage of Electrical Energy, by Henry Greer, N. Y., Agent College of Electrical Engiweering. Paper binding, 50 cents. One of the latest and best publications on this interesting subject.

THE KERNER STYLOGRAPHIC PEN.

\$1.00 THEBESTESTPENFORTHELEASTESTMONEY. \$1.00

THE LATEST IMPROVEMENT IN STYLOGRAPHIC PENS.

Holds more ink, writes longer without refilling, writes better, never blots, never fails.
It is somehting everyone who writes ought to have. It is endorsed by Telegraphers, Post Office and Bank Clerks, Railroad men, and everybody who has tried it. It is not only the bebt Pen, but the chear est, and always gives satisfaction. We have hundreds of unsolicited testimonials as to its merits. We manufacture the following styles:
Any of the above sent post-paid on receipt of price. Enclose loc. for registration. THE KERNER STYLOGRAPHIC PEN CO., 59 and 61 LIBERTY ST., NEW YORK.
HOLMES, BOOTH \& HAYDENS, FIREPROOF ELECTRIC LIGHT WIRE,

From Pure Lake Superior Copper, conductivity guaranteed.

PATEN'T

"K. K." INSULATED COPPER AND IRON WIRE
For Telephone and Telegraph Use.
49 CHAMBERS STREET, NEW YORK;
18 FEDERAL STREET, boston.
WORKS AT WATERBURY, CONN.

All Persons Sending for Catalogues, or ordering articles advertised in our columns, will do us and our Advertisers both a great favor by mentiouing that they saw the advertisement in

THE REVIEW OF THE

Telegraph and Telephone.

INTERNATIONAL Rlectricic Exilibition VIENNA, 1883.

The Commission of the International Electric lix. hibition at Vienua, 1883, gives due notice to the public that this Exhibition is to take place in the course of this year, to be opened on the Int Angrast, and to be closed on the 3 ist Oelobler, and cordially invite Exhibitors and Visitors.
The Regulations and the blanks necessary for Applicntions are to be lad at the Anstrian- Minmghrian Consuls.
The objects to be exposed will comprise all Machinery, Apparatuses and Implements connected with Electrotechnic.
It will certainly afford a good opportunity to inventors to show their latest improvements.
This Exlibition is greatly favored by the Austrian Government, and will be held in the Kotunda of the well-remembered Universal Exhibition of 1875.

Exhibitors nre requested to procure the necessary papers at once.

A. J. SAPORTAS \& CO.,

58 Exchange Place, NEW YORK.

Asked. Bid.
Edison Electric Light Co.
Edison Co. for Isolated Ligating.
Edison Illuminating Co. of N. Y......
Edison Electric Light Co. of Europe..
Brush (Parent Co.).
Brush Illuminating Co. of N. $\mathrm{F} . . .$.
United States Electric Lighting Co....
United States Electric Illum'g of U. B. .
Fuller Electrical Co. (preferred stock).
Fuller Electrical Co. (common stock).
Bought and Sold. \qquad
\qquad
-
Furnished on Application.
HAINES BROS.,

55 Broadway, N. Y.

THE "DIAMOND"

[patent apphed for.]
Jar, 6 inches high, 4 inches square. FITS ANY TELEPHONE BOX.

HAS MORE THAN
Double the Carbon Surface OF ANY OTHER BATTERY. ExCels for Constancy, Simplicity and Price.

ELEMENTS.

7 Stioks Round Carbon, $\frac{5}{4}$ in. diameter, $5 \frac{1}{2}$ in. long. Amalganated Zinc, ${ }^{3}$ diam.

Sal ammoniac.
Price Complete, $\$ 1.25$ per Cell. Subject to Liberal Discount in quantities.
[fac simue of label, zeideced in size.]

THE "DIAMOND" CARBON BATTERY DIRECTIONB.

 2. Siling with water to the thoulder of the fiar.
 NOTICEI!

THE ELECTRICAL SUPPLY CO.

A. C. NORTHROP,

WATERGURY, CONN. IRON AND BRASS MACHINE SCREWS,

Zinc in Sheets and Plate

FOR ELECTRICAL PURPOSES.

\qquad
Iron, Brass, Steel or Zinc.

Gponthbity to Pistimate on matembal articles from simeot

A. L. BOCART,

ELECTRICIAN,

No. 22 UNION SQUARE, N. Y., 4th Avenue Side, 1'ATENTEE
And Mandfacturer of evers variety of

For Theatres, Churches, Public and Private Buildings.

THE TRADE FURNISHED

 withThe most eomplete assoriment of Flectric: Lighting Burners, juchading P'endant, laatchet, Argand, Billiard Table,

Candle, Automatic, and Vibrators, also
Clough, Maxim, Tirrell Ring and Arm Burners, for use with Machive Gas.
BATTERIES, PRIMARY COILS, THREE STYLES OF AU'IOMA'TIC' CUT-OFFS, AND ALL SUPPLIES NECESSAIIY IN FITTING UP BUILDINGS.

ALL APPARATUS PATENTED.
Also, Burglar Alarms, Annunciators, Call Bells, \&c.
THE ANSONIA.

Brass \& Copper Co.,

MANUFACTURERS OF

For Magnets, Telephones, Electric Lights, etc.
wire e. splitdobes fatented houtd motlation covered with cotton os sils.
LINEWIRE.
Fire Proof House and 0ffice Wire me for indoor use in farditic diontinct.
whodeet metal conge, for amphecatobs, telephones, de. ZINC RODS, BATTERY COPPER, \&C.

Jqinn Turner, John P. Lohing, Nce. and Theas.
'ГHE

CENTRAL AMERICAN

Melegranil \& Mepplani Co. is

CAPITAL STOCK, - \$100,000. SHARES $\$ 10$ EACH.
full paid and non-assessable.

This Company has acquired and owns all the telephonic rights formerly the property of the American Bell Telephone Company, Coutincutal Telephoue Company, and the Tropical American T'elephouc Company, Limited, in Central America ame panama.
The Company BUYS its telephones and trans. mitters, and thereby avoids paying royalties.
A limited number of the shares of the stock is offered for sale at $\$ 5$ per share.

Address,
JOHN P. LORING, Treasurer, Sears' Building, BOSTON,'Mass.
PFINE $\&$ LHDD,
MAIBERT E. PAINE, Late Commissioner of Patints. stoily b. lajp.

Attorneys in Patent Causes And Solicitors,

WASHIINGTON, D.C.
Banning \& Banning,
PATENT ATTORNEYS
SOLICITORS,
2I Park Row, Honore Building.
NEW YORK.
chicago.

PAREVIT ATTONEYSS

and
sOLICITORS.
Electrical Cases a Specialty.

GRANT ST., PITTSBURGH, PA
914 I STREET, WASIINCTON, II, C.
-AND-
1001 CHESTNUT STREET, PHILLDELPPII, PA.

PARTRICK \& CARTER,

Philadelphia, Pa., Mantracyuirers of

Among our Specialtios are the Celebrated PREMIUM LEARNER
Not the Cheapest, but guaranteed the Best. COMPLETE OUTFIT ONLY $\$ 5.00$.

- The witeh Chloriate Enatery, patented Sept 1is, 1850, acknowledged the Hest Bidtery in use for Telephones, discountiators, (all Befls, cte. Price, $\$ 1$. on per cell. Liberal -
The A cme steel Lever Key, best und most perfect Key ever bated hefore had telegraphic profession; endorsed Price by mail, \$30.0.
The Orisinal Ginnt sounder, price \$4.00 by mail. Send tor our cataloghes and price lists. correspontence volicited

PARTRICK \& CARTER,
Telephone, Telegraph and Electrical Instruments and Supplies of every description.
Ho. 114 SOUTH 2d STREET, PHILADELPHIA, PA,
SHORT-HAND WRITING

thoroughly taught by mail. Good situations procured all pupils when thoroughly competent. First-elass sfenopraphers furmished rainond onicialswithCorrespoudence solicited. CALIGLAPISS SOLD.
Special iuducements offered business men, lawyers, stenographers and rallroad omeers Send for COLLEGIE REPORTER and caligraph circulars to W. G. CHAFFEE, Oswego, N. Y.'

THE WEST INDIA

IEIMCITED.
CAPITAL STOCK, - - $\$ 150,000$.

Transfer Office, lofg branch, NEW JERSET.
T. C. MOREORD,

Reyister of Tranafers.
This company lats acquired and owns all the telephonic rights formeriy the property of the Continental Felephone Co. and Tropical American Telephone Con limited, intiud-
 and usith in the ishands of layti, san boningo, famaica, Telephones, Blake Transinitters and all other telephonic apparatus manufactured by the ankeloan bbli, ThitPlinise co., under patents owned or eontrolled by it in the United states and canada, has been granted concessions foom the dovenmments of the Islands for exclusive right to the exchange systems for telephones. This Company Huya their Telophonas nud Trunsmitters, thereby avoid paying royalties.
a portion of the stack for sale.

Address

The West India Telegraph and Telephone Co. GHILLICOTHE, OHIO.

DELANO \& HAINES,

PRoMOTERS and BROKERS,

Formerly of 55 Broadway, have removed to new and commodious quarters in

We make a specially of the organization of companies the development of enterprises of unquestionable merit, and obtaining capital for the same. Sole agency for the American Diamond Rock Drill and the Minrr's IIand Drill for the Repullic of Mexico.

EXECUTIVE OFPICES OF

"THE MEXICAN TELEPHONE CO."
$A N D$
The Tropical American Telephone Co., (LIMITED.)
These companies have acquired and own, in their respective tervitories, all the telephone rights formerly the property of the Continental Telephone Co., including the exclusize right for a term of years, of sell. ing, leasing and using Bell Telepeones, T3lake Trínsmitters, and all other telephonic apparatus manufactured by the Ameriean lell Telephone Co., under patents owned or controlled by it in the United States and Canada.

Valuable Telephone Territory

can be had by parties who can furnish the money reguisite to develop it, in the Jepublic of Mexico, the West India Islands, and Sonth Auerica.

BOOKS※ELECTRICIANS!

Crompton, E. E.-Electric Light, 40c.
Thompson, S. P.-Storage of Electricity, 20 c.
Agrton, W. E.-Storage of Energy, 20 c .
Bell, A. G.-Lecture on the Telephone, $\mathbf{\epsilon} 0 \mathrm{c}$.
Sprague, J. T.-Electric Light, 40 c .
Ayston, W. E.-Electrio Railways, 20c.
E. \& F. N. SPON, 44 Murray St., N. Y.

GEO. H. WHIPPLE,

56 Wall St., N. Y.
ELECTRIC LIGHT, TELEPHONE,

TELEGRAPH,

 - AND -Mexamman inume

VAN DEPOELE ELECTRIC LIGHT COMPANY,

MAIEERS OF

Electric Lighting Apparatus.

Catalogues and Price Lists, containing Testimonials and list of parties using this system, will be furnished on application.

This Company has fully established its record for construction of the most approved system of Electric Jighting A_{p}. paratus. Produciug lights of the highest standard of purity, and requiring the smallest consumption of power compared with the result obtainel; the syatem having been examived aud tested by the most competent electrical juiges in America and Europe with the most satisfactory conclusions. This Company are prepared to compete for the furnishing of Electric Plauts of any capacity required.

JOHN M. PATTERSON,
 F. W. WAGNER,
 Manufacturer of

 A SPECIALTY. 91 GRANT STREET, PITTSBURGH, PA.

ELEPTRO - MEDRAL APPARATJS.

 specialty: GAIFFE'S gYSTEM POCKET BATTERIES.
Magnet Steel

AND AJLL KISDE OF
CHROME CAST STEEL.

STEEL FOR MAGNETS

A SPECIALTY,

And warranted superior to all other brands.

CHROME STEEL WORKS,

TELEGRAPH

-and-

Telephone Poles,

(CEDAR, CHESTNUT AND SPRUCE)
 CONSTRUCTOR OF TEL. LINES.

GEORGE Q. DOW, vorth epring, n. in.

The "MORSE" LEARNERS' INSTRUMENT THE BEST.

11) [1075 conpleto with Bnttery, Book of miting.

"Morse" Instrument alone, without battery. "Morse" Instrument without battery, and wound with fine wire for lines of one to fifteen miles.
83.00 Cell of battery complete.
3.75 "Morse "Learners' Instrument without battery, sent by mail... (Rattery cannot be sent by mall.)

Q Goods sent C. O. D. to all points if one-third of the amount of the bill is sent with the order. Remit by Jiraft, Postal Money Order, or Registered Letter. Favorable arrangements made with Agents everywherc.
tis We will in every cane refind any remaite tance mado un for theap goods, if they are mot found to be entirely antialiactors.

You are sure of getting the BEST THAT IS MADE if jon select the "MORSE."

The ${ }^{6}$ MOIPGe" is a full size, well made, complete MORSE TELEGRAPH including handsome Giant Sounder and Curved Key, and a large Cell of the best Gravity Battery, latest form.

IT IS THE BEST WORKING SET OF LEARNERS INSTRUMENTS FOR SHORT OR LONG LINES, FROM A FEW FEET UP TO TWENTY MILES IN LENGTH, YET OFFERED.

Nos. 7 \& 9 BOND STREET,

NEW YORK.

MANUFACTULEERS OF
['elegritph Instruments,
Gold and stock Insiruments,
Electric Light Apparatus, Domestic applunces,

Distritt system and
Fire Alarm Boxes, Railway Signals,
Telephone Apparatus, \&c. DEALERS IN.

ELECTRICAL SUPPLIES

OF ALL IEINIOS.

Agents fior wale of woods of the celebrated SILVEIETGWN WOIRKS, LGNIDON. Agents for the American Insulator Co. Agents for the Delebrated K. K. Insulated Wire, THE KERNER STYLOGRAPHIC PEN.
ALFRED F. MO0RE,
ManUFaCturer ob

INSULATED WIRE,

Telephone, Telegraph and Electric Light, Office, Line and Annunciator WIRE,

Magnet Wire and Flexible Cordage. $200 \& 202 \mathrm{~N} . \mathrm{THIRDST} \mathrm{SREET}$, PHILADELPHIA, PA.

THE BISHOP Gutta-Percha Works

(SAMUEL BOARDMAN, Agent)

Origiual aud only Manufacturers in the United states of GUTTA-PER('11A INSLIIATEI)
Submarine Telegraph Cables, 50 Rergular Nizes-One to Ten Conductors.
Subterranean Telegraph Cables, Hempen-Armored Covered.
Aerial Telegrraph Cables,
Lead or Hempen covered.
ANTI-INDUUTION
Telephone (Lead-Covered) Cables, as used by the Metropolitan Telephowe and Telerraph Company.

Torpedo Cables,

Jecommended by the European and suath American Governments.
Lead. Covered Cables,
ror canal and streamete crosesergs
GUTTA-PERCHA
OFFICE WIRE, FUSE, LEADING AND CON NECTING WIRE,
For Subaqueons, Mining and all other Electricul purposes. MARI's COMH(OLND INSULATEI) WIRL, For Oftice, Outcloor, linderground and Battery lise.
G. P. OFFICE WIRE, COTTON-COVEREI).

> ALSO HAVK ALWAYS ON HAND

WIRES OF EVERY VARIETY OF INSULATION, hagnet Wire, Telephone Flexible Cords, Flexible Elevator. Cabies, Electric Cordage,
BUR(GLAR-AIARM AND) ANNUNUIATOR WIRE,
Electric Light Wirr, cordage and Cubles, Lead-covered
Wire, add Every Descrintion of
〕 PURE GUTMA-PERCIIA GOOIDS,
cutta-Percha Sheet, for Cuble Splices; G. P. Chemicul Vessels for Acids, etce.
Agreuts for Reception of Grletrs und Sale of Geods:
L. G. Tillotson \& co., saud 7 Dey street, New York.

WILLIAM HEATON, Exis Chestnut Street, lihiadelphia-
THIRTY-THREE YEARJ' EXPERIENCE HAS TAUGHT I's 'rhat Neither the mleutrical nor mectianiCAL QUALITIES OF EITHER GLTTA-PERCHA OL COPPER DETERIORATE BY LONG WORKING OR SUBMERsION, CONSEQUENTLY THE BEST FORM OF A SUBMArine telegraph cable will he that in whicil THESE CONDITIONS WERE FULFIL.LED.-Eectract from Report on Cables, by Willoughly Smi/h. Muuufactured ly

The Bishop Gulta-Percha Works. Address all commanications to
W. WV. MAItKs, superlintendent.

Office at tue Works.

Plativum
 - FOH -

 IMPORTED AND FOR SALE BY The S. S. White Dental Manufact'g Co., PHILADELPHIA-Ohestnut St., cor 12th. NEW YORK-707 and 769 Broadway. BOSTON-160 Tremont Street. CHIOAGO-14 and 16 E Madison Street.

'IHH:

LAW BATTERY.

The BEST Open Circuit Battery in tne World and the CHEAPEST.

Combines all the advantages of the best of the others, without any of their disadvantuges. Thousands sold monthly. Send for circular. Mlanufactured and sold by the

LAW TELEGRAPH CO.,

140 FULTON ST, NEW YORK.
F. E. KINSMAN \& CO.

Telegraph and Electric Light SUPPLIES.

DEALERS IN
Electrial Goorls.
hnventors' hid maruracturens heevis.

Manufaciurers, limporiers and Dealers in

RAILWAY

SUPPLIES

of every jescription,
Nos. 5 \& 7 Dey Street,
NEW YORK.

PRICE, \$5.00.

A scientific and economical apparatus for lighting; patented in the United States. May 27, 18in, and May 26, 1842; complete in itself; requiring no extra power, the electric current being generated by chemical action.

Portable Eleotric Lighter with
BUEXGLAAB $B L A B E M$
Price \$10. We make attachments by means of which our Elertric Lighter can be conserted intos a reliable Burglar Alarm, confrovting the trespasser with light and alam bell at the same instant.
Agents wated all over the conntry. liberal discounts. Enclose stamp for circular. PORTABLE ELECTRIC LIGHT CO.

3: Water Street, Bosion. Mass.
Ineorporated umier the laws of massarinostte. Dece. 1ske.

GEORGE WESTINGHOUSE, JT.
Secretary and Treasur
Westinghouse

THE WESTINGHOUSE MACHINE COMPANY,
Worka at Pittsburgh, Pa Western Office, 14 South Canal St., Chicago, 111.

 guantities of Telfograph Wire on short notice. The Belaian system of rolling long lengilss of wire rools,

AS CONNECTED DIRECT

- TO

Dynamo Electric Machines GIF ANE MIAKE
For Hedricic Lightiug.
ALSO
INDEPENDENT ENCINES
For driving by belt mithout Comenter. Shayting.
Send for mustrated cirenar.

92 aud 94 LIBERTY STREET, NEW YORK.
II. H. WESTINGIOUSE.

Superintendent

Engine

yyiamo tectin Madines

CARBON POINTS

Electric Lamps,

AND

PLATES FOR BATTERIES.

We make a superior carlon for clectric lamps; straight, buruing with a clear white light, and of the greatest possible durability.

Our Battery Plates are the best in the market.
Send for samples and price list.

Boulton Carbon Co.

CLEVELAND, OHIO.

Davis \＆Whirs

BAIATMMORE，MD．

Weclaim our Latest Improved

MAGNETO BELLS

－anowere ane the very berst in use．They （4）are unexelled in strenghth，
 and are ritted with woixcless brexs tooth geariug，which is alnays utyselute ane reliable， No rubler bands to stredech and lose their grip；and fric－ tion to get out of adjustment．
Our A T TOMATlO SHONT is the simplest and nost unfailing yet intro－ rluced．
We make the lids of our boxes of seasonel mahogany， which insures against shrink－ are，and at the same time gives our bedls a very hand－ some appearance．
We are always happy to semal samples to mathagers of exchanges，and in－ yile all to try our bells luefore ordering elsewhere． ing Agents for the State of Marylind，and Pro ors of the baltinore Exchange，we are practically ouversmat will the Telephone busincsis，and know exactly what is needent．

OF EVERY DESCRIPTION．

CORRESPONDENOH SOLICINED．

FOTOGRAFS

AT 233 BROADWAY，
From Morning until night by モエモイワエエC エIGエIT！

W．KURTZ，

$\overline{6} \& 7$ East＂23dj St．，${ }^{1}$ Madison Square．

Electric Company，

су：

Mantiacturens or

Telegraph hnstruments

 AND SUPPLIES．Insalated copper Wires，Electrio liells mad Annunciators， IGur： Medical Apparatus，Electrio Gas－Lirhting Apparatus，Edi－ su＇s Electric P＇en and Duplicating Press，the Gamewell Fire Alam Telerrapli Apparatus，Bi－Polar and Carbon Tele－ phones，Telejbinte Exchange Apparatus，Inderground Callew．

ANSON STIGER，Prenident．ENUS M，BAHTON，V－Prest．
OA＇TAM，OGUES
Seut by mail on rectipt of price in stamps or currency．

I－Complete Set of Cutulornes．．．．．．．．．．．．． 238 Patar．	Price． 2le．
1［－「elegruph Iustruments and Supplies．．．．．iff	6c．
IV－Insulated Wire tincluded in II）．	
V－Electric Bells，Aununclators，Electro－Mer－ curial Fite Alatm．．．．．．．．．．．．．．．．．．．．．．．．． $3 \boldsymbol{z}$	30.
YI－Electro－Medieal Apparatus．．．．．．．．．．．．．．．． 32	
Vi－Manual of Telegraphy and Catalogue of Private Line Instruments．．．．．．．．．．．．．．．．3：	free．
711I－Condeused Price List．．．．．．．．．．．．．．．．．．．． 20	free．
X－Electric Bells，efe Descriptive．．．．．．．．．．． $\boldsymbol{1}_{\text {¢ }}$	Bc．
	3v．
Sir W＇m．Thomson＇s Nautioal Instruments as	5 c.

CIIARIRS WIILIMISS，JR．，

（Estahlisuzd in 1856．）
Nos．109－115 COURT STREET， BOSTON，MASS． aUThorized manufacturer of
THE AMERICAN

Bell Telephone Co．

Magneto，Crank
AND
Push Button
Call Bells，
Electric Bells，
District Bells
and
Switches for Exchanges，
Annunciators，Etc．
Telegraph and Electrical Instruments， Batteries，Wire，Tusulators，and Tels－

LECLANCHE．

rusi latteny，complete．Size of Jar，0x436 inches．

TELEPHONE COMPANIES．

Beware of Infringements and Cheup Jmitations．

LECLANCHE BATTERY CO．

149 W．18th $\mathrm{St}_{\mathrm{t}} \mathrm{N}, \mathrm{N}, \mathrm{Y}$.
L．G．TILLOTSON \＆CO．， 5 \＆ 7 Dey St．，N．Y．

Pletric ligitit Amaratis
 －AND－

MLDETRICAL INSTRTMMSNS：

Of Every Description
BUILT BY DAY OR CONTRACT．

Have had five ycars＇experience building Electric Siflat Apparatus．Facilities for making complete apparatus for 50 Arc Lights a day．Everything made on the INTER－ CHANCEABLE system．Twenty years＇experience design－ ing and building Special and Labor－Saving Machinery．Esti－ mates given．Correspondence solicited．

JAMEG BRADY，
（Suc＇r to Brady Mfo．Co．）
$257 \& 259$ Water Street，Brooklyn，N．Y．

 Manufacturer of

KERITE INSULATED

\prod elegraph and $\prod_{\text {elephone }}$

Some of them TW，HILFS IN ILENGTH，are in use in seneral citios，and are found to WORK PERFECTIY for that distunce．

Eminent Electricians and Practical Telegraphists

Commend and recognize the Kerite insulation as shperior to all others At the Cemtennial Ex－ himition at Philadelphia，Sir Wimbiam Tifomson，the eminent Electrician and Scientist，awaded to the

KERITE INSULATED WIRE AND CABLES
A DエFエロエルA
For＂Excellence of the Insulation and Durability of the Insulator．＂
Clark B．Hotchisiss，gen．agr．
120 broadwar，new york．

American Electrical Works，

（Formerly EUGENE F．PHILLIPS）， MANUFACTLRFRS OF
PATENT FINISHED

Insuated Meetive Wirmes，

TELEPHONE AND ELECTRIC CORDAGE，

ELECTRIC LIGHT WIRE．

magnet wire，
Patent Rubber－Covered Wire，Burglar Alarm and Annunciator Wire，Lead－ Encased Wire，Anti－Induction Aerial and Underground Cables，etc．，etc．

OFFIE ANH FIMTORY：
67 STEWART ST．，PROVIDENCE，R．I．

W．11．FOiblis，Prenident．W．R．DIIVER，Treasumat THEO．N．VAlla，General Manager．

This（ommany，owning the oribimal latents of Alexander（rahiam Boll for the Electric Spakin！： Telephone，and other patents covering improvement：－ upon the same，and controlling，execpt for entain limited territory，under an arrangement with flos： Western Union Telegraph Company，the Gold and Stock Telegraph Company，the American Spakine： Telephone Company，and the Itamonie Telegraplin Company，the patents owned by those companies． is now preparerl to furnish，upori application，cithici directly or through any of its licensees，Telephones of different wyles．and applicable to a variety of uses． This company desires to armage with persons of responsilitity for establishing

District or Exchange Systems，

in all unoccupied territory，simi＇ar to those now in operation in all the prineipal cities in this country．
Responsible and energetio persons are required io ad as liceusecs for the purpose of establishing

PRIVATE LINE AND CLUB LINE
systems，for business of social uses．Also to iutro－ duce the Telephone for

SPEAKING TUEE

purposes，for whiel ins ruments will be deased for a term of years at a nominal rental．
This Company will arange for Telephone lines le－ tween cilies and towns where Exchange system－ already exist．in order to aftord facilitios for persomal comminneation betwern subseribers or customers of such systems．

We resperfatly mote atcution to this matter，and any further information relating thereto an be ob－ tained from the（＇ompany，

No． 95 MILK STREET，BOSTON，MASS．

EL（：ENE F．PHMLAHS，President．
W．TL．SAWYER．Socreary ame Electrician．

