
BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Revision Control Sheet
Revision 1, February 1999 Release 5.3
.

Remove the Following Pages Insert the Following Pages

i through xxviii i through xxxiv

Preface-1 through Preface-6 Preface-1 through Preface-6

20-1 through 20-74 20-1 through 20-82

Index-1 through Index-22 Index-1 through Index-22
 Page 1 of 2

MYNAH System Scripting Guide BR 007-252-004
Revision Control Sheet Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Page 2 of 2

BELLCORE PRACTICE

BR 007-252-004
ISSUE 4, DECEMBER 1998

RELEASE 5.3
REVISION 1, FEBRUARY 1999

MYNAH™ System
Scripting Guide

Project Name ___

Supervisor
Initials/Date

Originator
Initials/Date

Reason For Update/Comments; Associated MRs:

Project Approval Date

Type of Update

() Initial Release of New Document

() Maintenance Release to Existing Document

Date Required at Destination __

First/Current Compatible System Release/Version _____________________________________

Issue/Revision, Date ___

Documentation Title ___

Documentation Identification __

Issue 4, December 1998 Revision 1, February 1999

BR 007-252-004

MYNAH™ System Scripting Guide

Release 5.3

X

BELLCORE
DOCUMENTATION PRODUCTION AND CONTROL

NOTICE OF DOCUMENTATION UPDATE

ZS-98350-02, ZS-99036-01, ZS-99036-02

KSB 2/12/99

MYNAH™ System
Scripting Guide

BELLCORE PRACTICE

BR 007-252-004
ISSUE 4, DECEMBER 1998

REVISION 1, FEBRUARY 1999

MYNAH System Scripting Guide BR 007-252-004
Copyright Page Issue 4, December 1998
Release 5.3 Revision 1, February 1999

vi

Prepared for Bellcore by:

Learning Support

For further information, please contact:

MYNAH Customer Service Center

1-(732) 699-2668, option 3

To obtain copies of this document, Regional Company/BCC personnel should contact their
company’s document coordinator; Bellcore personnel should call (732) 699-5802.

Copyright © 1996, 1999 Bellcore.

All rights reserved.

Appendix A, Basic Tcl Commands, is Copyright (c) 1993 The Regents of the University of
California. All rights reserved.

In no event shall the University of California be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of this
documentation, even if the University of California has been advised of the possibility
of such damage.

The university of california specifically disclaims any warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular
purpose. the software provided hereunder is on an “as is” basis, and the University of
California has no obligation to provide maintenance, support, updates, enhancements,
or modifications.

Project funding year: 1999.

Document Feedback

We at Bellcore are constantly striving to meet your need for information. Once you’ve had a chance to use
this document that we’ve written for you, please let us know if it met your needs. Please complete this form
and either FAX it to us at (732) 336-3345 or return it to us at the address below.

Document No. Issue No. Publication Date Revision No. Supplement No.

1. In each of the following areas, how well did this document meet your need for information?

a. Relevance of the information to your work

b. Ease of finding the information that you need

c. Clarity of the information..

d. Accuracy of the information ...

e. Usefulness of the information ..

f. Thoroughness of the information...

g. Level of detail of the information..

h. Availability of this document when you needed it

i. Overall quality of this document ..

2. Please comment on any of the areas where this document did not meet or exceed your need for information.

3. Are there features of this document that you found particularly useful or informative? Please explain.

4. Are there other ways that we can improve this document? Please feel free to comment on any aspect of it.

5. For what purpose did you use this document?

6. Please tell us something about yourself.

Your company/employer Your title

Your job responsibilities

If you would like us to let you know what we’re doing in response to your feedback, please write your name and address
(or telephone number) below.

Name Telephone Number

Address

Thank you for your time and cooperation!

To return this form, please FAX it to (732) 336-3345, or mail it to Ken Berczik, Bellcore Learning Support, 444 Hoes Lane,
Room RRC 2B-183, Piscataway, NJ 08854.

Missed
Nearly
Met Met Exceeded Applicable

Not

As a technical reference

As an administrative reference

To use a system

To install/administer a system

To learn methods/procedures

To be better informed

Other (please specify)

BR 007-252-004 Issue 4 December 1998 1

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Notice of Disclaimer
Revision 1, February 1999 Release 5.3

tended
NOTICE OF DISCLAIMER AND LIMITATION OF LIABILITY

This document is intended for use solely by Bellcore customers who have licensed the
Bellcore software described herein. The software, this document, and the information
contained within this document may be used, copied or communicated only in accordance
with the terms of a written license agreement with Bellcore. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording without the prior written permission of Bellcore.
While the information contained herein has been prepared from sources deemed reliable,
Bellcore reserves the right to revise the information without notice, but has no obligation
to do so. Unless the recipient has been expressly granted a license by Bellcore under a
separate applicable written agreement with Bellcore, no license, express or implied, is
granted under any patents, copyrights or other intellectual property rights. Use of the
information contained herein is in your sole determination and shall not be deemed an
inducement by Bellcore to infringe any existing or later-issued patent, copyright or other
intellectual property rights.

BELLCORE PROVIDES THIS DOCUMENT “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF ANY
INTELLECTUAL PROPERTY RIGHTS. FURTHER, BELLCORE MAKES NO
REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED WITH RESPECT TO
THE SUFFICIENCY, ACCURACY, OR UTILITY OF ANY INFORMATION OR
OPINION CONTAINED HEREIN. BELLCORE EXPRESSLY ADVISES THE USER
THAT ANY USE OF OR RELIANCE UPON SAID INFORMATION OR OPINION IS
AT THE SOLE RISK AND LIABILITY, IF ANY, OF THE USER AND THAT
BELLCORE SHALL NOT BE LIABLE FOR ANY DAMAGE OR INJURY INCURRED
BY ANY PERSON ARISING OUT OF THE SUFFICIENCY, ACCURACY, OR
UTILITY OF ANY INFORMATION OR OPINION CONTAINED HEREIN.
BELLCORE, ITS OWNERS AND AFFILIATES SHALL NOT BE LIABLE WITH
RESPECT TO ANY CLAIM BEYOND THE AMOUNT OF ANY SUM ACTUALLY
RECEIVED IN PAYMENT BY BELLCORE FOR THE DOCUMENTATION, AND IN
NO EVENT SHALL BELLCORE, ITS OWNERS OR AFFILIATES BE LIABLE FOR
LOST PROFITS OR OTHER INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Bellcore does not recommend or endorse products and nothing contained herein is in
as a recommendation or endorsement of any product.
 vii

MYNAH System Scripting Guide BR 007-252-004
Notice of Disclaimer Issue 4, December 1998
Release 5.3 Revision 1, February 1999
For further information, please contact:

The MYNAH Customer Service Center 8:00 AM and 7:00 PM ET Monday through Friday,
(732) 699-2668, Option . If outside the 732 area, call (800) 795-3119, Option 3.

You can also contact support (for non critical problems) via e-mail at
mynah-support@cc.bellcore.com.

Copyright  1999 Bellcore.
All Rights Reserved.
viii

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998
Revision 1, February 1999 Release 5.3
Trademark Acknowledgments

Adobe, Acorbat, and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

Microsoft, Windows, and NT are registered trademarks of Microsoft Corporation.

MYNAH is a trademark of Bellcore.

NeoSoft is a trademark of Neosoft, Inc.

QA Partner is a trademark of Segue Software, Inc.

Solaris is a trademark of Sun Microsystems, Inc.

SQA is a registered trademark of SQA, Inc.

UNIX is a registered trademark of Novell, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.
 ix

MYNAH System Scripting Guide BR 007-252-004
Issue 4, December 1998

Release 5.3 Revision 1, February 1999
x

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
MYNAH System Scripting Guide

Contents Contents

Introduction to Revision 1 .. Revision-1
Reason for Revision .. Revision-1

Preface ..Preface-1
Document Structure ...Preface-1
Related Documents ..Preface-3
On-line Versions of the MYNAH Documents...Preface-3
Formatting Conventions...Preface-4

1. Introduction..1-1
1.1 Using the TclX Help Facility ...1-2
1.2 MYNAH Extensions Overview ...1-3

1.2.1 Extension Types ..1-3
1.2.1.1 Class Commands ..1-5
1.2.1.2 Instances ...1-6
1.2.1.3 Handles ...1-6
1.2.1.4 Methods ..1-7
1.2.1.5 Attributes ..1-8

1.2.2 Extension Functional Categories ..1-10

2. General Scripting ...2-1
2.1 Overview ..2-1

2.1.1 Creation...2-1
2.1.2 Execution ..2-2

2.2 Creating Scripts ..2-3
2.2.1 Using an Editor to Create Code ..2-3
2.2.2 Using the Script Object Code View to Create Code...........................2-4
2.2.3 Using the Script Builder to Create Code...2-6

2.3 Executing Scripts ...2-8
2.3.1 Using the Script Builder to Execute Code ..2-8
2.3.2 Using Background Execution ...2-10

2.3.2.1 Background Execution Overview.....................................2-10
2.3.2.2 How to Submit Scripts to the Background2-11

2.3.2.2.1 From the CLUI ...2-11
2.3.2.2.2 From the GUI ...2-12

2.3.2.3 Background Execution and the Database2-12
2.3.3 Using xmytclsh ...2-12
2.3.4 Maximum number of Connections (concurrency)2-13
 xi

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
2.4 SE States at Start Time...2-14
2.4.1 Stateless Mode ..2-14
2.4.2 ConnOnly Mode..2-14
2.4.3 FullState Mode..2-15

2.5 File Output ...2-16
2.5.1 Determining How Many Output Directories to Retain2-16
2.5.2 Location of the Output Files ...2-16

2.5.2.1 Other Possible Locations ..2-17
2.5.2.2 Output Directory Symbolic Link2-17

2.5.3 Content of the Output Directory ...2-18
2.5.4 SUTimage files ...2-20
2.5.5 compares File ..2-23
2.5.6 The Output File ...2-25

2.5.6.1 Child Script Events ...2-26
2.5.6.2 Compare Events..2-27
2.5.6.3 Exception (error) Events...2-28
2.5.6.4 Language Events...2-28
2.5.6.5 Script Events...2-29
2.5.6.6 Summary Events...2-30
2.5.6.7 Sutimage Events ...2-31
2.5.6.8 SUT Timing (suttiming) Events2-32
2.5.6.9 Test Object Events..2-32
2.5.6.10 User Events...2-33

2.5.7 The result File ...2-34
2.5.7.1 Run Section...2-34
2.5.7.2 Summary Section..2-35
2.5.7.3 result File Example ...2-35

2.6 Database Output ...2-37
2.6.1 Runtime Objects..2-37
2.6.2 Result Objects ...2-38

2.7 Execution Without Database Update ...2-39
2.8 Loading Procedures..2-39

3. Scripting Hints ...3-1
3.1 Concealing Sensitive Data ...3-1

3.1.1 Prompting for Sensitive Data using the Script Builder.......................3-1
3.1.2 Obtaining Sensitive Data for Scripts That Run in the Background3-2

3.1.2.1 xmyUdb ..3-3
3.1.2.2 xmyCmd scramble ..3-3
3.1.2.3 Encrypted Database Files using des3-4
3.1.2.4 Using an Encrypted File ...3-6

3.1.2.4.1 Working With Keyed Lists3-6
3.1.2.4.2 Example of Loading Data from Keyed Lists3-7

3.1.3 Concealing Sensitive Data in Async SUTimages Files3-8
xii

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
3.2 Debugging - Dealing with Errors and Exceptions ...3-9
3.2.1 Overview...3-9
3.2.2 Tcl Error/Exception Information Procedures......................................3-9
3.2.3 MYNAH Exception Handling ..3-9

3.2.3.1 General Actions ..3-10
3.2.3.2 Error Processing..3-10

3.3 Output Ownership Considerations ...3-12
3.3.1 Execution Directory Permissions When Using the BEE3-12
3.3.2 File Ownership When Using the BEE ..3-12

3.4 Setting Output Levels...3-14
3.4.1 Returning the Current Output Level ...3-15
3.4.2 Changing the Output Level ...3-15

3.5 Script Termination ...3-16
3.5.1 Using a Termination Procedure ..3-16
3.5.2 Cleanup for Scripts Sent to ConnOnly and Fullstate SEs3-17
3.5.3 Sample Code ...3-17

3.6 UNIX Commands in Scripts ..3-20

4. Tcl Basics...4-1
4.1 Before We Begin..4-2

4.1.1 Examples in this Document ..4-2
4.1.2 Basic Concepts and Definitions ..4-2
4.1.3 set ..4-3
4.1.4 unset ..4-3
4.1.5 expr..4-4
4.1.6 incr ..4-4
4.1.7 append ...4-5
4.1.8 history..4-5

4.2 Expressions ..4-7
4.2.1 Operands ...4-7
4.2.2 Operators ...4-8

4.2.2.1 Arithmetic Operators ..4-8
4.2.2.2 Relational Operators ...4-9
4.2.2.3 Logical Operators ...4-9
4.2.2.4 Bitwise Operators ...4-10
4.2.2.5 Choice Operator..4-10
4.2.2.6 Precedence ..4-11

4.2.3 Mathematical Functions ..4-13
4.2.4 Conversion ..4-14

4.3 Tcl Syntax ..4-15
4.3.1 Substitution ...4-15

4.3.1.1 Variable...4-15
4.3.1.2 Command..4-15
4.3.1.3 Backslash ..4-16
 xiii

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.3.2 Quoting..4-18
4.3.2.1 Using Double Quotes..4-18
4.3.2.2 Using Braces...4-19

4.3.3 Comments ...4-20
4.4 Lists and Arrays ...4-21

4.4.1 Creating Lists ..4-22
4.4.1.1 Using the set Command..4-22
4.4.1.2 concat ..4-23
4.4.1.3 list ...4-24
4.4.1.4 llength ...4-25

4.4.2 Extracting Elements from a List - lindex ..4-26
4.4.3 Modifying Lists...4-27

4.4.3.1 lappend..4-27
4.4.3.2 linsert ..4-28
4.4.3.3 lreplace..4-29
4.4.3.4 lrange ..4-30

4.4.4 Searching Lists - lsearch ...4-31
4.4.5 Sorting Lists ..4-32
4.4.6 Converting Between Strings and Lists..4-33

4.4.6.1 split ...4-33
4.4.6.2 join ..4-34

4.4.7 Arrays..4-35
4.5 Control Flows...4-36

4.5.1 if ..4-36
4.5.2 Looping Commands ..4-38

4.5.2.1 while ...4-38
4.5.2.2 for..4-39
4.5.2.3 foreach ..4-40

4.5.3 Looping Control ..4-41
4.5.3.1 break ...4-41
4.5.3.2 continue...4-42

4.5.4 switch ..4-43
4.5.5 eval ..4-45

4.6 Tcl Error/Exception Procedures ...4-46
4.6.1 catch ..4-46
4.6.2 Tcl Error Global Variables..4-47

4.6.2.1 errorCode ..4-47
4.6.2.2 errorInfo ..4-48

4.7 Procedures ..4-50
4.7.1 proc..4-50
4.7.2 return ...4-51
4.7.3 Local and Global Variables...4-51
xiv

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
4.8 String Manipulation ...4-53
4.8.1 string match...4-53
4.8.2 regexp..4-54

4.9 File Input/Output ..4-55
4.9.1 open...4-56
4.9.2 close ..4-58

4.10 Using xmytclsh...4-59
4.11 Importing Scripts Using the source Command ..4-60

5. Using the Compare Master ..5-1
5.1 Compare Master Basics..5-1
5.2 Region Dimension Restrictions..5-2
5.3 Suppressing the Compare Master...5-3
5.4 Example..5-3

6. xmyVar Global Script Variables..6-1
6.1 Channel ..6-1
6.2 CreateNewCompareMaster ..6-2
6.3 DatabaseMode..6-3
6.4 EngineMode ...6-4
6.5 EngineType ..6-5
6.6 ExitHandler ..6-6
6.7 FailedCompares..6-8
6.8 GoodCompares...6-10
6.9 LibraryPath...6-11
6.10 MaxFails...6-12
6.11 MaxFailsHandler..6-13
6.12 OutputDir ...6-14
6.13 OutputLevel..6-14
6.14 RuntimeId...6-15
6.15 ScriptName...6-15
6.16 SEGroup...6-16
6.17 SubmittedBy...6-16
6.18 SymTbl ...6-17
6.19 SymTblNAC ..6-18
6.20 TestVersionId...6-18
6.21 TimeoutHandler ...6-19
6.22 UpdateCompares ..6-20
6.23 WarningCompares..6-21

7. General MYNAH Tcl Extensions ..7-1
7.1 Overview ..7-1
7.2 General Commands ..7-1

7.2.1 exit...7-3
7.2.2 xmyBegin ..7-4
7.2.3 xmyCompare ...7-6
 xv

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.4 xmyDate ..7-8
7.2.5 xmyDiff ...7-11
7.2.6 xmyEnd ...7-15
7.2.7 xmyExit ...7-16
7.2.8 xmyGetLine ..7-17
7.2.9 xmyLoadPkg ...7-18
7.2.10 xmyMask...7-20

7.2.10.1 create...7-20
7.2.10.2 destroy...7-22
7.2.10.3 disable ...7-23
7.2.10.4 enable..7-23

7.2.11 xmyPrint..7-24
7.2.12 xmyPrompt..7-25
7.2.13 xmyReadGrep ...7-26
7.2.14 xmyRegex ...7-29
7.2.15 xmySimilar..7-31
7.2.16 xmySleep...7-32
7.2.17 xmySource ..7-33
7.2.18 xmySymTblDel ...7-34
7.2.19 xmySymTblExists ...7-35
7.2.20 xmySymTblGet ...7-36
7.2.21 xmySymTblPut ...7-37
7.2.22 xmyUnloadPkg..7-38
7.2.23 xmyUpdateResult..7-39

7.3 Encryption Utilities ..7-40
7.3.1 xmyUdb...7-40
7.3.2 xmyCmd scramble ..7-42

7.4 Performance Measurement Functions..7-43

8. Child Script Extension Package...8-1
8.1 Child Script Connection Methods..8-2
8.2 connect ...8-2

8.2.1 cancel ..8-4
8.2.2 destroy ...8-5
8.2.3 pause..8-6
8.2.4 resume ...8-7
8.2.5 send ...8-8
8.2.6 sendWait..8-9
8.2.7 wait..8-10

8.3 xmySE waitAll ...8-11
8.4 xmySE waitAny ...8-12
8.5 General Child Script Concerns...8-13

8.5.1 Deadlock ...8-13
8.5.2 Zombie Processes..8-13
xvi

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
9. TermAsync Extension Package ...9-1
9.1 Overview ..9-1

9.1.1 Methods Overview..9-1
9.1.2 Attributes Overview..9-2

9.2 System Prompts..9-4
9.3 Waiting for a Response ..9-5
9.4 Adding an Extra Enter in a Script ..9-6
9.5 xmyTermAsync class ...9-7

9.5.1 Methods...9-7
9.5.1.1 compare...9-7
9.5.1.2 connect ..9-9
9.5.1.3 disableMask ..9-11
9.5.1.4 disconnect ...9-12
9.5.1.5 enableMask ...9-13
9.5.1.6 getAttributes ...9-14
9.5.1.7 listAttributeTypes ...9-15
9.5.1.8 response ..9-16
9.5.1.9 screen ..9-18
9.5.1.10 send ...9-20
9.5.1.11 sendWait ...9-22
9.5.1.12 wait ...9-23

9.5.2 Attributes...9-25
9.5.2.1 -bufferlen ..9-25
9.5.2.2 -column ...9-25
9.5.2.3 -connections..9-26
9.5.2.4 -delay ..9-26
9.5.2.5 -failedCompares..9-26
9.5.2.6 -goodCompares...9-27
9.5.2.7 -masks ...9-27
9.5.2.8 -name ..9-27
9.5.2.9 -position ..9-28
9.5.2.10 -prompt ...9-28
9.5.2.11 -row...9-28
9.5.2.12 -shell ...9-28
9.5.2.13 -showAttributes...9-29
9.5.2.14 -size...9-29
9.5.2.15 -status..9-29
9.5.2.16 -terminal..9-30
9.5.2.17 -terminfo ...9-30
9.5.2.18 -timeout...9-30
9.5.2.19 -warningCompares..9-30
9.5.2.20 -wildcard ...9-31

9.5.3 Changing Configuration Parameters ...9-32
9.5.4 Querying Configuration Parameters ...9-32
 xvii

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.6 Async Procedures...9-34
9.6.1 xmyPrintScreen...9-34

9.7 Async Scripting ..9-35

10. Term3270 Extension Package..10-1
10.1 Overview ..10-1

10.1.1 Methods Overview..10-1
10.1.2 Attributes Overview..10-3

10.2 Term3270 Attribute Definitions...10-6
10.3 Term3270 Location Processing..10-9

10.3.1 Row/Column Processing...10-10
10.3.2 Label Processing ...10-11
10.3.3 Tag Name Processing..10-12

10.4 xmyTerm3270 Class ..10-14
10.4.1 Methods...10-14

10.4.1.1 compare...10-14
10.4.1.2 connect ..10-16
10.4.1.3 disableMask ..10-19
10.4.1.4 disconnect ...10-20
10.4.1.5 enableMask ...10-21
10.4.1.6 fieldBegin ...10-22
10.4.1.7 fieldLength..10-23
10.4.1.8 fieldNext ...10-24
10.4.1.9 find..10-25
10.4.1.10 findLabel...10-26
10.4.1.11 format..10-27
10.4.1.12 getAttribute ...10-28
10.4.1.13 ignore ..10-29
10.4.1.14 listAttributeTypes ...10-30
10.4.1.15 moveCursor...10-31
10.4.1.16 screen ..10-32
10.4.1.17 send ...10-34
10.4.1.18 sendWait ...10-35
10.4.1.19 type ...10-36
10.4.1.20 wait ...10-37

10.4.2 Attributes...10-39
10.4.2.1 -column (R)...10-39
10.4.2.2 -collectKeyCount (W/R)...10-39
10.4.2.3 -compareInvisibleFields (W/R)10-40
10.4.2.4 -connections (R)..10-40
10.4.2.5 -dataBytesReceived (R) ..10-40
10.4.2.6 -failedCompares (R) ...10-41
10.4.2.7 -formatName (R) ..10-41
10.4.2.8 -goodCompares (R) ..10-41
10.4.2.9 -host (W/R) ...10-42
xviii

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
10.4.2.10 -initialWait (W/R)...10-42
10.4.2.11 -initialWaitExpect (W/R)..10-42
10.4.2.12 -keyCount (R) ...10-43
10.4.2.13 -lastKeyPressed (R) ..10-43
10.4.2.14 -lastResponseTime (R) ...10-43
10.4.2.15 -lastTransmitTime (R) ..10-44
10.4.2.16 -masks (R)...10-44
10.4.2.17 -model (W/R)..10-44
10.4.2.18 -name (W/R) ...10-45
10.4.2.19 -port (W/R) ...10-45
10.4.2.20 -queryConnection (R) ...10-46
10.4.2.21 -row (R) ..10-46
10.4.2.22 -screenIdFile (W/R) ..10-46
10.4.2.23 -showAttributes (W/R) ...10-47
10.4.2.24 -status (R)..10-47
10.4.2.25 -tagDir (W/R)..10-47
10.4.2.26 -timeout (W/R)..10-48
10.4.2.27 -TN3270E (W/R) ..10-48
10.4.2.28 -warningCompares (W/R) ..10-48

10.5 3270 Procedures ...10-49
10.5.1 xmyPrintScreen...10-49

10.6 When to use send and sendWait Methods..10-50
10.6.1 MYNAH send and sendWait Methods ...10-50
10.6.2 Summarization ..10-51

11. General Application-to-Application Tcl Language Extensions...............................11-1
11.1 Overview ..11-1

11.1.1 Methods Overview..11-2
11.1.2 Attributes Overview..11-3

11.2 xmyAppApp class ..11-5
11.2.1 Methods...11-5

11.2.1.1 connect ..11-5
11.2.1.2 delete...11-7
11.2.1.3 disconnect ...11-8
11.2.1.4 receive...11-9
11.2.1.5 send ...11-11

11.2.2 Attributes...11-13
11.2.2.1 -append ...11-13
11.2.2.2 -broadcast..11-15
11.2.2.3 -connections..11-16
11.2.2.4 -connId..11-17
11.2.2.5 -data ..11-18
11.2.2.6 -file..11-19
11.2.2.7 -IFhost...11-20
11.2.2.8 -listen ..11-21
 xix

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.2.9 -match ...11-23
11.2.2.10 -maxMsgs ...11-25
11.2.2.11 -name ..11-26
11.2.2.12 -recvPort ...11-27
11.2.2.13 -recvStatus ..11-28
11.2.2.14 -recvTime..11-29
11.2.2.15 -sendPort ...11-30
11.2.2.16 -sendStatus..11-31
11.2.2.17 -sendTime ...11-32
11.2.2.18 -timeout...11-33

11.3 Example..11-34

12. TOP Tcl Language Extension ..12-1
12.1 Overview ..12-1

12.1.1 Methods Overview..12-2
12.1.2 Attributes Overview..12-3

12.2 xmyTop class ...12-5
12.2.1 Methods...12-5

12.2.1.1 connect ..12-5
12.2.1.2 disconnect ...12-7
12.2.1.3 receive...12-8
12.2.1.4 send ...12-10

12.2.2 Attributes...12-12
12.2.2.1 -append ...12-12
12.2.2.2 -connections..12-14
12.2.2.3 -conversion ...12-15
12.2.2.4 -data ..12-16
12.2.2.5 -dtn..12-17
12.2.2.6 -file..12-18
12.2.2.7 -listen ..12-19
12.2.2.8 -match ...12-21
12.2.2.9 -maxMsgs ...12-23
12.2.2.10 -maxSegmentLen..12-24
12.2.2.11 -name ..12-25
12.2.2.12 -psn ...12-26
12.2.2.13 -recvSession..12-27
12.2.2.14 -recvStatus ..12-28
12.2.2.15 -recvTime..12-29
12.2.2.16 -sendSession ...12-30
12.2.2.17 -sendStatus..12-31
12.2.2.18 -sendTime ...12-32
12.2.2.19 -timeout...12-33
12.2.2.20 -topcom...12-34
xx

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
12.3 Examples ..12-35
12.3.1 Example 1 ...12-35
12.3.2 Example 2 ...12-36

13. PRT3270 Tcl Language Extensions...13-1
13.1 Overview ..13-1

13.1.1 Methods Overview..13-2
13.1.2 Attributes Overview..13-3

13.2 xmyPrt3270 class ...13-5
13.2.1 Methods...13-5

13.2.1.1 connect ..13-5
13.2.1.2 disconnect ...13-7
13.2.1.3 receive...13-8

13.2.2 Attributes...13-10
13.2.2.1 -append ...13-10
13.2.2.2 -connections\...13-12
13.2.2.3 -conversion ...13-13
13.2.2.4 -data ..13-14
13.2.2.5 -file..13-15
13.2.2.6 -listen ..13-16
13.2.2.7 -match ...13-17
13.2.2.8 -maxMsgs ...13-19
13.2.2.9 -name ..13-20
13.2.2.10 -printcom...13-21
13.2.2.11 -recvSession..13-22
13.2.2.12 -recvStatus ..13-22
13.2.2.13 -recvTime..13-23
13.2.2.14 -timeout...13-24

13.3 Example..13-25

14. FCIF Tcl Language Extensions..14-1
14.1 Overview ..14-1

14.1.1 Methods Overview..14-1
14.2 xmyFcif Class...14-2

14.2.1 Methods...14-3
14.2.1.1 create...14-3
14.2.1.2 compare...14-5
14.2.1.3 compareTags...14-7
14.2.1.4 destroy...14-10
14.2.1.5 extraTags...14-11
14.2.1.6 getTag ...14-13
14.2.1.7 reorder...14-14

15. Message Response Directory Tcl Language Extensions ...15-1
15.1 xmyMsgDir class ...15-2

15.1.1 Methods...15-2
 xxi

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
15.1.1.1 close ..15-2
15.1.1.2 delete...15-3
15.1.1.3 open...15-4

15.1.2 Attributes...15-5
15.1.2.1 -data ..15-5
15.1.2.2 -file..15-6
15.1.2.3 -first...15-7
15.1.2.4 -handler ...15-8
15.1.2.5 -last ...15-9
15.1.2.6 -marked ...15-10
15.1.2.7 -maxMsgs ...15-11
15.1.2.8 -move ..15-12
15.1.2.9 -msgDir ...15-13
15.1.2.10 -next ..15-14
15.1.2.11 -numMsgs ...15-15
15.1.2.12 -position ..15-16
15.1.2.13 -prev..15-17
15.1.2.14 -printcom...15-18
15.1.2.15 -recvSession..15-19
15.1.2.16 -subDir ..15-20
15.1.2.17 -topcom...15-21

15.1.3 Example ..15-22
15.2 Match Tcl Extensions...15-23

15.2.1 xmyMsgMatch ..15-23
15.2.2 xmyMsgMatchUntil ..15-25
15.2.3 xmyMsgMatchNext ..15-27

15.3 Marking/Unmarking Messages - xmyMsgMarkFile....................................15-28

16. TCP App-to-App Tcl Language Extensions ..16-1
16.1 Overview ..16-1

16.1.1 Methods Overview..16-2
16.1.2 Attributes Overview..16-3

16.2 xmyTcp Class...16-5
16.2.1 Methods...16-5

16.2.1.1 accept ..16-5
16.2.1.2 connect ..16-7
16.2.1.3 delete...16-9
16.2.1.4 disconnect ...16-10
16.2.1.5 receive...16-11
16.2.1.6 send ...16-13

16.2.2 Attributes...16-15
16.2.2.1 -append ...16-15
16.2.2.2 -appName..16-17
16.2.2.3 -broadcast..16-18
16.2.2.4 -connections..16-19
xxii

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
16.2.2.5 -connId..16-20
16.2.2.6 -data ..16-21
16.2.2.7 -file..16-22
16.2.2.8 -host ..16-23
16.2.2.9 -listen ..16-24
16.2.2.10 -match ...16-26
16.2.2.11 -maxMsgs ...16-28
16.2.2.12 -name ..16-29
16.2.2.13 -port...16-30
16.2.2.14 -recvStatus ..16-31
16.2.2.15 -recvTime..16-32
16.2.2.16 -sendStatus..16-33
16.2.2.17 -sendTime ...16-34
16.2.2.18 -srcHost...16-35
16.2.2.19 -srcPort..16-36
16.2.2.20 -timeout...16-37

16.3 Example..16-38

17. Batch Tcl Language Extensions...17-1
17.1 Accessing The Batch Procedures ...17-1
17.2 Submitting a Batch Job - batch_submit ...17-1
17.3 Methods..17-5

17.3.1 batch_delete ..17-5
17.3.2 batch_host ...17-7
17.3.3 batch_jobid..17-8
17.3.4 batch_status ...17-9
17.3.5 batch_step_count...17-10
17.3.6 batch_step_result...17-11
17.3.7 batch_wait ...17-13

17.4 The .netrc file ...17-14

18. DCE Extension Package ..18-1
18.1 DCE Overview ...18-2

18.1.1 DCE Architecture..18-2
18.1.2 Interface Definition ...18-2
18.1.3 IDL File...18-3

18.2 Developing a DCE Application ...18-3
18.2.1 DCE Client Development ...18-3
18.2.2 DCE Server Development...18-3

18.3 Overview of Scripting ..18-4
18.3.1 Emulated Client...18-4
18.3.2 Emulated Server ..18-4

18.4 Using the Emulated Client and Emulated Server in MYNAH System..........18-5
18.4.1 Overview...18-5
18.4.2 Using the Emulated Client ..18-5
 xxiii

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.4.2.1 xmyDceStartClient ...18-5
18.4.2.2 xmyDceWaitForClient..18-7

18.4.3 Using the Emulated Server ...18-8
18.4.3.1 xmyDceStartServer...18-8
18.4.3.2 xmyDceWaitForServer ...18-9

18.4.4 Using the Emulated Server for Starting a Long-Running Server ...18-10
18.4.4.1 xmyDceStartIndependentServer18-10

18.5 Interface Object ..18-11
18.5.1 name ..18-11
18.5.2 uuid..18-11
18.5.3 major-version ..18-11
18.5.4 minor-version ..18-12
18.5.5 isClient ..18-12
18.5.6 isServer..18-12
18.5.7 constants..18-13
18.5.8 types ..18-13
18.5.9 rpcs ..18-13

18.6 IDL Types ..18-14
18.6.1 array ..18-17

18.6.1.1 make-array Constructor ..18-17
18.6.1.2 elements Method...18-17
18.6.1.3 index Method ..18-18

18.6.2 bool..18-19
18.6.2.1 make-bool Constructor ...18-19
18.6.2.2 get Method ..18-19
18.6.2.3 set Method ..18-20

18.6.3 buffer ...18-21
18.6.3.1 make-buffer Constructor...18-21
18.6.3.2 get Method ..18-21
18.6.3.3 set Method ..18-22
18.6.3.4 length Method...18-22

18.6.4 byte..18-23
18.6.4.1 make-byte Constructor..18-23
18.6.4.2 get Method ..18-23
18.6.4.3 set Method ..18-24

18.6.5 char..18-25
18.6.5.1 make-char Constructor..18-25
18.6.5.2 get Method ..18-25
18.6.5.3 set Method ..18-26

18.6.6 double..18-27
18.6.6.1 make-double Constructor..18-27
18.6.6.2 get Method ..18-27
18.6.6.3 set Method ..18-28
xxiv

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
18.6.7 enumeration...18-29
18.6.7.1 make-enum Constructor..18-29
18.6.7.2 get Method ..18-29
18.6.7.3 set Method ..18-30
18.6.7.4 values Method...18-30

18.6.8 error_status_t...18-31
18.6.8.1 make-error_status_t Constructor18-31
18.6.8.2 get Method ..18-31
18.6.8.3 set Method ..18-32
18.6.8.4 values Method...18-32

18.6.9 float ...18-33
18.6.9.1 make-float Constructor ...18-33
18.6.9.2 get Method ..18-33
18.6.9.3 set Method ..18-34

18.6.10 handle_t ...18-35
18.6.10.1 make-handle_t Constructor...18-35
18.6.10.2 make uuid_t Constructor...18-35
18.6.10.3 get Method ..18-36
18.6.10.4 get Method ..18-36
18.6.10.5 set Method ..18-37
18.6.10.6 set Method ..18-37
18.6.10.7 bind Method..18-37
18.6.10.8 setAuthentication Method...18-39

18.6.11 hyper..18-40
18.6.11.1 make-hyper Constructor ...18-40
18.6.11.2 get Method ..18-40
18.6.11.3 set Method ..18-41

18.6.12 long..18-42
18.6.12.1 make-long Constructor ...18-42
18.6.12.2 get Method ..18-42
18.6.12.3 set Method ..18-43

18.6.13 pipe..18-44
18.6.13.1 make-pipe Constructor..18-44
18.6.13.2 setInputFilename Method ...18-44
18.6.13.3 setOutputFilename Method ..18-45
18.6.13.4 dumpFile Method..18-45
18.6.13.5 readFile Method..18-46

18.6.14 pointer ...18-47
18.6.14.1 make-pointer Constructor ...18-47
18.6.14.2 get Method ..18-47
18.6.14.3 set Method ..18-48
18.6.14.4 -> (dereference) Method ...18-48
18.6.14.5 get-pointer-contents Method...18-49
 xxv

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.15 short...18-50
18.6.15.1 make-short Constructor ..18-50
18.6.15.2 get Method ..18-50
18.6.15.3 set Method ..18-51

18.6.16 small ..18-52
18.6.16.1 make-small Constructor..18-52
18.6.16.2 get Method ..18-52
18.6.16.3 set Method ..18-53

18.6.17 string..18-54
18.6.17.1 make-string Constructor ...18-54
18.6.17.2 get Method ..18-54
18.6.17.3 set Method ..18-55

18.6.18 structure...18-56
18.6.18.1 make-struct Constructor..18-56
18.6.18.2 make-struct Constructor Containing a

Conformant Array...18-56
18.6.18.3 members Method ..18-57
18.6.18.4 memberName Method ..18-57

18.6.19 uhyper..18-58
18.6.19.1 make-uhyper Constructor ...18-58
18.6.19.2 get Method ..18-58
18.6.19.3 set Method ..18-59

18.6.20 ulong..18-60
18.6.20.1 make-ulong Constructor ...18-60
18.6.20.2 get Method ..18-60
18.6.20.3 set Method ..18-61

18.6.21 union..18-62
18.6.21.1 make-union Constructor ...18-62
18.6.21.2 members Method ..18-62
18.6.21.3 memberName Method ..18-63
18.6.21.4 tagName Method ..18-63
18.6.21.5 tagName Method to Retrieve Discriminant18-64
18.6.21.6 currentTag Method ...18-64

18.6.22 ushort...18-65
18.6.22.1 make-ushort Constructor ..18-65
18.6.22.2 get ...18-65
18.6.22.3 set ..18-66

18.6.23 usmall ..18-67
18.6.23.1 make-usmall Constructor..18-67
18.6.23.2 get Method ..18-67
18.6.23.3 set Method ..18-68

18.7 RPC Calls in the Emulated Client ..18-69
18.8 Printing Objects..18-70

18.8.1 print ...18-70
xxvi

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
18.9 Getting the Type of an Object - typeOfHandle ..18-71
18.10 RPC Calls in the Emulated Server ...18-72
18.11 Constants ..18-73
18.12 Destroying Objects...18-74

18.12.1 destroy ...18-74
18.13 Deleting Handles and Objects ..18-75

18.13.1 xmyDceScope ...18-75
18.13.2 Methods Supporting the Deletion of Objects..................................18-76

18.13.2.1 xmyDceDeleteHandles ...18-76
18.13.2.2 xmyDceDeleteAllHandles ..18-77
18.13.2.3 xmyDceDeleteDataHandles..18-77
18.13.2.4 xmyDceSaveHandles..18-78
18.13.2.5 xmyDceRestoreHandles ...18-78

18.14 Getting the Interface- xmyDceInterface...18-79
18.15 DCE/Async Commands ...18-80

18.15.1 xmyDceRecordEnterOperation...18-80
18.15.2 xmyDceRecordExitOperation ...18-81
18.15.3 xmyDceCallRpc ..18-82

19. GUI Tcl Language Extensions...19-1
19.1 Accessing the MYNAH Symbol Table..19-1
19.2 SQA Pointer Scripts ...19-2

20. Conversion Runtime Procedures..20-1
20.1 FIN Scripts ...20-1

20.1.1 ASYNCconnect...20-2
20.1.2 xmyBreakLines / (compare-lines, print-response, log-for-phaser) ...20-3
20.1.3 xmyCompareLines / compare-lines ..20-5
20.1.4 xmyGetEnvFin / getenv ..20-6
20.1.5 xmyLastPart / last-part ..20-7
20.1.6 xmy_ListToAttributeFin / atr..20-8
20.1.7 xmyRecordCompareFin / (test, compare-lines)20-9
20.1.8 xmySetOutputLevelFin / print-level ...20-11
20.1.9 xmyTransKeyFin ..20-12

20.2 FUR Scripts ..20-13
20.2.1 3270connect ..20-14
20.2.2 xmyAddMask / add_mask ..20-15
20.2.3 xmyDisableMask / disable_mask..20-16
20.2.4 xmyEnableMask / enable_mask..20-17
20.2.5 xmyFieldBegin / fldbeg, fldbeg_tag ...20-18
20.2.6 xmyFieldNext / fldnext ...20-20
20.2.7 xmyFieldNextTag / fldnext_tag ..20-22
20.2.8 xmyGetEnvFur / getenv ..20-24
20.2.9 xmy_ListToAttributeFur / (atr, atr_tag)..20-25
 xxvii

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.10 xmy_ListToPositionFur / (col, fldbeg, fldbeg_tag,
fldnext, fldnext_tag)..20-26

20.2.11 xmyMoveCursorPattern / move_cursor_pattern20-27
20.2.12 xmyReconnect / reconnect ..20-28
20.2.13 xmyRecordCompareFur / test ...20-29
20.2.14 xmySetOutputLevelFur / print-level ...20-30

20.3 FIN and FUR Scripts..20-31
20.3.1 xmyEOF / eof..20-32
20.3.2 xmyAddMonth / addmonth...20-33
20.3.3 xmyAToN / aton ...20-34
20.3.4 xmyBreakPoint / breakpoint ...20-35
20.3.5 xmyCallPrompt / prompt ..20-36
20.3.6 xmyCallShell / shell ..20-37
20.3.7 xmyExpand / $..20-38
20.3.8 xmyFindLibPath (load) ...20-39
20.3.9 xmyKeylGetKey / dbget-key ..20-40
20.3.10 xmyMultiPrompt / multiprompt..20-41
20.3.11 xmyMultiPromptField...20-42
20.3.12 xmy_Open / open ..20-44
20.3.13 xmyRand / rand...20-45
20.3.14 xmyReadbreak / read ..20-46
20.3.15 xmySetZero...20-47
20.3.16 xmySubString / substring..20-48
20.3.17 xmyTCLTransRE / (rematch, adiff, addmask)20-49
20.3.18 xmyTrim / trim..20-50
20.3.19 xmyTypeOf / typeof..20-51

20.4 Converted ADDAM Scripts ...20-52
20.4.1 checktags / checktags ..20-53
20.4.2 create_dot_out_file..20-54
20.4.3 export / export ...20-55
20.4.4 extratags / extratags...20-56
20.4.5 fcifcomp / fcifcomp...20-57
20.4.6 fciffield / fciffield..20-58
20.4.7 fcifmatch / fcifmatch...20-59
20.4.8 get_parm..20-60
20.4.9 postincr..20-61
20.4.10 printf / printf..20-62
20.4.11 prt3270_connect..20-63
20.4.12 readfile / readfile ...20-64
20.4.13 reorder / reorder ..20-65
20.4.14 setvl / setvl ..20-66
20.4.15 soprespc / soprespc..20-67
20.4.16 sprintf / sprintf...20-68
20.4.17 substr / substr ..20-69
xxviii

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Contents
Revision 1, February 1999 Release 5.3
20.4.18 top_connect ...20-70
20.4.19 vl / vl ...20-71
20.4.20 xmyImport / import ...20-72

20.5 Converted Tsf Scripts...20-73
20.5.1 add_to_symtab_if_not_already_there ...20-74
20.5.2 send_app_to_app_message ...20-75
20.5.3 send_script ..20-76
20.5.4 send_script_and_check_threshold ..20-77
20.5.5 set_up_parent_script ...20-78
20.5.6 wait_for_child_scripts...20-79
20.5.7 xmyAddToSymTbl ...20-80
20.5.8 xmyRunTestEvents ...20-81

Appendix A: Basic Tcl Commands ...A-1
A.1 append ...A-2
A.2 array...A-3
A.3 break..A-5
A.4 case ..A-6
A.5 catch ..A-7
A.6 cd ...A-8
A.7 close...A-9
A.8 concat ..A-10
A.9 continue ...A-11
A.10 eof..A-12
A.11 error ...A-13
A.12 eval ..A-14
A.13 exec ...A-15
A.14 exit...A-18
A.15 expr..A-19
A.16 file ...A-24
A.17 flush...A-27
A.18 for ..A-28
A.19 foreach...A-29
A.20 format ..A-30
A.21 gets ..A-33
A.22 glob..A-34
A.23 global...A-35
A.24 history..A-36
A.25 if ..A-39
A.26 incr...A-40
A.27 info ..A-41
A.28 join...A-44
A.29 lappend ..A-45
A.30 library ..A-46
A.31 lindex...A-50
 xxix

MYNAH System Scripting Guide BR 007-252-004
Contents Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.32 linsert...A-51

A.33 list ..A-52

A.34 llength..A-53

A.35 lrange...A-54

A.36 lreplace ..A-55

A.37 lsearch ...A-56

A.38 lsort..A-57

A.39 open ...A-58

A.40 pid..A-60

A.41 proc..A-61

A.42 puts ..A-62

A.43 pwd..A-63

A.44 read ..A-64

A.45 regexp..A-65

A.46 regsub ..A-68

A.47 rename ...A-69

A.48 return ...A-70

A.49 scan..A-72

A.50 seek..A-74

A.51 set ..A-75

A.52 source ..A-76

A.53 split ..A-77

A.54 string..A-78

A.55 switch ..A-80

A.56 tclvars ..A-82

A.57 tell..A-85

A.58 time..A-86

A.59 trace ...A-87

A.60 unknown..A-90

A.61 unset ..A-91

A.62 uplevel ...A-92

A.63 upvar..A-93

A.64 while ..A-94

Glossary ... Glossary-1

Index ..Index-1
xxx

 xxxi

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 List of Figures
Revision 1, February 1999 Release 5.3

List of Figures Figures

Figure 1-1. tclhelp Window..1-2
Figure 1-2. tclhelp Tcl Subjects Window...1-2
Figure 2-1. MYNAH GUI Script Object Code View...2-5
Figure 2-2. MYNAH Script Builder Code View ...2-7
Figure 2-3. Script Builder Execution Progress Dialog...2-9
Figure 2-4. Script Builder Remote Connection Execution Window............................2-9
Figure 2-5. Background Script Execution Environment ..2-11
Figure 3-1. xmyPrompt Window..3-1
Figure 3-2. Example Window Prompting for des Key...3-5
Figure 3-3. Error Processing Example ...3-10
Figure 3-4. Example 3270 Logon Window..3-11
Figure 3-5. Example Script to Change Permissions of Output Files..........................3-13
Figure 3-6. Example Script Termination Procedures ...3-18
Figure 3-7. Example SUT Log Off Script ..3-18
Figure 3-8. Example System Log Off Procedure ...3-19
Figure 3-9. Example Script Exit Procedure..3-19
Figure 4-1. Floating-Point Number Examples ...4-7
Figure 9-1. Sample TermAsync Script 1..9-35
Figure 9-2. Sample TermAsync Script 2..9-36
Figure 9-3. Sample TermAsync Script 2..9-37
Figure 10-1. Example 3270 Screen ..10-10
Figure 11-1. MYNAH General AppApp Interactions..11-1
Figure 12-1. MYNAH TOPCOM Interactions...12-1
Figure 13-1. MYNAH PRT3270 Interactions ..13-1

MYNAH System Scripting Guide BR 007-252-004
List of Tables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
List of Tables Tables

Table 1. MYNAH Language Guide Sections ..Preface-1
Table 1-1. WWW Tcl Home Pages ..1-1
Table 1-2. Example Class Commands, Methods, and Attributes1-4
Table 1-3. MYNAH Tcl Extension Functional Categories.......................................1-10
Table 4-1. Section Contents ..4-1
Table 4-2. Tcl Number Base Example..4-7
Table 4-3. Tcl Arithmetic Operators...4-8
Table 4-4. Tcl Relational Operators..4-9
Table 4-5. Tcl Logical Operators ..4-9
Table 4-6. Tcl Bitwise Operators ..4-10
Table 4-7. Tcl Operator Precedence ...4-11
Table 4-8. Tcl Trig Functions ...4-13
Table 4-9. Tcl Math Functions..4-14
Table 4-10. Tcl Backslash Sequences...4-17
Table 5-1. Comparison Extensions ...5-1
Table 7-1. General MYNAH Extensions ..7-1
Table 7-2. Loadable MYNAH Packages ..7-18
Table 8-1. xmySE (Child Script) Methods ...8-1
Table 9-1. TermAsync Method Extensions ..9-1
Table 9-2. TermAsync Attribute Extensions ..9-2
Table 10-1. Term3270 Method Extensions...10-1
Table 10-2. Term3270 Attribute Extensions...10-3
Table 10-3. Term3270 Attribute Definitions ..10-6
Table 10-4. 3270 Function Keys...10-34
Table 11-1. AppApp Method Extensions ...11-2
Table 11-2. AppApp Attribute Extensions ...11-3
Table 12-1. TOP Method Extensions..12-2
Table 12-2. TOP Attribute Extensions..12-3
Table 13-1. PRT3270 Method Extensions..13-2
Table 13-2. PRT3270 Attribute Extensions ..13-3
Table 14-1. FCIF Method Extensions...14-1
Table 15-1. Message Response Directory Tcl Language Extension Categories15-1
Table 16-1. TCP Method Extensions ..16-2
Table 16-2. TCP Attribute Extensions ..16-3
Table 18-1. MYNAH DCE Extension Sections..18-1
Table 18-2. DCE IDL Type Extensions..18-14
Table 19-1. Choosing a GUI Test Tool Include Script ...19-1
Table 19-2. GUI Test Tool Symbol Table Extensions..19-2
Table 20-1. FIN Commands to MYNAH 5.3 Mappings ..20-1
Table 20-2. FUR Commands to MYNAH 5.3 Mappings ...20-13
Table 20-3. FIN and FUR Commands to MYNAH 5.3 Mappings...........................20-31
xxxii

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 List of Tables
Revision 1, February 1999 Release 5.3
Table 20-4. ADDAM Commands to MYNAH 5.3 Mappings..................................20-52
Table 20-5. Tsf Commands to MYNAH 5.3 Mappings ...20-73
 xxxiii

MYNAH System Scripting Guide BR 007-252-004
List of Tables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
xxxiv

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Introduction to Revision 1
Revision 1, February 1999 Release 5.3

e
Introduction to Revision 1 Revision

Please use the following instructions to update your document, BR 007-252-004, Issue 4 ,
December 1998.

Reason for Revision

Section 20, “Conversion Runtime Procedures” of this Guide has been revised to enhanc
the runtime procedures descriptions and examples.

Change bars (|) highlight changes in this revision.

Remove from Issue 4 Replace with Revision sections

Table of Contents Table of Contents

List of Figures List of Figures

List of Tables List of Tables

Preface Preface

Section 20 Section 20

Index Index
 Revision–1

MYNAH System Scripting Guide BR 007-252-004
Introduction to Revision 1 Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Revision–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Preface
Revision 1, February 1999 Release 5.3

d

l

er

s

g

s

t

l
Preface Preface

Document Structure

This document contains a section on the basics of the Tcl language, a section on the TclX
extensions, and separate sections on each of MYNAH™ Tcl extensions.

Table 1 list the sections in this document with a brief description of each section.

Table 1. MYNAH Language Guide Sections (Sheet 1 of 3)

Section
Number Section Name Description

Section 1 Introduction This section contains general information on
this guide, including an overview of concepts
shared by all of the MYNAH packages.

Section 2 General Scripting This section discusses the basics behind
scripting, including creation, execution, file
output, and database output.

Section 3 Scripting Hints This section contains hints that you may fin
useful as you create your scripts, including
concealing sensitive data, script termination,
and debugging.

Section 4 Tcl Basics This section is a basic introduction to the Tc
language.

Section 5 Using the Compare Master This section describes the Compare Mast
feature.

Section 6 xmyVar Global Script
Variables

This section contains the complete list of the
variables in the global xmyVar array.

Section 7 General MYNAH Tcl
Extensions

This section describes the set of Tcl extension
that are available to a script automatically
when it starts executing as well as describin
an array of global MYNAH-specific variables
that are provided to the script.

Section 8 Child Script Extension
Package

This section describes the set of Tcl extension
for the Child Script Package, which is used to
start and control script execution from a paren
script.

Section 9 TermAsync Extension
Package

This section describes the asynchronous Tc
extensions that provide interactions with an
asynchronous terminal device.
 Preface–1

MYNAH System Scripting Guide BR 007-252-004
Preface Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Section 10 Term3270 Extension
Package

This section describes the 3270 Tcl extensions
that provide the functions necessary for
interactions with a 3270 device.

Section 11 General
Application-to-Application
Tcl Language Extensions

This section describes the General
Application-to-Application (AppApp)
extensions that provide the functionality
necessary for interaction with a SUT thru an
application specific interface.

Section 12 TOP Tcl Language
Extension

This section describes the Tcl extensions that
provide support for automated interactions
with the System Under Test (SUT) on the
TOP/TCP/IP application-to-application
interface.

Section 13 PRT3270 Tcl Language
Extensions

This section describes the Tcl extensions that
emulate a 3270 printer so that you can capture
messages that a SUT sends to a printer.

Section 14 FCIF Tcl Language
Extensions

This section describes the Tcl extensions that
process and analyze Flexible Computer
Interface Format (FCIF) messages.

Section 15 Message Response
Directory Tcl Language
Extensions

This section describes the Tcl extensions that
provide a mechanism to easily scan all
messages that have arrived on a particular
communications channel and have been saved
to disk.

Section 17 Batch Tcl Language
Extensions

This section describes the Tcl extensions that
emulate running batch jobs.

Section 18 DCE Extension Package This section describes the Tcl extensions that
provide the functions necessary for
interactions with a Distributed Computing
Environment (DCE).

Section 19 GUI Tcl Language
Extensions

This section describes the Tcl extensions that
provide access to GUI test applications.

Section 20 Conversion Runtime
Procedures

This section describes the Tcl procedures
supplied with the MYNAH System that
support the runtime environment for scripts
converted from MYNAH 4.x.

Table 1. MYNAH Language Guide Sections (Sheet 2 of 3)

Section
Number Section Name Description
Preface–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Preface
Revision 1, February 1999 Release 5.3

ocal

been

m on

he
NOTE — While separate packages, the combination of
the TOPCOM, PRT3270, FCIF, and General AppApp
packages provide complete functions needed to emulate
interactions between applications. Therefore, these
packages are often referred to as being part of the AppApp
package.

Related Documents

• BR 007-252-001, MYNAH System Administration Guide

• BR 007-252-002, MYNAH System Users Guide

On-line Versions of the MYNAH Documents

The MYNAH documents are available on-line in the Adobe® Acrobat® PDF format. The
PDF files are accessible from either the local file system or from an internal URL. See the
MYNAH administrator for the location of the PDF files.

Viewing the PDF files require that you have installed the Adobe Acrobat Reader®. If you
need the Acrobat Reader, contact the MYNAH administrator. In addition, you can
download the Acrobat Reader directly (off the Internet) from Adobe at www.adobe.com.

Once you have installed the Acrobat Reader, you can read the files

• Using the Acrobat Reader directly if the MYNAH System has been installed on a l
system.

• Using the Acrobat Reader as plug-in to a browser if the MYNAH System has not
installed on a local system, such as if the system has been installed on a UNIX®
Solaris™ server and you are using an X-windows™ emulator to access the syste
a PC. Consult your browser’s documentation for information on how to install
plug-ins.

Appendix A Basic Tcl Commands This appendix contains a reproduction of t
Tcl manual pages, covering all of the
commands in the basic Tcl command set.

Glossary Glossary This section contains a glossary of terms
related to the MYNAH System.

Table 1. MYNAH Language Guide Sections (Sheet 3 of 3)

Section
Number Section Name Description
 Preface–3

MYNAH System Scripting Guide BR 007-252-004
Preface Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ppear

ith the

 in
If you access the PDF files via a browser, you may wish to download the files to your local
system, which will give you direct access to a file the next time you need to read it, rather
than waiting for the browser to load it.

Formatting Conventions

When a term is being defined, e.g. method, it appears in Bold Helvetica.

The extension entries are described using the following structure and formatting
conventions:

Syntax

class_command_name connection_method \
-argument_name argument_value\
?-argument_name argument_value?

handle method_name -argument_name argument_value\
?-argument_name argument_value?

handle -attribute_name ?attribute_value?

class_command_name -attribute ?new_default_attribute_value?

Return

This is a brief statement of the return value this extension generates.

Description

The syntax section uses the following formatting conventions:

• Class command, method, attribute, and option names appear in Courier.

• All substitutable or user supplied items(e.g., handles and argument values) a
in Courier Italics.

• All optional entries are delimited by question marks.

The description section explains the reasons and uses of the method/attribute w
following conventions:

• Literal strings (class command, method, attribute, and option names) appear
bold Times.

• Substitutable or user supplied items (e.g., argument values) appear in boldItalics
Times.

• File and directory names appear in italics Times.
Preface–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Preface
Revision 1, February 1999 Release 5.3

g
Exception

Where feasible, each description will contain a section stating the conditions where the
extension will throw an exception (fail).

Examples

The examples use the following conventions:

• All examples appear in Courier

• The MYNAH System includes a program called xmytclsh (Section 4.10), that lets
you interactively run Tcl commands, including all MYNAH extensions.

When you start the program, the xmytclsh prompt (>) appears.

The examples in this document have been created as if they were entered usin
xmytclsh, and follow the following conventions:

• Lines representing text you type begin with the xmytclsh prompt (>), e.g.,

> xmyTermAsync connect

• Lines representing return values in examples will also appear in Courier but will
not begin with the xmytclsh prompt, e.g.,

> xmyTermAsync connect
.xmyTermAsync_1
> set x 5
5

where the line beginning with 5 shows the return value for the set command.
 Preface–5

MYNAH System Scripting Guide BR 007-252-004
Preface Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Preface–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Introduction
Revision 1, February 1999 Release 5.3

John

a

 an
er,
eral
1. Introduction

This document describes the MYNAH scripting language. This scripting language is based
on the Tcl language. Using this language, you will be able to create scripts for executing
tests for the various MYNAH packages.

Tcl, pronounced “tickle,” stands for “tool command language” and was developed by
Ousterhout at the University of California at Berkeley as a simple interpretive
programming language, implemented as a library of C procedures.

The “flavor” of Tcl used by the MYNAH System is extended Tcl, also called TclX, under
license from NeoSoft™. TclX is a superset of standard Tcl and is built alongside the
standard Tcl sources, adding extensions to expand Tcl’s capabilities. TclX contains

• Superset of new commands

• Library of user-extensible Tcl procedures.

Section 4 provides a basic overview of the Tcl language. This section is not meant as
in-depth discussion of the language but as a general introduction. There are, howev
several sources for a more complete understanding of Tcl. In addition, there are sev
Internet-based sources of Tcl information, including the USENET newsgroup
comp.lang.tcl and several World Wide Web (WWW) home pages. Table 1-1 lists a few of
these pages; several of these pages also contain links to other pages on the Web. Table 1-1
also provides the address for NeoSoft’s TclX man pages.

Table 1-1. WWW Tcl Home Pages

Home Page Name Address

Tcl/Tk Project At Sun
Microsystems Laboratories

http://sunscript.sun.com/

TCL WWW Info http://www.sco.com/Technology/tcl/Tcl.html

TclX (TCL) man pages
(Neosoft)

http://www.neosoft.com/tclx/man/TclX.n.html
 1–1

MYNAH System Scripting Guide BR 007-252-004
Introduction Issue 4, December 1998
Release 5.3 Revision 1, February 1999
1.1 Using the TclX Help Facility

TclX provides a help facility, tclhelp. During installation, the MYNAH System places
tclhelp in $XMYDIR/contrib/tclhelp/bin. To use this facility, type, at the UNIX prompt,

$XMYDIR/contrib/tclhelp/bin/tclhelp &

The window in Figure 1-1 appears.

The help is organized in a tree structure with each subject button opening a different branch.
For example, if you click on the tcl/ button, the window in Figure 1-2 appears. The subjects
in this window are organized according to the various TclX extension categories listed on
Neosoft’s TclX page listed in Table 1-1.

Click on the Help button in Figure 1-1 for information on using the help facility.

Figure 1-1. tclhelp Window

Figure 1-2. tclhelp Tcl Subjects Window
1–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Introduction
Revision 1, February 1999 Release 5.3

based

r

s.

ee

and

mand.
1.2 MYNAH Extensions Overview

In addition to the standard set of Tcl commands and procedures, the MYNAH System
makes use of the TclX extensions as well as sets of MYNAH specific extensions.
Extensions are commands and procedures that expand Tcl’s capabilities. These
extensions do not change basic Tcl, they only extend the abilities of the language.

The MYNAH extensions are organized into packages that are related to each other
on the functionality they perform. Each package represents a domain, which is the
interface between the MYNAH System and the System Under Test (SUT). A SUT can
be a system you wish to test or can contain the application you wish to automate. Fo
example, the asynchronous terminal interface of an application is a domain.

1.2.1 Extension Types

There are three types of MYNAH extensions:

• Class Commands - These give you control over a class or category of function
For more information about Class commands, see Section 1.2.1.1.

• Methods - These let you perform actions on instances, which are connections
made to SUTs using a class command. For more information about methods, s
Section 1.2.1.4.

• Attributes - These let you set the configuration characteristics of the instances
class commands. For more information about attributes, see Section 1.2.1.5.

Methods and attributes are sub-commands to a class command, that is, they cannot be
executed independently but rather must be executed in conjunction with a class com
 1–3

MYNAH System Scripting Guide BR 007-252-004
Introduction Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Table 1-2 contains basic examples of the relationships between class commands, methods,
and attributes.

Methods and attributes can be applied independently to class commands. For example, the
connect method (Section 9.5.1.2) can be applied to the xmyTermAsync class command
(Section 9.5) to create an asynchronous connection, e.g.,

xmyTermAsync connect

So too, the -timeout attribute (Section 9.5.2.18) can be applied to the xmyTermAsync
class command to show the default time-out value for the TermAsync package, e.g.,

xmyTermAsync -timeout

You can use attributes with methods, such as applying the connect method and the
-timeout attribute to the xmyTermAsync class command to create an asynchronous
connection with a time-out value that is different from the default value, e.g., see the third
example in Table 1-2.

xmyTermAsync connect -timeout 20

You can also apply an argument value directly to a class command. For example, you apply
a string that will be produced when exiting from a script directly to the xmyExit class
command (Section 7.2.7), e.g., see the fourth example in Table 1-2.

xmyExit "exit script now"

The following subsections contain complete explanations of class commands, methods, and
attributes.

Table 1-2. Example Class Commands, Methods, and Attributes

Package Class Command Method Attribute Argument Result

TermAsync xmyTermAsync connect Creates an asynchronous
connection.

TermAsync xmyTermAsync -timeout Shows the default
time-out value for the
TermAsync package.

TermAsync xmyTermAsync connect -timeout 20 Creates an asynchronous
connection with a
time-out value of 20
seconds.

General xmyExit "exit script
now"

Exits from the current
script.
1–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Introduction
Revision 1, February 1999 Release 5.3

you
1.2.1.1 Class Commands

A class is a specific area or category of functionality. For example, each MYNAH domain
is in essence a class. Thus, the 3270 emulation package (Term3270) is a class. The general
MYNAH Package (Section 7) can also be considered as a class.

A class command gives you control over a MYNAH class. For example, the
xmyTerm3270 class command (Section 10.4) gives you control over functions of a 3270
emulation, such as creating a connection. At the same time, xmyExit is a general class
command used to exit from a script and the Tcl interpreter. Regardless of which type of
class command you use, the basic syntax for class commands and their arguments takes one
of the following forms:

class_command_name method_name ?-attribute attribute_value?

class_command_name -attribute attribute_value ?-attribute
attribute_value?

NOTE — Arguments delimited by question marks are
optional. See the preface for an explanation of the
formatting conventions used in this guide.

The general class commands, those that apply to the entire MYNAH System, are detailed
in Section 7. These commands are automatically available to all scripts when they start
executing. Among the functions of these class commands are loading MYNAH Tcl
extension packages, comparing two files, and changing values in the symbol table.

NOTE — The symbol table is a Tcl list of lists (each
sublist containing a variable/value pair) that is passed to
scripts at start-up and passed back to the execution user at
script termination time. See Sections 7.2.18, 7.2.19,
7.2.20, and 7.2.21 for more information on setting up a
symbol table.

The domain-specific class commands are a bit more specialized in that there is only one
class command per domain. You use class commands to create and interact with
connections to a SUT. In addition, you can also use class commands to set or return default
attribute configurations for the entire domain.

Attributes are the characteristics, the pieces of information, of a class or a class’s
connection, such as the current cursor location or the start-up shell. For example, if
created a connection using the xmyTerm3270 package (Section 9), such as by executing
the following:

> set conn2 [xmyTerm3270 connect]
.xmyTerm3270_1
 1–5

MYNAH System Scripting Guide BR 007-252-004
Introduction Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 SUT.

uld be

s
fy

 a

rence

pe:

thods
omain,
you could execute the following command

> $conn2 -row
21

to find the current row position of the cursor.

See Section 1.2.1.5 for a further discussion on attributes.

One of the main functions of a domain’s class command is to create a connection to a
For each domain there is one sub-command (or, in our lexicon, a method), called connect,
that is used by the class command to create a connection. A very basic example wo

xmyTerm3270 connect

where xmyTerm3270 is the class command and connect is the method.

There is often more to creating a connection than simply typing the name of the clas
command xmyTerm3270 and the connect method. For example, you may have to speci
what you are connecting to. This will be covered in the discussion of each domain’s
connect method. For now, let’s just use our basic example of using the connect method
without any arguments.

1.2.1.2 Instances

When you use the connect method, the class command creates a unique connection to
SUT. We call this unique connection an instance. For example, every time you invoke
xmyTerm3270 connect, you create a new instance.

1.2.1.3 Handles

For each instance, the MYNAH System returns a reference to the instance. This refe
is called a handle. The automatically generated handle name takes the form

.class_command_NN

where the count number suffix NN is an iterated number assigned by the Script Engine
(SE), which is the MYNAH process that runs code. For example, the first time you ty

> xmyTerm3270 connect

the returned handle would be .xmyTerm3270_1, the second time it would be
.xmyTerm3270_2, and so on.

You use the handle to send or receive information from a SUT using the various me
and attributes. For example, the Term3270 Package, used to interact with the 3270 d
1–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Introduction
Revision 1, February 1999 Release 5.3
has a method called type, which is used to send keystrokes to a connection. To send the
string "tst" to the first handle mentioned above, you would enter:

> xmyTerm3270_1 type -text "tst"

It is recommended that you assign a handle to a variable. Using the previous type method
example, you could enter:

> set conn1 [xmyTerm3270 connect]
> $conn1 type -text "tst"

Without the variable, every time you want to use the handle, you would have to type
.xmyTerm3270_1. This could get a little tedious. In addition, .xmyTerm3270_1 may not
have much meaning for you, but you could create a value whose name has a specific
meaning, such as $conn3270 or $connAsync. Since this is more concise, it will also help
clean up your scripts.

Using variables will help shield your scripts from potential connection name changes. For
example, if a connection name changes and you used a generated handle name, you would
have to change your script, but if you use a variable, the handle will always be set to the
variable you use regardless of the format of the system-generated handle name.

The general syntaxes of the handle-based methods and attributes are

handle method_name arguments

handle -attribute_name arguments

Methods and attributes are explained below.

1.2.1.4 Methods

Methods are sub-commands to class commands. Generally, methods are used to perform
actions on instances you create. The type method is a good example: it lets you send text
to an instance of a 3270 terminal connection.

NOTE — Except for the case described below, do not use
methods directly with class commands. For example,

xmyTerm3270 type -text "tso"

would be illegal. There is no way of knowing what
particular connection you are trying to use type to enter
this information for; there is no instance to correspond to
the method.
 1–7

MYNAH System Scripting Guide BR 007-252-004
Introduction Issue 4, December 1998
Release 5.3 Revision 1, February 1999

t, the
onse

 called
bute

alues

ts own
 will
when
tance.
.

e
 so we
ute.

We said that methods are generally used to perform particular actions on instances but there
is one exception: the connect method. connect must be used directly with a class command
to create an instance, such as

set conn1 [xmyTermAsync connect]

where the connect method is used with the xmyTermAsync class command to create a
connection to a synchronous SUT.

1.2.1.5 Attributes

The term attribute has several meanings in the MYNAH System. At their most basic level,
attributes are the individual values defining the characteristics, the pieces of information,
of a class or a class’s connection. For example, attributes can be the name of a hos
cursor’s column or row position, the number of seconds the system will wait for a resp
(i.e., the time-out value).

At the same time, the sub-commands that let you manipulate attribute values are also
attributes. Syntactically, attributes can be distinguished from methods in that an attri
name is preceded by a hyphen, as in -column.

Attributes are commonly used to set attribute values for an instance or to display the v
of those attributes. For example, an attribute of the $conn1 handle we created in
Section 1.2.1.4 is what 3270 terminal model the instance is running as. To display the
model (assuming it's a model 2), type

> $conn1 -model
2

to generate the return value, i.e., 2 for model 2.

Some attributes can only be set upon creation of the connection. Each domain has i
set of attributes that can only be set during connection creation, and this information
be found in each domain’s section. Model would be an attribute that can only be set
creating a connection. Other attributes can be set at any time during the life of the ins
For example, the following statements use the -timeout attribute to reset the timeout value

> $conn1 -timeout
10

> $conn1 -timeout 30
> $conn1 -timeout
30

We first apply the -timeout attribute to the $conn1 handle to see the current timeout valu
for this instance, which is 10 seconds. We want to change this value to 30 seconds,
re-apply the -timeout attribute, this time adding the value 30 as an argument to the attrib
Lastly, we use the -timeout attribute a final time to see that the timeout value has been
changed.
1–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Introduction
Revision 1, February 1999 Release 5.3

es in

, for
ction.
Since the -timeout attribute was applied to the $conn1 handle, this change in the timeout
value affects this instance only.

Unlike methods, many attributes can also be used directly with class commands to return
or set default attribute values. For example, we first use xmyTerm3270 -timeout to return
the current time-out value for the 3270 domain, such as

> xmyTerm3270 -timeout
10

We can use the same class command/attribute combination with an argument to change the
default time-out value.

> xmyTerm3270 -timeout 25
> xmyTerm3270 -timeout
25

All new invocations of xmyTerm3270 connect will assume the new default value of 25
seconds.

To summarize, the differences between using attributes with class commands and
connection instances are

• When an attribute is used with a class command, the attribute is set for all instances in
that class, for example, this sets the timeout value for all future Term3270 instanc
a script.

> xmyTerm3270 -timeout 25

• When an attribute is used with a handle, the attribute is set for just that instance
example, this sets the timeout value for only this instance of a Term3270 conne

> $conn1 -timeout 30
 1–9

MYNAH System Scripting Guide BR 007-252-004
Introduction Issue 4, December 1998
Release 5.3 Revision 1, February 1999

the
ng
y.

 of

d by

nse.

hese
1.2.2 Extension Functional Categories

The MYNAH Tcl extensions can be organized into six functional categories, as shown in
Table 1-3. In the sections describing the MYNAH Package extensions, the methods and
attributes are listed alphabetically. At the beginning of each section is a table listing the
extensions, organizing them by category.

Table 1-3. MYNAH Tcl Extension Functional Categories

Category Name Description

Connection These extensions deal with establishing or destroying a
connection or obtaining information about a connection. For
example, obtaining a list of open connections, the name of the
host, and the connection’s status.

Data Entry/Retrieval These extensions deal with sending or retrieving data from
SUT. You can also obtain information about the data, includi
screen names and the name of the last pressed function ke

Location These extensions let you move the cursor or find the location
a screen element.

Comparisons These extensions let you compare test data with data returne
a SUT.

Waiting These extensions give you control over script execution
suspension until the SUT has returned with the proper respo

Attributes In addition to being the individual values defining the
characteristics and the sub-commands used to manipulate t
values, attributes can also be a category of methods and
attributes that are used to find information about the SUT’s
configuration characteristics, e.g., blinking, highlighted.
1–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

ed

pt is

ript

on
2. General Scripting

This section discusses the basic concepts behind scripting, these include the following
functionality:

• Creation - Describes the various methods of creating scripts

• Execution - Describes the various methods of executing scripts

• SE States at Start Time - Describes start-up modes

• File Output - Describes the various files that are created when a script is execut

• Database Output - Describes the database objects that are created when a scri
executed

• Execution Without Database Update - Describes the steps used to execute a sc
without updating the database

• Loading Procedures - Involves invoking script commands.

NOTE — See the MYNAH System Users Guide, for
detailed information on using the Script Object , Script
Builder , Graphical User Interface (GUI) and the
Command Line User Interface (CLUI) user
commands.

2.1 Overview

You may create script code in the MYNAH System to accomplish either of the following:

• Automation of a test.

• Automation of a task.

This section summarizes how you create and execute scripts.

The remaining sub-sections describe in detail script creation, execution, and executi
output.

2.1.1 Creation

Script code is stored in UNIX® files. You can create this code by

• Using your favorite editor

• Using the MYNAH Script Object (code view) window

• Using the MYNAH interactive Script Builder.
 2–1

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e

cripts:

.

on. In
 a
 Script
Script Objects in the MYNAH System database are used to document script code. One of
the required attributes of a Script Object is the location of the script code. In other words,
a Script Object is an object in the MYNAH database that points to a particular file in the
UNIX file system.

Another optional attribute of a Script Object is an association with one or more Test
Objects. This attribute is used when the code accomplishes the automation of a Test.

A Script Object is only needed if you want to use the MYNAH database to keep track of
your scripts or if you want to track automated testing using a Script Object’s databas
functions.

To make use of all of these database features, one possible scenario might be

1. Create a Script Object and select a filename.

2. Create some code and save the code to the filename.

3. Associate the Script with a Test (or possibly other MYNAH objects).

Section 2.2 describes in detail how to create script code.

2.1.2 Execution

You have several methods from which to choose for executing scripts. You can run s

• Interactively from the UNIX command line (using xmytclsh)

• Interactively in the MYNAH GUI (using the Script Builder)

• Un-attended in the Background Execution Environment (using the GUI or CLUI)

Each execution of a script can produce a directory containing a record of the executi
addition, if a script is described in a Script Object, then each execution may produce
database object called a Runtime Object and, for each Test Object associated with a
Object, a Result Object.

Section 2.3 describes in detail how to execute script code.
2–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

 in

cution
2.2 Creating Scripts

The MYNAH System provides several means for creating scripts. You can:

• Use your favorite editor (e.g, vi)

• Use a MYNAH Script Object (code view)

• Use the interactive MYNAH GUI Script Builder.

NOTE — Both the Script Object and the Script Builder
methods let you enter code using an external editor. The
MYNAH System will use whatever editor you specify in
your preferences. If you do not specify an editor, the
system will default to vi.

You may choose one method over the others or use a combination of methods.

Once you’ve created a script, you can execute it using any of the methods described
Section 2.3.

NOTE — For hints about what to put in your scripts, see
Section 3.

2.2.1 Using an Editor to Create Code

One way to create a script is to use your favorite editor. Simply type the Tcl commands and
MYNAH extensions detailed in this guide and save them to a UNIX file. This method is
recommended only for experienced users since it requires extensive knowledge of the
system.

One of the primary reasons for using an editor is to edit an existing script. For example, you
can use an existing script as the template for another, copying and modifying the script
rather than creating an entirely new script.

Once you’ve created the script, you can then execute the script using any of the exe
methods.
 2–3

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

u
2.2.2 Using the Script Object Code View to Create Code

NOTE — See the MYNAH System Users Guide for
detailed information on using Script Objects.

Another method for creating script code is using the MYNAH GUI Script Object . Using
a Script Object, you can

• Type code directly in the Script Object Code View window

• Insert any of the templates that are delivered with the MYNAH System or that yo
create

• Load any script you previously created

• Have the GUI invoke your favorite editor and type in the script

• Use any combination of the above.
2–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

ted in
NIX

y
However you decide to create script code, script code will appear in the Script Object Code
View as it does in Figure 2-1.

When you create a Script Object, you specify the path and name of a script file in the UNIX
file system. If the UNIX file exists, the MYNAH System loads the file into the Script
Object’s code view. If the UNIX file doesn’t exist, the code view will be empty.

When you save a script using the Script Object, an element, called an object, is crea
the MYNAH database that points to the script file. In addition, a file is created in the U
file system, or, if one already exists, will be overwritten if you choose to do so.

You can execute the script directly from the Script Object (if you save the script) or b
using one of the other execution methods.

Figure 2-1. MYNAH GUI Script Object Code View
 2–5

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 or
s,
scripts
s to

UT.

cript

ulate
ctions
 all of
H
ou
es
 as if

ou
2.2.3 Using the Script Builder to Create Code

NOTE — See the MYNAH System Users Guide for
detailed information on using the Script Builder.

The GUI’s Script Builder is useful when you need to record keystrokes from a 3270
asynchronous session and/or add Tcl statements for other types of SUT connection
procedures, etc. In fact, this is the recommended method of creating and debugging
since it can minimize the guesswork you have over what Tcl commands or extension
use or the correct syntax when you use it to emulate and record a connection to a S

The Script Builder can be accessed in one of two ways:

• If you want to be connected to the MYNAH database, use the Tools menu on any
MYNAH window

• If you do not want to be connected to the MYNAH database, start a standalone S
Builder.

When creating script code using the Script Builder, you can have the Script Builder em
a 3270 or asynchronous connection to access a SUT. You can then perform all of the a
you want to use to automate or test the SUT. The Script Builder can be set to capture
your keystrokes. When you do this, the Script Builder automatically enters the MYNA
Tcl extensions with the correct syntax. If the statements completely represent what y
want, then you do not need to modify the script. However, the Script Builder generat
default statements. Therefore, you might want to modify the default statements, such
you need to specify a different time-out for a specific connection.

• Insert any of the templates that are delivered with the MYNAH System or that y
have created

• Insert existing script code

• Insert script code from a MYNAH Script Object. This loads the file to which the
database object points

NOTE — Note this method is available only if you are not
using a standalone script builder.

• Have the GUI invoke your favorite editor and type in the script

• Enter or edit the code directly in the Code view window

• Any combination of the above.
2–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

thods.
However you decide to create script code, script code appears in the Script Builder Code
View as it does in Figure 2-2.

Until you save the code in a script, you can execute the code from the Script Builder’sRun
dialog only. If you save the code to a script, you can use any of the other execution me

Figure 2-2. MYNAH Script Builder Code View
 2–7

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e

cute

s
 need

 code
ting
2.3 Executing Scripts

There are several methods for executing scripts. Depending on how you use the MYNAH
System, some methods may be more advantageous than others. The following sections
describe these methods, detailing the steps for each method, and why you should or
shouldn’t use that method.

WARNING — How you execute a script impacts various
factors, such as UNIX environment variables and
ownership of any output files. Section 3.3 discusses these
issues and details a few methods of dealing with them.

When a script terminates, several things happen:

• Information is written to the appropriate output files. For more information, see
Section 2.5.

• Appropriate database objects are updated (if the script was executed in databas
mode). For more information, see Section 2.6.

2.3.1 Using the Script Builder to Execute Code

Once you’ve used the Script Builder to load or create code, all you have to do to exe
the code is execute

Script Builder->Run

or click on the Run button on the Script Builder Tool Bar.

NOTE — For more information about the Script Builder
see the MYNAH System Users Guide.

The Script Builder provides one method for executing script code. However, since the
Script Builder does not create the MYNAH System’s Test Management output object
(Runtime and Result objects), you should choose the Script Builder when you do not
the Test Management capability. (For more information, see Section 2.6.)

You might choose to use the Script Builder, for example, to re-run your newly created
(e.g, to verify that the code runs from beginning to end), or you might want to run exis
code to investigate a “System Under Test” (SUT) problem.
2–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
When you use the Script Builder to execute code, there is an option called Show Execution
Progress. If you select this option, as each line of code is executed, the code (and its Tcl
return value) will appear in the dialog window shown in Figure 2-3.

The Script Builder also has an option called Display Remote Session Connections. If
you select this option and the script code requires a connection, the Script Builder will start
a window emulating an asynchronous or 3270 synchronous window, such as the one in
Figure 2-4. When a line of code is executed that sends a string to the system you are testing
or automating, the string (and its response) will appear in the emulation window.

You can have the system run the script automatically or you can have the system run the
script step-by-step, pausing after each line of the script has been sent. This is very useful
when debugging a script since you will be able to tell exactly where a problem occurred.

Figure 2-3. Script Builder Execution Progress Dialog

Figure 2-4. Script Builder Remote Connection Execution Window
 2–9

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

s used

h”

g
NOTE — The Script Builder uses a type of Script
Engine (SE) called an embedded SE . An SE is the
MYNAH process that runs code, and an embedded SE is
an SE that runs code by graphically displaying the screens
associated with Term3270 and TermAsync Packages.

2.3.2 Using Background Execution

The MYNAH System lets you execute scripts as background processes. That is, you can
submit the script to the MYNAH System, which will schedule the script for execution. You
can continue with other work while the script is running. Background execution also allows
you to use the MYNAH System’s Test Management capability.

We will first explain the concepts of background execution and then describe the step
to execute scripts as background processes.

NOTE — Background execution uses a type of SE called
a background SE .

2.3.2.1 Background Execution Overview

There are two primary background processes in the MYNAH System, the Script Dispatcher
(SD) and the Script Engine (SE).

A Script Dispatcher manages Script Engines. An SD’s primary function is to “dispatc
script execution requests to an SE. Part of the dispatching job is to manage concurrency
of script execution, which is the ability to synchronize between concurrently executin
scripts. All script requests that come to a SD process are managed as part of one
concurrency group. There can be more than one SD in a MYNAH configuration.

A Script Engine process runs scripts. An SE must be running as part of an SE Group
under the control of an SD. The managed SEs are organized into SE Groups.

The combination of SDs and SE Groups constitutes the MYNAH Background
Execution Environment (BEE). The relationship between SDs and SE Groups is
2–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

e SD

 the

For

ser

f
depicted in Figure 2-5, which shows two SDs. Each SD dispatches scripts to multiple SE
Groups. Each SE Group in turn consists of some number of SEs.

A simple BEE is composed of one SD and a single SE Group.

You can use even this simple BEE to execute scripts in the background. This will provide
you unattended execution and concurrency control.

The MYNAH System is delivered with a simple BEE already configured and ready to use.
For the remainder of this section, we will assume you’re using a BEE that includes on
with one SE group and three SEs..

For a complete discussion on the power, extensibility, and flexibility of the BEE, see
MYNAH System Administration Guide and the MYNAH System Users Guide.

2.3.2.2 How to Submit Scripts to the Background

You can submit scripts to the background from either the command line or the GUI.
more information, see the MYNAH System Users Guide.

2.3.2.2.1 From the CLUI

You submit scripts to the BEE from the command-line by using the Command Line U
Interface (CLUI) command xmyCmd and its sub-command submit. For example, if you
have a script and a Script Object called auto_ftp, which you use to automate the retrieval o
files from an anonymous ftp archive, you can execute it by typing

xmyCmd submit auto_ftp

NOTE — See Section 17 of the MYNAH System Users
Guide for information on using the submit sub-command.

Figure 2-5. Background Script Execution Environment

MYNAH Background Execution Environment

SD2

SE SE. . .

Group1

SE SE. . .

GroupN

SD1

SE SE. . .

Group1

SE SE. . .

GroupN

... ...
 2–11

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

se

bjects
ed

CLUI

.

t

The CLUI looks in the database to find the Script Object that is associated with your file
(auto_ftp) and then sends a request to the BEE to execute the script associated with the
Script Object. If there is no Script Object associated with your file, the CLUI returns the
message

xmyCmd(submit): Error cannot retrieve script
“<path>/auto_ftp” from database

If your script is not associated with a Script Object, you can execute the script using -c
option, as in

xmyCmd submit -c auto_ftp

The -c option runs the script in the “cloaked” mode, meaning that no MYNAH databa
transactions are performed. The CLUI sends the name of your file (auto_ftp) to the BEE for
execution but does not interact with the MYNAH database, for more information see
Section 2.6.

2.3.2.2.2 From the GUI

To submit a script to the background from the GUI, you can use one of the database o
(e.g., script, test, sut). Simply choose the Run option and the selected Script(s) associat
with the test will be sent to the BEE.

2.3.2.3 Background Execution and the Database

Database updates are always performed if a script is submitted from the GUI or the
when the -c option is not specified. The Job Status window is your tool to monitor the
scripts you have submitted to the BEE when a Script Object is associated with each
submitted script.

2.3.3 Using xmytclsh

The MYNAH System provides a utility program, xmytclsh (Section 4.10), that lets you
interactively run Tcl commands, including all MYNAH extensions.

The main reason to use xmytclsh is as a tutorial tool. While you’re learning the MYNAH
scripting language, you can use xmytclsh to test the MYNAH commands and extensions
However, you can also use xmytclsh to execute existing script code.

This method, however, is not a very useful way of executing a script since it does no
generate any of the MYNAH output files nor does it take advantage of MYNAH Test
Management capabilities.
2–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

ng

rror
You could also type each line of the script directly into xmytclsh, but this is very tedious,
and once you’ve finished you don’t have a reusable script.

To use xmytclsh to execute script code

1. Create the script, and save it to a file.

2. Start xmytclsh.

3. Use the source command (Section 4.11) to load the script.

NOTE — xmytclsh uses a type of SE called a
command-line SE .

For example, if you have a script in a file called logon, you could execute it by typing the
following:

xmytclsh
>source logon

assuming you are in the current directory containing the file logon.

2.3.4 Maximum number of Connections (concurrency)

You can run a maximum of twenty-four (24) TOPCOM, Asynchronous, and 3270 scripts
at a time. If you exceed this level, the following will occur:

• While using a standalone engine (i.e., via the Script Builder), your scripts will ha

• While using a background engine, your scripts will fail and you will receive an e
message similar to the following:

Status = 1(XMY_ERROR)

SD(SD1): yuen.5: SE(0000SD1): {result {xmyTop connect: timed
out waiting for connection ack}} {goodCompares 0}
{failedCompares 0} {warningCompares 0}

call susanna yuen for details
 2–13

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

at any

en
ould

ould
o log
 you
2.4 SE States at Start Time

When an SE starts up, it runs in one of three modes: Stateless, ConnOnly, and FullState.
The mode cannot be changed after start-up. The following section will describe SE
execution modes.

2.4.1 Stateless Mode

In the Stateless mode, when a script completes

• All open connections are closed

• All Tcl file descriptors are closed

• The Tcl interpreter is deleted.

The Tcl start-up script is rerun each time a new interpreter is created. This means th
packages loaded with xmyLoadPkg, (for more information See Section 7.2.9) are
reloaded.

You would use the Stateless mode when you do not want to maintain connections betwe
scripts. For example, if you are submitting a series of scripts to different SUTs, you w
include statements to log on and log off from the appropriate SUT in each script.

2.4.2 ConnOnly Mode

In the ConnOnly mode, when a script completes

• Connections to the SUT are maintained

• All Tcl file descriptors are closed

• The Tcl interpreter is deleted.

You would use the ConnOnly mode when you want to maintain connections between
scripts. For example, if you are submitting a series of scripts to the same SUT, you w
include a statement to log on to the SUT in the first script only, include a statement t
off from the SUT in the last script only, and all scripts in between would assume that
are still logged on to the SUT.
2–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

e in

wise
y run
2.4.3 FullState Mode

In the FullState Mode, when a script completes;

• Connections to the SUT are not maintained

• All Tcl file descriptors are not closed

• The Tcl interpreter is not deleted.

In the FullState mode, scripts submitted to an SE Group go to the first available engin
that group. No re-initialization is performed between each script execution.

When users submit scripts to an SE group running, they should ensure that the Tcl
interpreter in each SE is in the same state (e.g., same variables defined, etc.,) other
scripts submitted to such a group could behave differently depending on which SE the
in.

NOTE — Command-line SEs (i.e., those submitted using
xmytclsh) are always in FullState mode, regardless of the
xmyConfig file setting, since they run individual script
lines, not entire scripts.

You would use the FullState mode when you are submitting individual scripts. Depending
on your implementation of the MYNAH System and needs, each script would include
statements to log on and log off from the appropriate SUT.

NOTE — Symbol tables are not retained by SEs, even
those running in FullState mode. Each time a script is
executed, a new (possibly empty) symbol table is created
containing the symbols passed to the engine in that
execution request.
 2–15

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

isting

kups
s.

reate,
to

red to

the
pt plus

put
2.5 File Output

Whenever a script is executed, the SE may produce files in an output directory. Whether or
not files are produced and how much output is produced are controlled by the OutputLevel
entry. Users can control the amount of output that is produced from within a script using
the xmyVar(OutputLevel) array variable Section 6.13. This variable is initially set by the
OutputLevel parameter of the Engine entry in the xmyConfig file.

There are several types of output files: output, SUTimage, compares, stdout, and stderr.
These types of output files are described below.

2.5.1 Determining How Many Output Directories to Retain

The number of output directories to retain is configured by the MYNAH Administrator in
the xmyConfig file.

• If the MYNAH System has been configured so that zero backups be kept, any ex
directories for the current script are removed before a new one is created.

• If a finite number of backups are being kept, then when the finite number of bac
is reached the oldest output directory is removed after the current run complete

• If unlimited backups has been requested, no removal takes place.

If an SE finds a directory with the same name and timestamp as the one it is trying to c
the SE sleeps a second, regenerates the directory name, and tries again, so as not
overwrite another SE’s active output directory.

Subsequent runs increment the number of output directories unless the SE is configu
keep only one copy of each script’s output.

2.5.2 Location of the Output Files

By default, the MYNAH System will generate output files in the directory containing
script. The output files are contained in a subdirectory with the same name as the scri
the suffix “out” and a timestamp.

For example, if the current date and time is September 1, 1996, 4:28:24 PM, the out
directory for the current run of the script /home/scripts/script1.tcl is
/home/scripts/script1.tcl.out.19960901.162824.

NOTE — You must open the UNIX permissions of the
directory containing the script or the system will not be
able to generate the output subdirectory. For example, set
the permissions to 775.
2–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
2.5.2.1 Other Possible Locations

The default location of the script output directory can be overridden by the MYNAH
Administrator setting either the OutputRoot or OutputPath entry in the xmyConfig file in
the Engine section.

OutputPath specifies the script output directories. The hierarchy of the original scripts is
not maintained; this is a flat directory. For example if OutputPath is set to /MYNAH/data
and an execution request for the script /HOME/scripts/script1.tcl is received, then the script
output directory will be

/MYNAH/data/script1.tcl.out.<timestamp>

OutputRoot specifies the path for the root file system under which script output directories
should be created. Script output directories are created using the same directory hierarchy
as the original scripts. For example, if OutputRoot is set to /MYNAH/data/outputs and an
execution request for the script /home/scripts/script1.tcl is received, the script output
directory will be

/MYNAH/data/outputs/home/scripts/script1.tcl.out.<timestamp>.

2.5.2.2 Output Directory Symbolic Link

The MYNAH System creates a symbolic link that points to the output directory created by
the latest script execution. The name of the symbolic link will be <scriptname>.out. Using
this link you can analyze the results using your home grown scripts without needing to
change the output directory name for each run.

NOTE — Some UNIX commands do not behave the
same way on symbolic links as they do on actual
directories, such as in following example:

broccoli> ls -l xyz.tcl.out

lrwxrwxrwx 1 madmin mynah 29 Feb 22 13:06 xyz.tcl.out
->./xyz.tcl.out.19980222.130535/

broccoli> ls -l xyz.tcl.out.19980222.130535

total 8

-rw-r--r-- 1 madmin mynah 2020 Feb 22 13:06 output
 2–17

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999
2.5.3 Content of the Output Directory

A script output directory for a single script execution may consist of several files.

NOTE — These files are created during execution, but if
a file is empty after the execution has completed, the file
is deleted. Thus, you may temporarily see these empty
files in your directory.

The CmpMstr file This file contains the actual values encounter during a
comparison, provided you use the Compare Master feature.

See Section 5 for information on using the Compare Master.

SUTimage.<conn> files These files contain SUT input and output, where <conn> is
the connection handle, e.g., SUTimage .xmyTermAsync_1.
This output can be in the form of screens or messages. There
may be one or more files, and these files are created only if a
SUT is accessed. If SUTimage events are not written to the
output file, then output to the SUTimage files is also not
logged.

The compares file This file contains the differenced output for any compare
commands, that is, if your script compares one event against
one or more events, the expected and received output are
written to this file. If compare events are not being written to
the output file, then output to the compares file is also not
logged.

The output file This file contains events as defined in Section 2.5.6. It is the
highest level view of a script execution.

The result file This file contains the script output presented in a
user-readable format, provided you use the user-readable
option when submitting the script. For more information, see
the xmyCmd mergeOutput description in Section 17.2.11
of the MYNAH System Users Guide.

The stdout and stderr files These files contain anything that is coded to write to the
standard output or error.
2–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
For example, after executing (with the user-readable option) the script abc.tcl, you may see
the following files and directory (assuming your Output Level included sutimage, compare,
stderr, and stdout and your script contained compares using the Compare Master feature,
access to a 3270 SUT, and commands to write to stderr and stdout):

• In the script directory you would see

abc.tcl
abc.tcl.out
abc.tcl.out.19960612.082440/

• Then in the output directory abc.tcl.out you would find

SUTimage..xmy3270_1
CmpMstr
compare
output
result
stderr
stdout
 2–19

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ample,
een

t

t
2.5.4 SUTimage files

The Term3270, TermAsync, and App-to-App Packages produce one or more SUTimage
files, which contain images of all strings, commands, etc., your script sends to a SUT and
the SUT’s responses. This output can be in the form of screens or messages. For ex
the SUTimage file will contain an image of the asynchronous or synchronous (3270) scr
as it appears after each send and receive.

A SUTimage filename takes the form SUTimage<conn>, where <conn> is the connection
handle, e.g., SUTimage..xmyTermAsync_1.

One SUTimage file is generated for each connection.

Each SUTimage entry takes the form

IMAGE HEADER - <type> (index:<index_number>)
Body
IMAGE FOOTER -

where

• <type> is one of String Sent, Response, or Screen. These are equivalent to the outpu
file sutimage events <type> entries snd, rcv, and state, respectively.

• <index> is a pointer to the start location of the sutimage. This is the same index
number as the output file sutimage events <index> entry.

• Body is the string sent to or received from the SUT or the contents of the curren
screen.
2–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
The following are examples of the types of SUTImage file entries that the TermAsync
Package produces:

IMAGE HEADER - String Sent (index:0)
PS1=”% “^M
IMAGE FOOTER -

IMAGE HEADER - Response (index:123)
PS1=”% “^M
$ %
IMAGE FOOTER -

IMAGE HEADER - Screen (index:2636)
PS1=”% “
$ % ls
Debug_ksb mytrace2
debug_s10 mytrace2b
ioctelnet.log temp1
mytrace
xmyDiff.tcl.out.19960506.143429
%

IMAGE FOOTER -
 2–21

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999
The following is an example of the types of SUTImage file entries that the Term3270
Package produces:

IMAGE HEADER - Screen (index:4003)
 AUTHORIZED USE ONLY - IFS STU08

 DATE: 05/31/96 TIME: 13:21:53

 NODE NAME: TCP10081

 USERID:

 PASSWORD:

 USER DESCRIPTOR:
 GROUP NAME:
 NEW PASSWORD:

 OUTPUT SECURITY AVAILABLE

IMAGE FOOTER - Screen
2–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

nces.

e.
2.5.5 compares File

The compares file contains the differenced output for any of the compare commands listed
in Section 2.5.6.2.

Each of these commands will also produce compares blocks in the compares file.

Each compares entry takes the form

COMPARE HEADER - <conn> compare (index:<index_number>)
Body
result: <result>
COMPARE FOOTER - <conn> compare

where

• <conn> is the connection handle, e.g., .xmyTermAsync_11, if any.

• <index_number> is the number of characters into the compare file where the compare
begins. This is the same index for the output file Compare events.

• Body

— Contains any expression you entered as an argument to xmyCompare
(Section7.2.3).

— Lists, in alternating rows, the expect and receive responses from domain insta
This only occurs if the compare failed.

• <result> specifies if the compare failed, succeeded, or warned of a potential failur
This can be one of the following:

— 1 (good)

— 0 (failed)

— 0 (warning)
 2–23

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999
The following are examples of each type of compares file entries:

This comparison was successful, so the system did not generate expected or received
statments.

COMPARE HEADER - .xmyTermAsync_11 compare (index:0)
result: 1 (good)
COMPARE FOOTER - .xmyTermAsync_11 compare

This comparison failed, so the system generated expected or received statements.

COMPARE HEADER - .xmyTermAsync_11 compare (index:112)
1:expected:<1999>
1:received:<1996>
result: 0 (failed)
COMPARE FOOTER - .xmyTermAsync_11 compare

This comparison, the result of an unevaluated expression, generated a warning.

NOTE — When a comparision is generated as the result
of an evaluated or unevaluated expression, the same
information, with the exception of the result of the
comparision, is generated whether the comparision was
good, failed, or warning.

COMPARE HEADER - xmyCompare (index:224)
expr: $childvar3 == "333"
result: 0 (warning)
COMPARE FOOTER - xmyCompare
2–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
2.5.6 The Output File

The output file contains script output information formatted using well-defined, colon
separated fields. The categories of script output are

• child script (childscr) events

• compare events

• error events

• language trace events

• script events

• summary events

• sutimage events

• suttiming events

• test object (testobj) events

• user events.

The first five fields of every event line contain the following information:

<date>:<time>:<category>:<pkg>:<type>

where

• <date> and <time> are date and timestamp with format YYYYMMDD:HHMMSS

• <category> is one of the listed categories (e.g., sutimage)

• <pkg> is the MYNAH package producing the message (e.g., TermAsync)

• <type> is the type of message, which differs for each category of output.

The following subsections describe the format of each category of output.

NOTE — See Section 3.4 for information on setting
Output Levels.
 2–25

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

2.5.6.1 Child Script Events

Child script (childscr) events are logged when connecting to a remote SE and when any
requests or replies related to child script execution occur.

Each childscr event line takes the form

<date>:<time>:childscr:<pkg>:<type>:<conn>:<msgId>:<script name>:<status>:<exit string>

where

• <pkg> is general

• <type> is one of send, receive, pause, resume, or cancel

• <conn> is the name of the SE Group to receive the request

• <msgId> (pause, resume, cancel, destroy, wait only) is the message object id

• <script name> is the name of the script to be executed remotely

• <status> is the result of the operation

• <exit string> (receive only) is the Tcl result of script execution. (This string will be
truncated if it exceeds the allowable length for output file lines)

The sendWait command (Section 8.2.6) creates two log messages:

• send, which lists the child script that was sent and whether the send succeeded

• receive, which lists the actual response.

Examples

19960529:190912:childscr:general:send:SeGp2::/u/kjd/child01.tcl:channel send succeeded
19960529:190914:childscr:general:receive:SeGp2::/u/kjd/child01.tcl:TCL_OK:
2–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
2.5.6.2 Compare Events

Compare events detail the differenced output for any MYNAH language compare
commands that automatically update the xmyVar (GoodCompares),
xmyVar(FailedCompares) and xmyVar(WarningCompares) counts. These are

• General package

— xmyCompare

— xmyDiff

— xmyRegex

• TermAsync package

— $connection compare

• Term3270 Package

— $connection compare

• App-to-App Package (xmyFCIF)

— $handle compar

— $handle compareTags

— $handle extraTags

Each compare event line takes the form

<date>:<time>:compare:<pkg>:<type>:<label>:<result>:<index>

where

• <pkg> is one of General, TermAsync, Term3270, or FCIF

• <type> is one of data, fcif, diff, screenRegion, regex, or string

• <label> is non-null if the compare specified a label

• <result> indicates whether the test passed or failed by specifying one of good, failed,
or warning

• <index> indicates the number of bytes into the compares file to look for the record of
that compare. The numbers are indexes into the compares file in the output directory.

Example

19951201:090000:compare:3270:screenRegion::good:226

The MYNAH comparison commands log compare events to the output file and also write
expected and actual data, if possible, to the compares file. (If an expression is being
evaluated instead of data being compared, the expression is written to the compares file.)
 2–27

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

es
2.5.6.3 Exception (error) Events

The SE logs an exception event when an exception occurs in the Tcl interpreter. An
exception event contain the value of errorCode and errorInfo as set by the interpreter and
take the form

<date>:<time>:error:<pkg>::<message>

where

• <pkg> is errorCode or errorInfo

• <message> is the error message itself.

Example

19960613:112054:error::errorInfo:Connection went down
19960613:112054:error::errorInfo: while executing
19960613:112054:error::errorInfo:"$conn1 wait -expect "$ ""
19960613:112054:error::errorInfo: (file "/u/kjd/ex.tcl" line 4)script: /u/kjd/ex.tcl line: 4
19960613:112054:error::errorCode:NONE

2.5.6.4 Language Events

Language events record the lines of your scripts, with the format

<date>:<time>:lang:<pkg>:command:<command>

where

• <pkg> is the language package that is used

• <command> is the Tcl command itself. Variables with unprintable characters or lin
longer than 512 characters are truncated.

Examples

19960613:142414:lang:tcl:command:xmyLoadPkg TermAsync
19960613:142414:lang:tcl:command:set xmyVar(OutputLevel) {sutimage, lang, script}
19960613:142414:lang:tcl:command:xmyTermAsync connect
19960613:142414:lang:tcl:command:set conn1 [xmyTermAsync connect]
19960613:142414:lang:tcl:command:$conn1 sendWait "PS1=\"% \"\r" -expect "% "
19960613:142415:lang:tcl:command:$conn1 wait -expect "% "
19960613:142415:lang:tcl:command:$conn1 sendWait "ls\r" -expect "% "
19960613:142415:lang:tcl:command:$conn1 sendWait "pwd\r" -expect "% "

NOTE — No language events are recorded for the
commands in MYNAH procedures, even if language
events are turned on in the Output Level.
2–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
2.5.6.5 Script Events

Script events record high level script activity, e.g., when the script began execution. Script
events have the format

<date>:<time>:script:<pkg>:<type>:<group>:<exit status>:<exit string>

where

• <pkg> is null

• <type> is one of start, stop, cancel, pause, resume, or abort

• <group> is the SE Group to which this SE (the one running the script) belongs

• <exit status> is the return code from the Tcl interpreter for types stop, cancel, and
abort only

• <exit string> is the possibly truncated Tcl result of script execution for types stop,
cancel, and abort only.

Examples

19960613:161728:script::stop:SeGp1:TCL_OK:

19960809:171420:script::stop:SeGp1:TCL_OK:Compares OK
 2–29

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999
2.5.6.6 Summary Events

Summary events are written to the output file at script completion time. They include the
system variables, the results that are sent to the database, and the symbol table. They have
the format

<date>:<time>:summary:general:var:xmyVar(<name>) <value>

<date>:<time>:summary:general:results:<results list split into 80 char lines>

<date>:<time>:summary:general:symtbl:<symbol table split into 80 char lines>

Examples

19960613:161728:summary:general:var:xmyVar(Channel) = xmySE0007SD1
19960613:161728:summary:general:var:xmyVar(DatabaseMode) = 1
19960613:161728:summary:general:var:xmyVar(EngineMode) = stateLess
19960613:161728:summary:general:var:xmyVar(EngineType) = background
19960613:161728:summary:general:var:xmyVar(ExitHandler) =
19960613:161728:summary:general:var:xmyVar(FailedCompares) = 0
19960613:161728:summary:general:var:xmyVar(GoodCompares) = 1
19960613:161728:summary:general:var:xmyVar(LibraryPath) = /home/mynah/lib
19960613:161728:summary:general:var:xmyVar(OutputLevel) = error
19960613:161728:summary:general:var:xmyVar(RuntimeId) =
19960613:161728:summary:general:var:xmyVar(SEGroup) = SeGp1
19960613:161728:summary:general:var:xmyVar(SubmittedBy) = ksb
19960613:161728:summary:general:results: {result {}}
19960613:161728:summary:general:results: {goodCompares 1}
19960613:161728:summary:general:results: {failedCompares 0}
19960613:161728:summary:general:results: {warningCompares 0}
19960613:161728:summary:general:symtbl:<symbol table empty>
2–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

”

ge

2.5.6.7 Sutimage Events

Sutimage events are produced for only the Term3270, TermAsync, and App-to-App
Packages. If sutimage events are being produced, then each time a screen or message is sent
or received a sutimage event is produced having the format

<date>:<time>:sutimage:<pkg>:<type>:<conn>:<opt>:<index>:<length>

where

• <pkg> is the name of the MYNAH package producing the sutimage

• <type> is one of snd, rcv, or state. (state is used to produce a record of the “current
screen. It is used by the TermAsync package only.)

• <conn> is the handle of the connection

• <opt> is an optional field used by the domain to indicate the cause of the sutima

• <index> is a pointer to the start location of the sutimage in the SUTimage file

• <length> is the length (in domain-specific units) of the image.

Examples

19960613:161727:sutimage:TermAsync:snd:.xmyTermAsync_37::2207:3

Each package may add additional fields as needed.

If you run code in background (i.e., from the Script Builder) and you do not select the
Generate Script Output option on the Script Builder, then, in the Script Builder’s Log
view, the sutimage event will have an index of -1 and a length of 0, for example

19960914:115437:sutimage:TermAsync:snd:.xmyTermAsync_4::-1:0
19960914:115437:sutimage:TermAsync:rcv:.xmyTermAsync_4::-1:0
 2–31

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

s

2.5.6.8 SUT Timing (suttiming) Events

SUT timing events are produced for only the Term3270, TermAsync, and App-to-App
Packages. Timing events are logged each time a message is received from the SUT. They
have the format

<date>:<time>:suttiming:<pkg>::<conn>:<command>:<send time>:<seconds>

where

• <conn> is the connection handle

• <command> is the Tcl command that sent data to the SUT

• <send time> is the time of the last send in readable format

• <seconds> contains the number of seconds elapsed since the last send.

Examples

19960613:161726:suttiming:TermAsync::.xmyTermAsync_37::06/13/96 16:17:26:0:10

2.5.6.9 Test Object Events

Test Object (testobj) event lines are produced by the xmyBegin (Section 7.2.2) and
xmyEnd (Section 7.2.6) commands. Test object event lines take one of these two form

<date>:<time>:testobj:<pkg>:begin:<id>

<date>:<time>:testobj:<pkg>:end:<id>

where

• <pkg> is null

• <id> is the test object id or test block label.

Examples

19960809:171419:testobj::begin:2307

19960809:171421:testobj::end:2334
2–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
2.5.6.10 User Events

User events are produced on a per user basis. The MYNAH System provides a method for
script writers to generate their own events to the output file using the xmyPrint command
(Section 7.2.11). They have the format

<date>:<time>:user:<pkg>:<type>:<text>

where <pkg>, <type> and <text> are provided by you through the MYNAH xmyPrint
command.

User events can be used to surround processing statements with comments that help you in
analyzing execution results.

Examples

19960611:145636:user:::MAIN
19960611:145636:user:::LEAVING PROC inits (/users/kjb/scripts/parent/par002.tcl)
 2–33

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

s on

or
2.5.7 The result File

The result file contains the output from the script output in a user-readable format.

The result file is generated if you specify the -u option when you submit a script for
execution, such as

xmyCmd submit -v -E -c -G -u myscript.tcl

NOTE — If you do not specify the -u option when
submitting a script, you can still view the output in this
format by using xmyCmd’s mergeOutput
sub-command, for example

xmyCmd mergeOutput -u -s SUTimage..xmyTerm3270_1

For information on the mergeOutput sub-command, see
Section 17.2.11 of the MYNAH System Users Guide.

The result file contains two sections: a Run section and Summary section.

2.5.7.1 Run Section

The Run section contains all of the statements from the output file with the contents of
other files in the output directory merged in at appropriate places. The content depend
the specified Output Level.

The Run section displays text using the following conventions:

• Script commands start with “--”, for example

--xmyTerm3270 connect

• Screen output (the screens that are sent and received) contains line numbers, f
example, the following text appears on line 20 on a 3270 connection window:

20 INPUT APPLICATION NAME AND PRESS ENTER

• Return values and other output events appear left-justified, for example:

compare:General:data:First Compare:good:0
COMPARE HEADER - xmyCompare (index:0)
expr: $counter == 10
result: 1 (good)
COMPARE FOOTER - xmyCompare
2–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3
2.5.7.2 Summary Section

The Summary section displays the Summary Events from the output file (see
Section 2.5.6.6), in a user readable format.

2.5.7.3 result File Example

The following example illustrates a result file where the Output Level was set to all when
the script was submitted.

NOTE — The Sutimage portion contains only excerpts
from the send and receive screens, and the Summary
section contains only an excerpt from the output file’s
Summary events.

************** RUN STARTING 12/8 1998 17:35:42 **************
script::start:SeGp2, /export/home/pt06/scripts/sanity/temp.tcl
--xmyLoadPkg Term3270
--set counter 10
--xmyPrint -text “start 3270”
start 3270
--xmyTerm3270 connect
suttiming:Term3270::.xmyTerm3270_2:sent ::0.000000
--Screen received (12/8 1998 17:35:44):.xmyTerm3270_2::0:0
01
02
03 INPUT APPLICATION NAME AND PRESS ENTER
04
05
06
07
--set conn10 [xmyTerm3270 connect]
--Screen sent:.xmyTerm3270_4::6018:0
01
02
03
04
05 INPUT APPLICATION NAME AND PRESS ENTER
06 st8
--$conn10 disconnect
--xmyPrint -text “completed 3270”
completed 3270
--xmyCompare -label “First Compare” -expr {$counter == 10}
compare:General:data:First Compare:good:0
COMPARE HEADER - xmyCompare (index:0)
expr: $counter == 10
result: 1 (good)
COMPARE FOOTER - xmyCompare
--xmyExit “Got to the end”
script::stop:SeGp2:TCL_OK:Got to the end
************* RUN ENDED 12/8 1998 17:35:44*************
 2–35

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999
*************** SUMMARY ******************
xmyVar(Channel) = xmySE0002SD2
xmyVar(DatabaseMode) = 1
xmyVar(EngineMode) = connState
xmyVar(EngineType) = background
xmyVar(ExitHandler) =
xmyVar(FailedCompares) = 0
xmyVar(GoodCompares) = 1
xmyVar(LibraryPath) = /opt/SUNWmynpt1/mynah/lib
xmyVar(MaxFails) = 2147483647
xmyVar(MaxFailsHandler) =
xmyVar(OutputLevel) = *
xmyVar(RuntimeId) =
xmyVar(SEGroup) = SeGp2
2–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

ndow,
the

ted.
2.6 Database Output

Database output is only produced when a script is associated with a Script Object. Database
output consists of the Runtime Object and possibly Result Objects.

2.6.1 Runtime Objects

One Runtime Object is produced for each run of a script associated with a Script Object.
The Runtime Object records information about the executed script such as

• The script name

• Who submitted the script

• When script execution started and ended

• The SD and SE Group that executed the script

• Where the output from the execution is located

• The execution status

• A summary of the execution, e.g., any errors that aborted the execution.

Runtime Objects can be accessed from the GUI’s Database Browser, Job Status wi
or a Script Object Run History View. For more information on Runtime Objects, see
MYNAH System Users Guide.

Several fields are updated in the Runtime Object:

NOTE — These fields are visible in the Job Status
Object.

• Run Status — This is set to either completed, aborted, or canceled

— completed - ran to some normal termination

— aborted - run aborted due to execution problem (for example, "cannot open
outputDir")

— canceled - script execution was canceled before completion

• Run Summary — This is set to the result of the last Tcl statement that was execu
For example, if the last statement executed in a script was

xmyExit "success"

then the Run Summary field will be set to "success". See Section 6.6 on the
xmyVar(ExitHandler) variable for further discussion on how script writers can
control the value of Run Summary.
 2–37

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

n be

is a

 may

ith

t

ts.
lues

 Code.
• Tcl Code Status— This is set to the exit code of the Tcl interpreter. The values ca

— N/A- script never started executing

— TCL_OK - script exited without a Tcl error

— TCL_ERROR - a Tcl error was produced. The most common reason for this
syntax error in the Tcl code.

2.6.2 Result Objects

Result Objects record actual results for particular Tests. One or more Result Objects
be produced each time a script is executed.

Result Objects are produced if

• The script code contains xmyBegin (Section 7.2.2) and xmyEnd (Section 7.2.6)
statements. In this case one Result Object will be created for each xmyBegin/xmyEnd
pair.

• If there are no xmyBegin/xmyEnd statements but the script object is associated w
one and only one Test Object.

In this case one Result Object will be created for the associated Test.

Result Objects are accessed from the GUI’s Database Browser or from a Test Objec
Results view. For more information on Result Objects, see the MYNAH System Users
Guide.

If a Script is associated with only one Test or if a Script has xmyBegin (Section7.2.2) and
xmyEnd (Section 7.2.6) statements, then the SE will create one or more Result Objec
The SE fills in Total counts for Successful, Warning and Failed compares. These va
come directly from xmyVar values.

The SE also provides values for Activity State, Test Status, Status Source and Reason
For a complete discussion about these fields, please see the MYNAH System Users Guide.
2–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Scripting
Revision 1, February 1999 Release 5.3

 have
e
2.7 Execution Without Database Update

You may create and run script code even if you don’t create a Script Object or if you
a Script Object but you don’t want the database to be updated (such as when you ar
automating a task).

You can do this in one of three ways:

• Use the xmyCmd submit command with the -c option

• Run the code interactively in the Script Builder

• Run the code interactively using xmytcsh

NOTE — For more information about these methods,
refer to the MYNAH Users Guide.

2.8 Loading Procedures

A Tcl procedure is a script that is used to invoke a command, letting you reuse the script.
See Section 4.7 for information on procedures.

A script can access (i.e., can call) procedures using any of the following methods:

1. Procedures can be defined locally within a script, for example, the following
procedure will add two numbers together:

> proc sum { a b } { return [expr $a+$b] }

This procedure can later be called, as in

> sum 2 3
5

2. You can save the procedures to a file and then load them into your script using the
source command (Section 4.11).

NOTE — You can save more than one procedure in each
file.

For example, you could save the addition procedure in Item 1 to a file, e.g.,
myprocs.tcl, and load it by typing

source myprocs.tcl

in your script. You can then use the addition procedure by typing

> sum 3.45 8.53
11.98
 2–39

MYNAH System Scripting Guide BR 007-252-004
General Scripting Issue 4, December 1998
Release 5.3 Revision 1, February 1999

d
3. You can use any autoloadable procedures. These are procedures that are searched for
by the Tcl interpreter the first time they are called in a script. The search path can be
set for the ProcRepository parameter in the MYNAH configuration file, xmyConfig.

The default value for the ProcRepository parameter is
$XMYDIR/lib/tcl:$XMYHOME/lib/tcl. The setting of this field affects the setting of
the standard Tcl variable auto_path. A script writer with procedures defined in other
directories can add paths to the auto_path variable directly in the script.

NOTE — See Appendix A.30 for more information on
creating procedure libraries and global variables that are
defined or used by the procedures in the Tcl library.

The Insert Template dialog on the MYNAH GUI’s Script Builder and Script Object
displays all procedures that are found in the procedure libraries. (See the MYNAH System
Users Guide.)

Administrators can override what is displayed in the Insert Template dialog by manually
creating template files. By default, however, bringing up Insert Template and changing
Type to Procedure will display all procedures the Tcl interpreter can automatically loa
(i.e., those in $XMYDIR/lib/tcl:$XMYHOME/lib/tcl).

NOTE — Procedures libraries in directories not specified
in the ProcRepository parameter in the xmyConfig file do
not show up in Insert Template.
2–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3
3. Scripting Hints

This section contains hints that you may find useful as you create your scripts.

NOTE — This section will often use MYNAH scripting
terms that will be explained in later sections. You may
wish to come back to this section after you have read these
later sections.

3.1 Concealing Sensitive Data

For security reasons, sensitive data, such as passwords, is usually concealed. The MYNAH
System provides several means of entering sensitive information.

3.1.1 Prompting for Sensitive Data using the Script Builder

You can use the xmyPrompt command (for more information on xmyPrompt see
Section 7.2.12) to prompt you (or another user) to enter a password.

NOTE — You can only use xmyPrompt when you are
running code in the MYNAH GUI’s interactive Script
Builder since this command requires the use of an
embedded SE, which is only available when using the
Script Builder.

For example, if you enter the following code in the Builder

keylset psswd -prompt "Enter Password" -echo false
set result [xmyPrompt [list $psswd]]

The GUI will display the window in Figure 3-1 when you run the script from the Script
Builder and the script reaches the xmyPrompt command.

Figure 3-1. xmyPrompt Window
 3–1

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999
xmyPrompt takes as its input the keyed list created by the keylset command. The data that
you enter is saved to the variable $result. The variable $result can be used in a subsequent
command, e.g.,

$conn1 type -position “9 12” -text $result

to enter the password in the password field.

NOTE — See the tclhelp tool for information on the
keylset command.

3.1.2 Obtaining Sensitive Data for Scripts That Run in the Background

To allow you to pass sensitive data to the background SE, the MYNAH System provides
the means for encrypting and loading data stored in files.

The xmyUdb command lets you load and save sensitive data into your scripts. These files
can be used for databases or to hold such sensitive material as passwords. For security
reasons, the files can be encrypted using the des system software, which is part of the
Encryption Kit supplied along with the operating system, see Administration Guide for
details. For added security, the key used to decrypt the encyrpted file can be scrambled
using the CLUI command xmyCmd scramble.

NOTE — des is only available in the United States. Since
the MYNAH utilities use des for encryption and
decryption, the methods described in this section will only
work in the U.S.
3–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3
A clear tag-value database is an ASCII file containing two columns separated by
spaces or tabs. The first column contains the tag, and the second column contains the
values. For example, if you wanted a file containing a list of login ids, you could enter them
as in the following:

Lines beginning with a pound sign (#) are treated as comments. This lets you label columns,
as we did in the previous list of login ids.

An encrypted database is simply a clear database that has been encrypted using des.

The MYNAH System provides several utilities that let you process encrypted material via
your scripts.

3.1.2.1 xmyUdb

The xmyUdb command (see Section 7.3.1) lets you load a tag-value file into a Tcl script
as a keyed list that can be accessed and modified using the standard keyed list functions,
e.g., keylget and keylset, etc. If you’ve encrypted the file, you can have xmyUdb decrypt
it. Conversely, you can have xmyUdb write keyed lists to a tag-value file, and, if you
desire, encrypt the file.

NOTE — See the tclhelp tool for information on the
keylset command.

3.1.2.2 xmyCmd scramble

The scramble sub-command to the MYNAH CLUI command xmyCmd (see Section 7.3.2
of this guide and the MYNAH System Users Guide) scrambles the generated key that is used
by xmyUdb. This lets you safely leave the keys in flat files (like Tcl scripts). Scrambled
keys can be entered in the Engine entries in the MYNAH xmyConfig system configuration
file or provided when loading or saving sensitive data. The SE internally unscrambles the
key and uses it to decode encrypted tag-value files.

#Tags Ids
1stId kjd
2ndId ksb
3rdId lsmyth
 3–3

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999

y
3.1.2.3 Encrypted Database Files using des

To create an encrypted database, follow these steps:

1. Create a clear database file.

2. Type the command:

des -e input-file output-file

where

• input-file is the name of the clear database file

• output-file is the name to be given to the encrypted database file.

3. When you are prompted for a key that des should use to do the encryption, enter a ke
(eight characters or fewer).

NOTE — Be sure to make a note of the key that you use
for the encryption. You won’t be able to decode the
encrypted file without the key.

For example, to encrypt a file called pass, which contains passwords, save it as a file
called pass.e, and use a key enter, you could type

des -e pass pass.e

The following will appear, prompting you to enter the key:

Enter key:

4. Delete the clear database file.

You can enter the key directly as an argument to des, as in the following:

des -e -k enter pass pass.e

For a MYNAH script to decrypt the encrypted file that you just created, it must know the
key that you used.

There are several ways to provide the key. The recommended order of these methods is as
follows:

1. Have the MYNAH Administrator enter the key (scrambled or unscrambled) as an
argument to the Key parameter for an Engine entry in the xmyConfig file. For
example, if the key has been entered as an argument to the Key parameter, you would
enter a line such as the following:

set ids [xmyUdb read -file pass.e -decrypt]
3–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3
NOTE — Anyone who knows the key, however, can
decode the encrypted file and read its contents. For that
reason, we recommend you use xmyCmd scramble to
scramble the key.

2. Enter the key (scrambled or unscrambled) directly as an argument for xmyUdb, for
example

set ids [xmyUdb read -file pass.e -decrypt -key enter]

3. If you’re running a script from theScript Builder, you can enter the xmyPrompt
command in the script and have the script prompt you for the key, for example

keylset key_prompt -prompt "Enter des Key" -echo false
set des_key [xmyPrompt [list $key_prompt]]
set ids [xmyUdb read -file pass.e -decrypt -key $des_key]

The window in Figure 3-2 appears.

Figure 3-2. Example Window Prompting for des Key
 3–5

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999

sing

n use

t.
3.1.2.4 Using an Encrypted File

One of the main uses of encrypting a file and loading it into a MYNAH script would be to
load passwords. When using the GUI, you can use the xmyPrompt command to prompt
you for the password, but you can’t do this if you run a script from the command-line (u
xmytclsh) or from the background (using xmyCmd submit).

What you can do is enter the password in a tag-value file and encrypt it. In fact, you ca
the same file to load the login id, too.

3.1.2.4.1 Working With Keyed Lists

Before we begin, let’s look briefly at how you work with a keyed list.

This is the list of ids we mentioned in Section 3.1.2.

We saved this list to a file called IDS. Using xmyUdb, we can load this file as a keyed lis

set ids [xmyUdb read -file $env(HOME)/data/IDS]
{1stId kjd} {2ndId ksb} {3rdId lsmyth}

NOTE — Notice that beginning the line

#Tags Ids

with a pound sign commented this line. Therefore it did
not appear in the return from the xmyUdb command.

This line was added only to illustrate the contents of each
column, labeling each column.

Using the keylget command we can extract values from this list by specifying the tag.

set id1 [keylget ids 1stId]
kjd

keylget searches the keyed list for the tag we specified, in this case 1stId, and extracts the
value associated with it, kjd.

Using the same techniques, you can extract values from an encrypted file simply by adding
the -decrypt argument and the decryption key, as described in Section 3.1.2.4.2.

#Tags Ids
1stId kjd
2ndId ksb
3rdId lsmyth
3–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3

e

bled
e able
e file
3.1.2.4.2 Example of Loading Data from Keyed Lists

For our example, we’ll use the login id and password for an anonymous ftp session.

NOTE — While the password for an anonymous ftp
session (usually your e-mail address) is not sensitive data,
the techniques we’ll use will apply for cases where the
password is sensitive.

1. Create a flat file — let’s call it login — containing the id and password as tag-valu
pairs, one pair per line, such as:

2. Encrypt the file login (with the key open) and save it as a file called login.e.

des -e -k open login login.e

3. Delete the login file.

4. If you want, you can scramble the key open. In our example we’re saving it to a file
called key1.

xmyCmd scramble -k open key1

The output file is optional, but this way you have a permanent record of the scram
key. Even if someone else gains access to this scrambled key, they would not b
to use it to decrypt your file; only an SE can use the scrambled key to decrypt th
when it is running a script.

5. You can now load this file, as in the following.

xmyLoadPkg TermAsync
set conn2 [xmyTermAsync connect]
set logon [xmyUdb read -file $env(HOME)/data/login.e \

-decrypt -key [read file key1]]
set logid [keylget logon 1stid]
set password [keylget logon 1stpass]
$conn2 sendWait “ftp fake_ftp.com\r” -expect “: “
$conn2 sendWait “$logid\r” -expect “d:”
$conn2 sendWait “$password\r” -expect “> “
$conn2 sendWait “cd pub/new_this_week\r” -expect “> “
$conn2 sendWait “prompt\r” -expect “> “
$conn2 sendWait “lcd /u/kjb/NEW\r” -expect “> “
$conn2 sendWait “mget *\r” -expect “> “
$conn2 sendWait “bye\r” -expect “: “
$conn2 disconnect
xmyExit

#Tag Value
1stId anonymous
1stPass kjb@
 3–7

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999
3.1.3 Concealing Sensitive Data in Async SUTimages Files

You can conceal sensitive data in an Async SUTimages file by using the -secret option for
a send (See Section 9.5.1.10) or sendWait (See Section 9.5.1.11) method. When you use
this option, the string that is sent to the SUT will not appear in the SUTimages file
associated with that connection. In its place, the string <hidden data> will appear.

NOTE — See Section 2.5.4 for more information about
the SUTimages file.

For example, you are logging onto a SUT and you must enter your password. If moses123
is your password, you would code the following (with additional options that you would
want and the appropriate string for the -expect option):

 $conn5 sendWait “moses123\r” -expect “\] “ -secret

After you replay the script or code that contains this command, the SUTimages file
associated with $conn5 will contain the following information (note that index shown
below is an example):

 IMAGE HEADER - String Sent (index:17014)
 <hidden data>
 IMAGE FOOTER -
3–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3

n try

nue or
hods
3.2 Debugging - Dealing with Errors and Exceptions

3.2.1 Overview

Tcl errors can occur for any number of reasons. You may have mis-typed and entered a
nonexistent command. You may not have entered the correct number of arguments. There
may be input/output problems. A command may have timed-out. Often, these errors are
severe enough to abort processing.

Errors, though, are just part of the Tcl concept of exceptions. An exception is any event
that can abort a script, be it an error or a command such as break, continue, and return.
Tcl has the ability to “catch” exceptions, only part of the script is lost and the script ca
to ignore or, if possible, recover from the exception. Using the return value from catch, you
can code your script to manage the exception condition, e.g., decide whether to conti
gracefully stop a script at that point. The following subsections describe several met
for managing exception conditions.

3.2.2 Tcl Error/Exception Information Procedures

Tcl contains several commands related to exceptions, catch (Section4.6.1), error
(Appendix A.11), and return (Appendix A.48). The Tcl command that manages
exceptions is catch, which can trap the error so that the script does not abort. error and
return do not trap exceptions, but can be used when processing exceptions.

In addition, Tcl contains several global variables, errorCode (Section4.6.2.1) and
errorInfo (Section4.6.2.2), that return information resulting from errors.

3.2.3 MYNAH Exception Handling

NOTE — This section contains excerpts from a script
using the Term3270 Package. The commands and
methods for the Term3270 Package are used to illustrate
using the exception handling processes. For a description
of the Term3270 Package, see Section 10.

In general, MYNAH Tcl commands use the standard exception handling facility. If an
exception is occurs (the command callback returns TCL_ERROR) and if not caught by the
script, then the script aborts and the Tcl interpreter is deleted if the SE is running in
Stateless or ConnOnly mode.
 3–9

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ipt.

ng to
3.2.3.1 General Actions

Catching exceptions is done using the Tcl catch command.

If a MYNAH or Tcl command fails, the catch command

1. Creates a meaningful error message, which can be retrieved if you specify the
varname argument for the catch command.

2. Populates the global Tcl variable errorCode. The variable consists of a list with one
or more elements, the first of which is the class of error. The second argument is the
symbolic name for the particular error. (e.g. ARGMISSING.)

NOTE — errorCode is not implemented for all MYNAH
extensions.

3. Returns TCL_ERROR.

3.2.3.2 Error Processing

When an error occurs, the current command is aborted. If this command is a child process
of a script or procedure (i.e., is part of a larger script), the parent script or process is also
aborted, and so on until all active Tcl commands are aborted. A message describing the
error is generated and is available via the errorInfo and errorCode variables, but these
may not tell all you need or want to know about where the problem occurred. You may want
to generate a specific error message describing what happened and where. In addition, there
may be situations where you want to continue script execution after an error has occurred.

In MYNAH 5.2, all error processing should be done via Tcl statements. Wait until a desired
response occurs. If it doesn’t occur, then you can use catch to evaluate the result and use
the result of the catch command as the input for a way of gracefully exiting from the scr

Figure 3-3 shows an excerpt from a Term3270 package script where you are prepari
logon to a program.

set expscreen USERID
$conn type -text "stu08"
if { [catch {$conn sendWait -key enter -expect $expscreen}]} {

xmyPrint "ERROR: did not get screen: $expscreen"
syncImokLogoff
$conn disconnect
return 0

}
#if get here, have logon screen, enter logid

$conn type -text $logname

Figure 3-3. Error Processing Example
3–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3

off

s.
A facsimile of the logon screen appears in Figure 3-4.

On this logon window, you expect to find a string called USERID, i.e., this is the value for
the -expect option. If this string is not found on this screen, then you have connected to the
wrong program. If so, you would want to log off from this system and close your Term3270
connection. Therefore, a catch command is entered, which evaluates a sendWait
operation.

The Term3270 method sendWait (Section 10.4.1.18) sends a 3270 function key to a
system and waits for an expected return. In our example, sendWait expects to find the
string USERID on the current screen. catch evaluates this sendWait operation. If
sendWait doesn’t find the expected string, the script executes a procedure that logs
from the system and then deletes the connection. If the string is not found, catch returns 1,
therefore the if code is executed. If the expected string is found, the script continues
executing, i.e., catch returns 0, therefore the if code is not executed and the script continue

NOTE — syncImokLogoff is a locally defined
procedure used to log off from a system called IMOK.

 AUTHORIZED USE ONLY - IMOK STU08
 DATE: 05/31/96 TIME: 13:21:53
 NODE NAME: TCP10081
 USERID:
 PASSWORD:
 USER DESCRIPTOR:
 GROUP NAME:
 NEW PASSWORD:
 OUTPUT SECURITY AVAILABLE

Figure 3-4. Example 3270 Logon Window
 3–11

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999
3.3 Output Ownership Considerations

How you execute a script impacts ownership of any output files. When you submit a script
for background execution, the system assigns ownership of the executing script and all
output to the MYNAH Administrator or the person who started the MYNAH processes.

NOTE — The following discussion assumes that the
logid of the MYNAH Administrator is madmin and that
madmin started the MYNAH processes.

NOTE — This section uses the TermAsync method
sendWait to illustrate these techniques. Briefly,
sendWait sends a string, such as a login id or a UNIX
command, to the connection and waits until an expected
string is returned, such as

sendWait "ls\r" -expect "$ "

In this case, sendWait sends the ls command and waits
until it receives the $ prompt, which is the prompt of the
initiator of the MYNAH processes. For a complete
explanation of sendWait, see Section 9.5.1.11.

If you want your script to generate output files, we recommend the following measures.

3.3.1 Execution Directory Permissions When Using the BEE

When you execute a script using xmyCmd submit, the system generates several files in the
directory containing the script. madmin must have permission to write these files in this
directory. Typically, you will be part of the same UNIX group that madmin is. For
example, if you decide to create a directory to contain all of your scripts, e.g. scripts, you
should grant read/write permissions to madmin (and therefore the UNIX group to which
you and madmin belong) as in

chmod 775 scripts

3.3.2 File Ownership When Using the BEE

Besides the system output files, you can have the MYNAH System save files generated by
the script, such as a capture of the current screen or files transferred by an ftp session. If
you execute the script from the background, madmin will own all of the files in the output
directory and the output directory itself; you will have only read permissions for these files.
3–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3
If this happens, you can include statements in your script to change the permissions of the
user-specified output files.

The script in Figure 3-5 makes a connection, lists the contents and pathname of the current
directory, and saves the most recent response and screen in the files
/users/kjb/OUTPUT/screen and /users/kjb/OUTPUT/path, respectively. We then send a
chmod command to change the permissions on those files.

xmyLoadPkg TermAsync
set conn1 [xmyTermAsync connect]
$conn1 sendWait “PS1=\”% \”\r” -expect “% “
$conn1 wait -expect “% “
$conn1 sendWait “ls\r” -expect “% “
$conn1 sendWait “pwd\r” -expect “% “
$conn1 response -file /users/kjb/OUTPUT/path
$conn1 screen -file /users/kjb/OUTPUT/screen
$conn1 sendWait “chmod 666 /users/kjb/OUTPUT/path\r”\

-expect “% “
$conn1 sendWait “chmod 666 /users/kjb/OUTPUT/screen\r”\

-expect “% “
$conn1 disconnect
xmyExit

Figure 3-5. Example Script to Change Permissions of Output Files
 3–13

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999

t the
3.4 Setting Output Levels

The amount of output that is generated is controlled in one of two ways:

• The MYNAH Administrator sets initial output levels by entering a value for the
OutputLevel parameter of Engine entry in the xmyConfig file.

• You can control the output level for an entire script or part of a script using the
xmyVar(OutputLevel) array variable. (See Section 6.13.)

Valid OutputLevel values for the events that can be recorded are

Input to xmyVar(OutputLevel) is a Tcl list of zero or more of the OutputLevel event
values listed above. In addition to these values, you can also use the following to se
output level:

• Setting OutputLevel to nothing using a empty string “ “, for example,

set xmyVar(OutputLevel) “ “

means that no subsequent events will be recorded in the output file.

NOTE — The value for the xmyVar(OutputLevel)
variable is returned or set using the Tcl command, set. See
Section 4.1.3 and Appendix A.51 for information on using
the set command.

• Setting OutputLevel to everything by using an asterisk (*), for example,

set xmyVar(OutputLevel) *

means that output will be created for all valid types.

childscr Records child script events.

compare Records comparison events.

error Records error events.

lang Records language events.

script Records script events.

summary Records summary events.

sutimage Records SUTimage events.

suttiming Records SUT Timing events.

testobj Records test object events.

user Records user events.
3–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3

hen

s
s of
It is suggested that:

• You should always choose to produce, at minimum, script and error events.

• You should never choose lang events for an entire script. These events are useful w
attempting to debug a script but you should turn them on by using
xmyVar(OutputLevel) with the lang value just before the lines of code that are
causing the problem.

3.4.1 Returning the Current Output Level

To see what the current output level setting is, simply type

set xmyVar(OutputLevel)

In the following example, we see that script and error events are set.

> set xmyVar(OutputLevel)
script error

3.4.2 Changing the Output Level

To change the output level, enter the OutputLevel values for events you want to record a
input to the xmyVar(OutputLevel) variable. The event values are entered as element
a list delimited by braces ({}), for example

> set xmyVar(OutputLevel) {error childscr compare script user}
error childscr compare script user

The new output level will be exactly what you enter as the input to xmyVar(OutputLevel),
overwriting the previous level. For example, if your initial output level setting is the
recommended minimum setting of producing script and error events and you want to
temporarily produce output for lang events in addition to script and error events, you must
enter all three event values as input to xmyVar(OutputLevel), as in

> set xmyVar(OutputLevel) {script error lang}
script error lang
 3–15

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999

de

e’s

 to
3.5 Script Termination

This section presents several hints to consider when you decide how to terminate your
script.

3.5.1 Using a Termination Procedure

When a script terminates, there are common activities that should occur. For example,
typical "end of script" processing involves producing a message in the script output file that
summarizes script success or failure.

It is advisable to centralize all final processing in a termination procedure because:

• Scripts will be standardized: all scripts will perform the same "end of script"
processing.

• Script maintenance will be reduced: any updates are confined to one script.

Consider the example presented above producing a standard message upon script
termination. This could be done by checking the global variable xmyVar(FailedCompares)
and passing an argument to the xmyExit command, as in the following example:

if {xmyVar(FailedCompares) == 0} {
xmyExit "OK: no failed compares"

} else {
xmyExit "ERROR: at least one compare failed"

}

Without a termination procedure, everyone who is coding scripts would have to inclu
these commands in their scripts. Yet, with a termination procedure (e.g, exitProc), which
would contain these same commands, the only command that's required in everyon
scripts is the command to invoke the procedure, as in the following example:

 exitProc

An alternative to including a command in the script to invoke the procedure would be
use the MYNAH termination procedure ExitHandler. This procedure can be invoked
automatically when the script reaches its end by setting the global array variable
xmyVar(ExitHandler). For more information about using this procedure, see Section 6.6.
3–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3
3.5.2 Cleanup for Scripts Sent to ConnOnly and Fullstate SEs

For a script that is submitted to an SE whose state is ConnOnly or Fullstate, connections
that were opened in the script remain active when the script terminates.

Because of this, the script should contain the code that will bring opened connections to an
appropriate state in the system where they will be ready for use when the next script comes
along for execution. For example, if the first script logs onto an application, the appropriate
state for the next script could be the first screen after the logon process completes. That’s
where the first script should "leave off."

One method for coding for this situation is to include the required code in a procedure,
possibly an ExitHandler procedure. For more information about using this procedure, see
Section 6.6.

3.5.3 Sample Code

This section illustrates one simple example of the procedures used to terminate a script. The
example assumes you have logged on to a system called imok and are testing a program
called kurtz.

1. If logged onto a SUT, log off.

2. Disconnect the MYNAH connection.

3. Exit from the script.

NOTE — This section contains excerpts from a script
using the Term3270 Package. The commands and
methods for the Term3270 Package are used to illustrate
the script termination processes. For a description of the
Term3270 Package, see Section 10.

Figure 3-6 shows an example of how the procedures used to terminate a script may be
accessed by a script. The KurtzOff procedure (Figure 3-7) logs off from kurtz, the
 3–17

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999

t for the

s this

ition.
ImokLogoff procedure (Figure 3-8) logs off from imok, and the GenEnd procedure
(Figure 3-9) exits the script.

Let’s examine each of these procedures. Notice that each procedure has an argumen
connection handle. This “tells” the procedure the name of the connection in which to
perform the commands.

Figure 3-7 shows the KurtzOff procedure. To exit from the kurtz system, you must enter
the character “X” in row one, column two on the current screen. The procedure send
character to the SUT via the type method. After pressing the enter key, it the Kurtz
Selection Screen is not displayed, however, this will create an error, so the catch command
is used to “catch the error.” This allows you to code the script to manage the error cond
In this case, the procedure prints a message and returns a “0.”

SCRIPT TERMINATION PROCEDURE CALLS AT BOTTOM OF SCRIPT
#if get here, need termination processing

#log off kurtz
KurtzOff $conn

#log off imok
ImokLogoff $conn

#exit the script
GenEnd $conn

Figure 3-6. Example Script Termination Procedures

proc KurtzOff {conn} {

#LOG OFF KURTZ

set expscreen {"KURTZ SELECTION SCREEN"}

#access entity screen
$conn type -text "X" -position {1 2}

if {[catch {$conn sendWait -key enter -expect $expscreen}]} {
xmyPrint "ERROR: did not get screen: $expscreen"
return 0

}

#if get here, no errors
return 1

}

Figure 3-7. Example SUT Log Off Script
3–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Scripting Hints
Revision 1, February 1999 Release 5.3
Figure 3-8 shows the ImokLogoff procedure. To log off from the imok system, you must
enter the string /rcl on the connection window. The catch command is used again (see
preceding description).

Figure 3-9 shows the GenEnd procedure. The procedure first uses the global command to
make the xmyVar global array accessible to the procedure. This lets you print the counts
generated by the xmyVar comparison elements. The script prints the contents of the
xmyVar comparison elements. Finally, the script exits. If an exit string is specified, then
the script exits with the exit string. This is very similar to what you might do if you are
coding an ExitHandler procedure.

proc ImokLogoff {conn} {
#PURPOSE: LOG OFF IMOK

#log off
$conn type -text “/rcl” -position {1 2}
if {[catch {$conn sendWait -key enter}]} {

xmyPrint "ERROR: /rcl failed"
return 0

}

#if get here, no errors
return 1

}

Figure 3-8. Example System Log Off Procedure

proc GenEnd {conn {exitstr ““}} {

PURPOSE: TERMINATE A SCRIPT

global xmyVar

PRINT COUNTS FROM GLOBAL ARRAY
xmyPrint -text $xmyVar(GoodCompares)
xmyPrint -text $xmyVar(FailedCompares)
xmyPrint -text $xmyVar(WarningCompares)

#finally, exit the script
if {$exitstr != ““} {

xmyExit $exitstr
} else {

xmyExit
}

}

Figure 3-9. Example Script Exit Procedure
 3–19

MYNAH System Scripting Guide BR 007-252-004
Scripting Hints Issue 4, December 1998
Release 5.3 Revision 1, February 1999

, that

t
3.6 UNIX Commands in Scripts

You can include UNIX commands in your scripts, but how you use UNIX commands
depends on what type of SE you use to execute the script.

If you submit a script using a Command-line SE, you can simply enter the UNIX command.
If you are using an Embedded or Background SE, UNIX commands must be “exec”ed
is you must preface the command with the Tcl exec command (Appendix A.13).

For example, in xmytclsh (for a Command-Line SE) typing

vi examplefile.txt

runs the UNIX vi command in the window xmytclsh is in. In the Background SE, a scrip
containing the line vi /tmp/file will exit abnormally with the message

error: Auto execution of Unix commands only supported as
interactive commands. Use “exec” to execute “vi”

You must enter this command as

exec ping myserver

for Embedded or Background SEs.

You can use the env array to read and write $HOME environment variables. For example,
to read in your home directory and assign it to a Tcl variable, you would type

set path $env(HOME)
/u/kjb
3–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4. Tcl Basics

This section is designed to be a basic introduction to Tcl. After you finish this section, you
should have a basic knowledge of the language. This section is divided into several
subsections, each detailing a specific Tcl category. Table 4-1 lists these subsections.

Table 4-1. Section Contents

Section Name Description Section Number

Before We Begin This subsection introduces some basic ideas
and concepts, including a discussion of some
basic Tcl commands.

4.1, Page 4–2

Expressions This subsection discusses the basics of Tcl
expressions using the TCL operands, operators,
and math functions.

4.2, Page 4–7

Tcl Syntax This subsection describes the Tcl syntax, the
rules that determine how commands are used,
focusing on substitution, quoting, and
commenting.

4.3, Page 4–15

Lists and Arrays This subsection describes the Tcl facilities for
handling collections of data.

4.4, Page 4–21

Control Flows This subsection describes the Tcl commands
(e.g. if, while, and for) for controlling the flow
of script execution.

4.5, Page 4–36

Tcl Error/Exception
Procedures

This subsection describes Tcl command for
trapping errors so that a script does not abort.

4.6, Page 4–46

Procedures This subsection describes the methods of
creating new Tcl command procedures.

4.7, Page 4–50

String Manipulation This subsection describes the basics of pattern
matching for string manipulation.

4.8, Page 4–53

File Input/Output This subsection describes basic Tcl
input/output functions, concentrating on
opening and closing files.

4.9, Page 4–55

Using xmytclsh This subsection describes the use of the
xmytclsh program to test Tcl commands.

4.10, Page 4–59

Importing Scripts Using
the source Command

This subsection provides basic information on
how to import scripts for execution.

4.11, Page 4–60
 4–1

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.1 Before We Begin

There are some basic concepts and ideas that we must first mention before we begin. In
addition, a rudimentary knowledge of a few basic Tcl commands, set, unset, expr, append
and incr, which are used in examples in the following sections, will also be helpful.

NOTE — These are only brief descriptions of these basic
commands. Complete descriptions of these commands
and all basic Tcl commands can be found in Appendix A.

4.1.1 Examples in this Document

The MYNAH System provides a utility program, xmytclsh (Section 4.10), that lets you
interactively run Tcl commands, including all MYNAH extensions.

When you start the program, the xmytclsh prompt (>) appears. The response returned from
each command entered to xmytclsh appears on a separate line without the prompt, as in;

xmytclsh
> set x 5
5

The examples in this document have been created as if they were entered using xmytclsh.
You, in turn, may wish to use xmytclsh to verify the examples included in this section or
to test your own examples.

4.1.2 Basic Concepts and Definitions

The only data type in Tcl is a string . All commands, arguments, and results are strings. A
Tcl string, however, can represent, among other things, integers, floating point numbers,
and lists. A string containing words separated by white space is a list .

Tcl commands are similar in form to shell commands: each command consists of one or
more words separated by spaces or tabs, and <newline> or a semi-colon (;) ends a
command. The first word of each command is always the command name and the rest of
the words are interpreted as arguments. What forms the arguments take are determined by
each individual command.

One of the basic Tcl strings is the variable , a user defined quantity that can assume one of
a set of values. You can use the variable to act as input to Tcl commands.

The following subsections describe the basic Tcl commands used to create and manipulate
strings. Since they are so basic, we concentrate on creating and manipulating variables.
4–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

 an
4.1.3 set

Syntax

set variable ?value?

Return

Value of the variable

Description

The set command assigns or “sets” a string. set takes one or two arguments.

When using two arguments, set assigns the value to the variable. The value can be
integer, string, or expression.

When using one argument, set returns the current value of the variable.

Example

> set a 2
2

> set b hello
hello

> set a
2

4.1.4 unset

Syntax

unset variable ?variable? …

Return

No return

Description

The unset command destroys a variable created by set. unset takes at least one
argument.

Example

To remove both of the variables we created in the previous section, type

unset a b
 4–3

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e

alue,
4.1.5 expr

Syntax

expr argument ?argument? …

Return

String of the expression’s value

Description

The expr command evaluates an expression, which is a combination of values (called
operands) and operators. Specifically, expr concatenates an argument, evaluates th
result as a Tcl expression, and returns the value.

Example

> expr 6.7 + 5.5
12.2

4.1.6 incr

Syntax

incr variable ?value?

Return

New value of the variable incremented by the specified value

Description

The incr command increments a variable by the supplied value. incr takes either one
or two arguments, a required variable and an optional incremental value. The
incremental value must be a positive or negative integer. If you don’t specify a v
Tcl automatically adds one (1) to the variable.

Example

> set x 12
> incr x 5
17
> incr x
18
> incr x -7
11
4–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.1.7 append

Syntax

append variable value ?value? …

Return

Appended value of the variable

Description

The append command appends one or more values to a variable, that is they are added
to the end of the variable. append takes two or more arguments.

The appended values are treated as text. Instead of adding the two integers together as
incr does, append simply treated them as if they were letters.

Example

> set x 5
5
> append x 6
56
> append x Y
56Y

4.1.8 history

Syntax

history ?option ? ?arg arg ... ?

Return

A listing of previously executed commands

Description

The history command lets you perform several actions on events, which are
previously executed commands. In its simpliest form, history returns a history list,
a list of these events with an event number assigned to each event.

NOTE — By default, only the 20 most recent events are
returned, but you can tell history to retain more events.

history takes several options that let you perform other functions besides returning the
history list, including re-executing and changing a command.
 4–5

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

As we said, the simpliest use of history is to return the history list, as in the following:

> xmyLoadPkg TermAsync
> set x 5
5
> set y 7
7
> history

1 xmyLoadPkg TermAsync
2 set x 5
3 set y 7
4 history

In the following examples, the redo option re-executes the second command from the
above list, the change option replaces the value of the original second command, and
the event option returns the new value of the second command.

> history redo 2
5
> history change "set x 7.7" 2
> history event 2
set x 7.7

Lastly, history is re-executed to confirm the change and redo generates the new value
of the variable x.

> history
1 xmyLoadPkg TermAsync
2 set x 7.7
3 set y 7
4 history
5 set x 5
6 history change "set x 7.7" 2
7 history event 2
8 history

> history redo 2
7.7
4–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

umber
ase 8).

2.

e

4.2 Expressions

As we mentioned in Section 4.1.5, expressions are a combination of values (called
operands) and operators. All Tcl expression commands require one or more arguments.
expr is only one of these commands and is in fact the simplest. For example, if requires two
arguments, both of which can be expressions: the result from the evaluation of the first is
used to determine whether or not to evaluate the second. (See Section 4.5.1 for a discussion
of the if command.)

4.2.1 Operands

Normally, operands are integers or real numbers, and these can be variables or constants.
As we’ve mentioned, variables are set using the set command.

Constants are usually decimal (base 10). There are, however, ways to use different n
bases. If the first character is a 0 (zero), then the constant is considered to be octal (b
If the first two characters are 0x, then the number is considered to be hexadecimal
(base 16). For instance, the examples in Table 4-2 are all equal to the decimal constant 42

For floating-point numbers, Tcl accepts most of the forms defined for ANSI C with th
exception of the f, F, l, and L suffixes. Figure 4-1 shows valid examples of floating-point
numbers.

Table 4-2. Tcl Number Base Example

Constant Base

422 decimal

0646 octal

0x1A6 hexadecimal

5.3
6.28e+7
7E5
9.

Figure 4-1. Floating-Point Number Examples
 4–7

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

er.

d
4.2.2 Operators

Tcl supports arithmetic, relational, logical, bitwise, and choice operators similar to those
used in ANSI C expressions. As with ANSI C, Tcl treats a zero value (such as for a
relational or logical operator) as false and anything else as true. Tcl uses 1 for true and 0 for
false.

In each of the following sections, the operators are listed in the order of precedence.
Additionally, the types of operators are listed in the general order of precedence. The exact
order of precedence is discussed in Section 4.2.2.6.

4.2.2.1 Arithmetic Operators

Tcl supports the arithmetic operators -, +, *, /, and %. The - operator can be used for two
operations:

• For negation, as in -(7*$x)

• For subtraction, as in 7-5

Table 4-3 lists the Tcl arithmetic operators.

Table 4-3. Tcl Arithmetic Operators

Syntax Results

-x Return the negative of x.

x*y Multiply x and y.

x/y Divide x by y. If both operands are integers, the result is truncated to an integ

x%y Remainder when dividing x by y. Both operands must be integers. This is calle
the modulus operator.

x+y Add x and y.

x-y Subtract y from x.
4–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.2.2.2 Relational Operators

Tcl supports the relational operators <, >, <=, and >=, which are used to compare two
values. If the operands meet the conditions, the operators produce a true (1) result. If the
operands do not meet the conditions, the operators produce a false (0) result. Table 4-3 lists
the Tcl relational operators.

4.2.2.3 Logical Operators

Tcl supports the logical operators !, &&, and ||, which are used to combine the results of
relational operators, such as

($x > 6) || ($x < 13)

Table 4-3 lists the Tcl logical operators.

Table 4-4. Tcl Relational Operators

Syntax Description Results

x<y Less than 1 if x is less than y, else 0

x>y Greater than 1 if x is greater than y, else 0

x<=y Less than or equal 1 if x is less than or equal to y, else 0

x>=y Greater than or equal 1 if x is greater than or equal to y, else 0

x==y Equal to 1 if x is equal to y, else 0

x!=y Not equal to 1 if x is not equal to y, else 0

Table 4-5. Tcl Logical Operators

Syntax Description Results

!x Logical NOT of x. 1 if x is a zero, else 0.

x&&y Logical AND of x and y. 1 if x and y are non-zero, else 0.

x||y Logical OR of x and y. 1 if either x or y is non-zero, else 0.
 4–9

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

’s.

g

e
4.2.2.4 Bitwise Operators

Tcl supports the logical operators ~, <<, >>, &, ^, and |, which manipulate the individual
bits of integers. Table 4-3 lists the Tcl bitwise operators.

4.2.2.5 Choice Operator

Tcl has only one choice operator, ?, which lets you select one of two results. The choice
operator takes three operands and has the syntax.

x?y:z

If x is true, then y. If x is false, then z.

The first operand is evaluated. If the solution is true (non-zero), then the operand following
the ? is evaluated and becomes the result of the expression; if the solution is zero (false),
the second operand is evaluated and becomes the result.

Table 4-6. Tcl Bitwise Operators

Syntax Description Results

~x Bitwise complement (ones
complement) of x.

The result is bits that are the opposite of those in
the operand: 1’s replace 0’s and 0’s replace 1

x<<y Left-shift x by y bits. 0’s are shifted into the low-order bits.

x>>y Arithmetic right-shift x by y
bits.

0’s are shifted in for positive numbers and 1’s
are shifted in for negative number.

x&y Bitwise AND of x and y. Each bit of the result is generated by applying
the AND function to the corresponding bits of
the x and y operands.

x^y Bitwise exclusive OR of
x and y.

Each bit of the result is generated by applying
the exclusive OR function to the correspondin
bits of the x and y operands.

x|y Bitwise OR of x and y. Each bit of the result is generated by applying
the OR function to the corresponding bits of th
x and y operands.
4–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.2.2.6 Precedence

Table 4-7 lists all of the Tcl-supported operators described in the previous subsections; the
horizontal lines separate the operators into groups with the same precedence. This table also
lists the operand type (integer, floating-point, and string) for each operator.

Operators with higher precedence appear above operators with lower precedence. For
example,

expr (11/3<=4)

yields the result true (1) since the / operator has a higher precedence than the <= operator.

Table 4-7. Tcl Operator Precedence

Operator Operand Types

-x integer, floating-point

!x integer, floating-point

~x integer

x*y integer, floating-point

x/y integer, floating-point

x%y integer

x+y integer, floating-point

x-y integer, floating-point

x<<y integer

x>>y integer

x<y integer, floating-point, string

x>y integer, floating-point, string

x<=y integer, floating-point, string

x>=y integer, floating-point, string

x==y integer, floating-point, string

x!=y integer, floating-point, string

x&y integer

x^y integer

x|y integer

x&&y integer, floating-point

x||y integer, floating-point

x?y:z x: integer, floating-point
 4–11

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
You can use parenthesis to indicate how you want operators to be evaluated; whatever is in
the parenthesis will be evaluated first. For example,

expr (7*(5+4))

yields 63, but

expr (7*5+4)

yields 39.

Operators with the same precedence level are grouped from left to right. For example 7+5-3
and (7+5)-3 are equal; both evaluate to 9.
4–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.2.3 Mathematical Functions

Tcl supports many mathematical functions, such as sin (the trigonometric [trig] sine
function) and sqrt (square root). These functions can be used as arguments for expressions
and are invoked using standard functional notation, as in the following examples:

expr 3*tan($a)
expr sqrt($x) + $b

Table 4-8 lists the Tcl-supported trigonometric functions.

NOTE — All arguments for trigonometric functions are
expressed in radians.

Table 4-8. Tcl Trig Functions

Function Description

acos(x) Arc cosine of x, in the range 0 ≤ x ≤ π.

asin(x) Arc sine of x, in the range -π/2 ≤ x ≤ π/2.

atan(x) Arc tangent of x, in the range -π/2 ≤ x ≤ π/2.

atan2(x,y) Arc tangent of x/y, in the range -π/2 ≤ x ≤ π/2.

cos(x) Cosine of x.

cosh(x) Hyperbolic cosine of x.

sin(x) Sine of x.

sinh(x) Hyperbolic sine of x.

tan(x) Tangent of x.

tanh(x) Hyperbolic tangent of x.
 4–13

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Table 4-9 lists the standard Tcl-supported math functions.

4.2.4 Conversion

When you use operands of different types, Tcl converts them to the same type, e.g., if one
in an integer and the other is floating-point, both are converted to floating-point.

Table 4-9. Tcl Math Functions

Function Description

abs(x) Absolute value of x.

ceil(x) Smallest integer not less than x.

double(x) Real value equal to the integer x.

exp(x) e raised to the xth power, i.e., ex.

floor(x) Largest integer not greater than x.

fmod(x,y) Floating-point remainder of x/y.

hypot(x) Square root of (x2 + y2). This is the hypotenuse of a right triangle.

int(x) Integer from truncating x.

log(x) Natural logarithm of x.

log10(x) Base 10 logarithm of x.

pow(x,y) x raised to the yth power, i.e., xy.

round(x) Integer from rounding x.

sqrt(x) Square root of x.
4–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.3 Tcl Syntax

This section describes the Tcl syntax, the rules that determine how commands are used.

4.3.1 Substitution

Tcl provides three forms of substitution: variable, command, and backslash. Each
substitution causes some of the original characters of a word to be replaced with another
value.

4.3.1.1 Variable

Variable substitution using “$” lets you use the value of a variable in a command;
characters following the $ are treated as a variable. A basic example would be to type

set c $a

The $ causes the Tcl interpreter to perform the substitution, assigning the current value of
the variable a to the variable c.

A more illustrative example would be

> set a 6
> expr $a+3
9

where the variable a is assigned the value 6, which, using the expr command, is added to 3.

You can have variable substitutions anywhere in an argument, such as

> set a 6
> expr $a*$a
36

In this example, two substitutions occurred within the same argument, i.e., 6 times 6.

4.3.1.2 Command

Tcl also lets you use the result of a command as an argument to another command. For this,
you put square brackets around a command or script excerpt. For example, type

> set a 6
> set c [expr $a/2]
3

 4–15

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Everything inside the square brackets is evaluated by Tcl as a separate command. In this
case, the command happens to be expr. The value of a is divided by 2 and this new value
is assigned to c. Square brackets can be nested. Try entering

set e [expr $c*[expr $a+4]]

Given the values of a and c from the previous example (6 and 3, respectively), e would
assume the value 30 (i.e., 4*(6+4)).

4.3.1.3 Backslash

The backslash character overrides the special meaning of the following character, such as
a $, a space, or a left bracket ([); the character is interpreted literally and not according to
its Tcl-based characteristics. If you typed

> set d \$a
$a

the variable d is literally set to the characters $a and not 6, assuming the value for a from
the previous examples.

Tcl does not allow embedded spaces in words, but the backslash lets you use spaces in
arguments, such as

> set x this\ string\ uses\ embedded\ spaces
this string uses embedded spaces

A backslash suppresses only the Tcl interpretation of the character immediately following
it. In this example

> set x 6.5; set y \$$x
$6.5

the first dollar sign is passed as a literal character while the second is used for variable
substitution.

The backslash can also be used to insert special characters and functions, including all
sequences defined for ANSI C, such as \t for a tab. Table 4-10 lists all of the Tcl-supported
backslash sequences.
4–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
Table 4-10. Tcl Backslash Sequences

Backslash Sequence Replaced By

\a Audible alert (0x7)

\b Backspace (0x8)

\f Form feed (0xc)

\n Newline (0xa)

\r Carriage return (0xd)

\t Tab (0x9)

\v Vertical tab (0xb)

\ddd Octal value

\xhh Hex value from hh

\{space} A single space character
 4–17

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.3.2 Quoting

Much like the backslash character, quoting suppresses the effect of special characters
(white spaces, new-lines, semicolons). While only the character following a backslash is
suppressed, everything quoted is suppressed, such as when you want an argument to
include embedded spaces.

Tcl lets you use two forms of quoting: double quotes and braces. The quote character must
be the first character of the quoted argument. The quote character is stripped off when the
argument is passed to the interpreter.

4.3.2.1 Using Double Quotes

When using double quotes, everything from the first double quote to the closing double
quote is interpreted as one command argument; all spaces, tabs, newlines, and semicolons
in the argument lose their special meaning. Dollar signs and brackets are not affected by
double quotes. You can retype the second example in Section 4.3.1.3 without using a
backslash in the following way.

> set x "this string uses embedded spaces"
this string uses embedded spaces

Similarly, you could type

> set d "$a"
6

assuming $a is still set to the value from Section 4.3.1.2.

A slightly more elaborate example is

> set x 3.1
> set test "x is $x\n$x squared is [expr $x*$x]"
x is 3.1
3.1 squared is 9.61

NOTE — This can also be written

set x 3.1
set test "x is $x
$x squared is [expr $x*$x]"

with the newline replacing the newline character (\n).
4–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.3.2.2 Using Braces

You can also use the braces to suppress special characters. While double quotes disable
only word and command separators (e.g., white spaces, newlines, semi-colons), braces
disable almost all special characters. For example, the last example for double quotes
rewritten using braces would yield the following:

> set x 3.1
> set test {x is $x\n$x squared is [expr $x*$x]}
x is $x\n$x squared is [expr $x*$x]

Because the braces suppress the variable substitution for the $, the characters $x\n$x and
$x*$x are interpreted literally.

NOTE — The next example uses the while command.
Briefly, the syntax for while is

while test while_body

while evaluates test. If the result is zero, execution of the
while loop is terminated and the next command in the Tcl
script is executed. If the result is non-zero, while executes
the while_body script, re-evaluates test, and continues
until the test result is zero. (See Section 4.5.2.1 for a
further discussion on the while command.)

A primary use of braces is to defer evaluation. Normally, the Tcl parser immediately
processes special characters. Using deferred evaluation, special characters are passed as
part of the argument to a command procedure, which then processes the characters.
Consider the following script that calculates the square of the first five integers.

> set x 1
> while {$x < 5} {

set square [expr $x*$x]
set x [expr $x+1]

}

NOTE — When using braces, the xmytclsh prompt does
not appear until you enter the closing brace.

The braces enclose the test and while_body parts to defer substitution. The test
expression $x<5 is evaluated at the beginning of each iteration and is used to determine
whether or not to terminate the while loop. This way, the substitution is done anew each
time while evaluates the script. If you had typed

while $x<5

the test expression would have been evaluated once as a constant expression, i.e., 1<5,
and the loop would have executed forever.
 4–19

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.3.3 Comments

You can add comments to a script by entering a pound sign (#) as the first non-blank
character of a line; all characters following the # until a newline will be treated as a
comment. If the # appears anywhere other then as the first non-blank character of a line, it
will be treated as an ordinary character unless it is immediately preceded by a semicolon (;).

This is a correct comment

> set x 3 # This is not a comment

> set x 3; # This is a correct comment

In the first example, the # appears in the first non-blank character, so this is a valid
comment. In the second example, the # appears in the middle of the command and is
considered an argument for the set command. (This would generate an error since the set
command now has too many arguments.) In the last example, the semicolon (;) terminates
the set command, and the # is therefore the first non-blank character following the
semicolon.
4–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

 value.
4.4 Lists and Arrays

As we said in Section 4.1.2, the only Tcl data type is the string. However, Tcl also provides
facilities for handling collections of such data.

A Tcl list is an ordered collection of components of a string, which are called elements.
Syntactically, it is just a string containing one or more fields (such as words, integers, and
file names) separated by white spaces or tabs.

NOTE — When working with a list, an index of 0 refers
to the first element of the list, 1 refers to the second
element, etc. An empty string is generated when the index
is outside the range of the list.

An array is similar to a list in that both are collections of elements. However, where a list
is a string of elements, an array’s elements are variables, each with its own name and
Each variable can only be referenced with the array name.
 4–21

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ents

ist to
aces.
st lists
4.4.1 Creating Lists

As we said, a Tcl list is an ordered collection of string elements.

The simplest way to create a list is to use the set command. This is fine if you’re creating
simple lists. To create more complex lists, Tcl provides two commands, concat and list.
These two commands are similar, but they differ in the how they combine the argum
into a list.

4.4.1.1 Using the set Command

The simplest way to create a list is to use the set command:

> set x {a b c d}
a b c d

This creates a list with four elements, a, b, c, and d.

Usually, you will use braces to enclose the elements of a list; this passes the entire l
the command as a single argument. Braces let you enclose list element to permit sp
Backslashes let you enter special characters in a list. You can also use braces to ne
within lists:

set x {a b {c d e} f { }}

In this case, you created a list with five elements:

• The character a

• The character b

• A sublist containing the characters c, d, and e

• The character f

• An empty list.

NOTE — When using braces to enclose elements of a list,
the braces will not appear unless you use backslash
substitution to insert braces (or other special characters)
into the list.
4–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.4.1.2 concat

Syntax

concat value_1 value_2 ?value_3? …

Return

Concatenated list

Description

The concat command takes any number of arguments and creates one large list. Each
argument is considered a list, whether it is an individual element or an existing list. If
you do not supply any arguments, concat returns an empty string.

Example

> concat {a b c} d {e f} g h
a b c d e f g h

Since each argument is considered a list, if an argument contains a list, the list
becomes an individual element of the new list

> concat {a {b c}} d {e f} g h
a {b c} d e f g h

You can use double-quotes and set to achieve the same affect.

> set x {1 2 3}
> set y {4 5}
> set z {7 8 9}
> set w [concat $x $y $z]
1 2 3 4 5 6 7 8 9
> set w "$x $y $z"
1 2 3 4 5 6 7 8 9
 4–23

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.4.1.3 list

Syntax

list value_1 value_2 ?value_3? …

Return

Concatenated list

Description

The list command takes any number of arguments and creates one large list. Unlike
concat, list retains the integrity of elements in the argument so that they remain
discrete elements in the resulting list. If you do not supply any arguments, list returns
an empty string.

Example

> list {a b c} d {e f} g h
{a b c} d {e f} g h

The resulting list contains five elements, compared to concat, which would create a
list with eight elements.

> concat {a b c} d {e f} g h
a b c d e f g h

You can use concat and list as part of the argument for another expression, such as
using set to assign a list to a variable:

> set x [concat {a b c} d {e f} g h]
a b c d e f g h
> set y [list {a b c} d {e f} g h]
{a b c} d {e f} g h
4–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.4.1.4 llength

Syntax

llength list

Return

Number of elements in a list

Description

The llength command calculates the number of elements in a list. llength takes only
one argument, the list itself.

Example

> llength {{a b c} d {e f} g h}
5
> llength {a b {c d e}}
3
> llength a
1
> llength { }
0

 4–25

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.4.2 Extracting Elements from a List - lindex

Syntax

lindex list index

Return

List element

Description

The lindex command extracts elements from a list. Each element corresponds to an
entered index. The list index begins at 0.

Example

To extract the second element in a list, type

> lindex {a b c d} 1
b

To extract the fourth element in a list, type

> lindex {a b {c d e} f} 3
f

4–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.4.3 Modifying Lists

Tcl provides several commands that let you modify lists.

4.4.3.1 lappend

Syntax

lappend variable value ?value? …

Return

An appended list

Description

The lappend command lets you append new elements to a list assigned to a variable.
Each additional argument is appended to the end of the variable’s list as a new list
element.

lappend enforces proper list structure and is implemented so as to avoid string copies,
which helps in performance when working with large lists. This can simplify creating
lists.

Example

> set x {a {b c d} e}
a {b c d} e
> lappend x X {Y Z} WW
{a {b c d} e} X {Y Z} WW

Both of the following would create the same list, but using lappend is more efficient
if one of the lists is very large.

> lappend x $a $b $c
> set x "$x [list $a $b $c]"
 4–27

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.4.3.2 linsert

Syntax

linsert list index value ?value? …

Return

A list containing inserted elements

Description

The linsert command lets you form a new list by inserting new elements into an
existing list.

linsert generates a new list by inserting the new elements just before the element
specified by the index.

Example

> set x {{a b c} d {e f}}
{a b c} d {e f}

> linsert $x 1 X {Y Z}
{a b c} X {Y Z} d {e f}

> linsert $x 0 X {Y Z}
X {Y Z} {a b c} d {e f}

> linsert $x 5 X {Y Z}
{a b c} d {e f} X {Y Z}

In the first example, the index is 1, so the new elements were inserted after the first
element in the old list. In the second example, the new elements were inserted at the
beginning of the old list. In the third example, the index was greater than the number
of elements in the original list, so the new elements were inserted at the end of the list.
4–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.4.3.3 lreplace

Syntax

lreplace list index_1 index_2 ?value? ?value? …

Return

A list containing deleted or replaced elements

Description

The lreplace command lets you delete elements from a list and lets you optionally add
new elements in their place.

The index_1 and index_2 arguments are, respectively, the indices of the first and last
elements to be deleted. If you specify any additional arguments, they are inserted in
place of the elements you deleted.

Example

In this first example, only three arguments are specified, and the third and fourth
elements are deleted from a list and the new list assigned to the variable x.

> set x [lreplace {a {b c} {d e f} g h {i j} k} 2 3]
a {b c} h {i j} k

In this second example, we take the list assigned to the variable x in the previous
example, replace the third, fourth, and fifth elements with new elements, and assigned
this list to the variable y.

> set y [lreplace $x 2 4 W {X Y} Z]
a {b c} W {X Y} Z
 4–29

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

y
d
4.4.3.4 lrange

Syntax

lrange list index_1 index_2

Return

List containing extracted elements

Description

The lrange command lets you extract a range of elements from a list.

The resulting list consists of the elements that lie inclusively between the two indices.

Example

Let’s take the list assigned from the last example. In the first example, we simpl
extract and display the third, fourth, and fifth elements from the list. In the secon
example, we extract the first and second elements.

> lrange $y 2 4
W {X Y} Z
> set z [lrange $y 0 1]
a {b c}
4–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.4.4 Searching Lists - lsearch

Syntax

lsearch ?mode? list pattern

Return

Index number

Description

The lsearch command searches a list for an element with a particular value.

lsearch returns the index of the first element in the list that matches the pattern, or -1
if no element matched the pattern.

The three optional mode arguments, if used, appear before the list argument and
determine how the elements of the list are matched against the pattern:

-exact The list element must exactly match the pattern.

-glob Each list element is matched against a glob-style pattern that
follows the rules for the string match command as described in
Appendix A.54. This is the default mode.

-regexp Each list element is matched against a regular expression pattern
that follows the rules for the regexp command as described in
Appendix A.45.

Example

> set x {Prufrock Ken Regis Salinger}
> lsearch $x Prufrock
0

> lsearch $x S
-1

> lsearch $x S*
3

> lsearch $x Updike
-1

> lsearch -exact $x Regis
2

 4–31

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ach
ing

rted
4.4.5 Sorting Lists

Syntax

lsort ?options? list

Return

Sorted list

Description

The lsort command sorts a list. lsort takes one or more arguments.

By default, lsort sorts a list in increasing lexicographical order, that is numbers are
treated as letters and the list is sorted alphabetically. lsort looks at the relative position
of each character of each element and sorts accordingly.

lsort support several options that let you control how and what to sort, including the
two following examples:

-decreasing Sort the list in decreasing order.

> lsort -decreasing {Prufrock Ken Klaatu Salinger}
Salinger Prufrock Klaatu Ken

-integer The elements are treated as integers and sorted according to
integer value:

> lsort -integer {12 1 3 103 9}
1 3 9 12 103

You can specify your own sorting functions using the -command option. See the lsort
manpage on page A–57 for an explanation of the -command option.

Example

> lsort {Prufrock Ken Klaatu Salinger}
Ken Klaatu Prufrock Salinger
> lsort {12 1 3 103 9}
1 103 12 3 9

In both examples, lsort first sorted the elements according to the first character of e
element, then by the second character, and so on. Therefore, rather than return

1 12 103 3 9

for the second example, which we could expect when sorting numbers, lsort first
sorted by the first character, found three elements beginning with 1, and then so
these three elements according the second character of each element.
4–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

’t

g

y
4.4.6 Converting Between Strings and Lists

Tcl provides the split and join commands for converting lists to strings and strings to lists.

4.4.6.1 split

Description

split string ?split_character? …

Return

A list created from a string.

Description

split breaks up the pieces of the string into elements of a list at the split characters.
There can be one or more split characters. This lets you process each element of the
list independently.

If the split character appears at the beginning of a string, split generates an empty
element. Empty elements would also be generated if there were consecutive split
characters or if the split characters appeared at the end of the string.

You can specify several split characters; the order of the split characters doesn
matter.

If you specify an empty string as the split characters, each character of the strin
becomes a separate list element separated by an empty element.

Example

To work on each element of a date or UNIX pathname, both of which are usuall
separated by slashes, type:

> set x 5/16/95
> set y /usr/bin/pwd
> split $x /
5 16 95
> split $y /
{} usr bin pwd
> split "Tom Dick Harry" {}
T o m { } D i c k { } H a r r y

Remember, the order of the split characters doesn’t matter:

> split 12xy356y7 xy
12 { } 356 7

One of each of the split characters appeared between 12 and 356, so split generated an
empty element.
 4–33

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.4.6.2 join

Syntax

join list separator

Return

A string created from a list.

Example

The join command creates a string from list elements. This is the opposite function of
split. join concatenates the list elements with the separator string between each pair of
elements. You can enter any number of characters for the separator string. If the list
contains an empty element, the separator string replaces the empty element.

You can use an operator as the separator string. You can then generate a Tcl expression
when you join the list elements.

Example

> join { {} usr bin pwd} /
/usr/bin/pwd

> set x {4 9 25}
4 9 25
> set y [sqrt([join $x *]]
30
4–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

 with
 using

e any

ion
e
4.4.7 Arrays

An array is also a collection of elements, but an array’s elements are variables, each
its own name and value. Each variable can only be referenced with the array name by
the syntax

arrayname(elementname)

A Tcl array is usually known as an “associative” array, since its element names can b
arbitrary strings.

For example, to assign a value to the element charlie in the array pet, type

> set pet(charlie) snoopy

To add two more elements into the array, you can do the same

> set pet(alice) mimi
> set pet(tom) tequila

Tcl provides a built-in command, array, for obtaining information on an array. Now type

> array size pet
3

array command takes as its first argument a keyword, indicating the kind of informat
requested. Subsequent arguments would depend on the keyword. In this example, w
queried the size of the array pet.

Another often used query is names, which returns a list containing the names of all the
elements in the array. Try typing

> array names pet
tom charlie alice
 4–35

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.5 Control Flows

The Tcl commands for controlling the execution flow of a script are similar to those used
by ANSI C and csh.

4.5.1 if

Syntax

if expr body

if expr1 then body1 elseif expr2 then body2 … else bodyn

Return

Result of conditionally executed body

Description

The most basic Tcl control command is if, which in its simplest form takes only two
arguments expr (B_________) and body (a block of Tcl code). When expr evaluates
true (non-zero) body is executed, otherwise control passes to the Tcl statement
following body

> set x -5
-5
> if {$x < 0 } {

set x 0
}
0

If the first line had been

set x 5

the expression $x < 0 would have been false and body ({ set x 0 }) would not be
executed. After you will want to execute different code when expr evaluates false and
will use the second form of the if statement.

> set x 5
5
> if {$x < 0 } {

set x 0 } else {
set x [expr $x+1]

}
6

4–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

if

cond
Using the elseif keyword in the second form of it you can create chained conditionals
as in the next example. If checks to see if the variable x is less than zero. If it isn’t, the
first elseif clause checks to see if x is equal to zero, and the second checks to see x
is greater than zero.

NOTE — The then and else arguments are considered
optional “noise words.” A primary function is to help in
readability. if will execute without them. However, if you
do not include an else clause and no tests succeed, if will
return an empty string.

Example

> set x 5
> if {$x < 0 } then {

set x [expr $x + 1]
} elseif {$x == 0} {

echo x equals zero
} elseif {$x > 0} {

set x [expr $x - 1]
}
4

This example is equivalent to the prior example except for the omission of the se
elseif clause, which is redundant.

> set x 5
> if {$x < 0 } then {

set x [expr $x + 1]
} elseif {$x == 0} {

echo x equals zero
} else {

set x [expr $x - 1]
}
4

 4–37

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.5.2 Looping Commands

You can use the while, for, and foreach commands for looping, executing nested scripts
over and over. while and for are similar to the corresponding C statements; foreach is
similar to the corresponding feature of the csh shell. The setup and termination criteria are
different for each command.

4.5.2.1 while

Syntax

while test body

Return

Result of conditionally executed body

Description

while is similar to if in that it evaluates a test expression and executes a body if the
result is true (non-zero). Unlike if, while repeats the process until the expression
evaluates to zero, at which point while terminates and returns an empty string.

Example

The following script creates a list containing, in decreasing order, the squares of the
first five non-zero integers:

> set x 5
> set y ""
> while {$x > 0} {

lappend y [expr $x * $x]
incr x -1

}
> set y
25 16 9 4 1
4–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
In the body you must include code that modifies the test expression, otherwise it will
never evaluate to zero. This reinitialization script is evaluated after the loop body is
executed. If we start with x set to a negative number, we would rewrite the script like
this:

> set x -5
> set y ""
> while {$x < 0} {

lappend y [expr $x * $x]
incr x

}
> set y
25 16 9 4 1

4.5.2.2 for

Syntax

for start test next body

Return

Result of conditionally executed body

Description

Like while, for continues processing until a test expression evaluates to zero. for loop
execution begins when start, which typically initializes variables is executed. When
test is evaluated and if true body is executed, otherwise the for command terminates.
After each execution of body next which typically modifies body, is executed. Test is
evaluated again to determine if the for command should continue execution or
terminate.

A script you write using for can also be written using while, but for lets you place all
of the control code on one line. This aids readability and debugging.

Example

The original script for generating the squares of the first five non-zero integers can be
rewritten using for as follows:

> set y ""
> for {set x 5} {$x > 0} {incr x -1} {

lappend y [expr $x * $x]
}
25 16 9 4 1
 4–39

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.5.2.3 foreach

Syntax

foreach var_name list body

Return

Result of conditionally executed body

Description

Whereas while and for let you create loops that act on any variable, including lists,
foreach is specifically designed to work on lists.

foreach executes body once for each element of the list, e.g., if there are five elements
in a list, body is executed five times, once for each element in the list. Before each
execution, the current list item is assigned to var-name.

Example

The script for creating a list containing, in decreasing order, the squares of the first five
non-zero integers can be rewritten as follows:

> set x [list 1 2 3 4 5]
> set y ""
> foreach i $x {

set y [linsert $y 0 [expr $i * $i]]
}
> set y
25 16 9 4 1

With a slight editing, we can change this script so that the generated list will contain
the squares of the integers in increasing order.

> set x [list 1 2 3 4 5]
> set z ""
> foreach i $x {

lappend z [expr $i * $i]
}
> set z
1 4 9 16 25
4–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.5.3 Looping Control

You can use the break and continue commands to abort part or all of a looping command.
break and continue are similar to the corresponding C statements.

4.5.3.1 break

break immediately terminates the innermost enclosing looping command. For example,
suppose the list in the examples above contained the first 10 non-zero integers but you want
to generate a list that contains only the squares of the first six non-zero integers. You could
then rewrite the script as follows, using break as the then script for an if command:

> set x [list 1 2 3 4 5 6 7 8 9 10]
> set z ""
> foreach i $x {

if {$i > 6} break
lappend z [expr $i * $i]

}
> set z
1 4 9 16 25

This second example rewrites the first example from Section 4.5.2.1, terminating the script
when the variable x equals 3.

> set x 5
> set y ""
> while {$x > 0} {

if {$x == 3} break
lappend y [expr $x * $x]
incr x -1

}
> set z
25 16
 4–41

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.5.3.2 continue

continue terminates only the current iteration of the innermost loop. This time, instead of
generating the squares of only the first five non-zero integers, we could write a script like
the following to omit the square of the sixth integer:

> set x [list 1 2 3 4 5 6 7 8 9 10]
> set z ""
> foreach i $x {

if {$i == 6} continue
lappend z [expr $i * $i]

}

> set z
1 4 9 16 25 49 64 81 100

When using while, Tcl skips out of the body and reevaluates the termination expression.
When using for, next is executed before re-evaluating test. This example rewrites the
example from Section 4.5.2.2, skipping the square of the third integer:

> set y ""
> for {set x 5} {$x > 0} {incr x -1} {

if {$x == 3} continue
lappend y [expr $x * $x]

}

> set y
25 16 4 1
4–42

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

es

hed.
t
ng
4.5.4 switch

Syntax

switch ?options? string {pattern body ?pattern body? …}

switch ?options? string pattern body ?pattern body? …

Return

Result of conditionally executed body

Description

The switch command matches a test string ‘against one or more patterns and execut
a corresponding body. Essentially, switch is a compact way of writing an if command
with many elseif clauses.

The string argument is usually the contents of a variable, is the value to be matc
Each pattern and body form an argument pair. switch iterates through each argumen
pair until a pattern matches the string, at which time it executes the correspondi
body. If switch finds no matches, it returns an empty string.

NOTE — You can avoid generating an empty string by
using default as the last pattern, which matches any value.
The corresponding body will be executed if there are no
other matches.

The options are -glob, -exact, and -regexp, the same as for lsearch. (See
Section 4.4.4.) The default is -glob.

Example

Both of the following examples do the same thing: it generates the natural logarithm
of $a if $x matches z1, the natural logarithm of $b if $x matches z2, the natural
logarithm of $c if $x matches z3, or an empty string of there is no match.

switch $x {z1 {log $a} z2 {log $b} z3 {log $c}}
switch $x z1 {log $a} z2 {log $b} z3 {log $c}

The first form treats each pattern/body pair as an element in a list; the second form
treats them as separate arguments. Each form has its advantages

The first form lets you spread the patterns and bodies across multiple lines like this:

switch $x {
z1 {log $a}
z2 {log $b}
z3 {log $c}

}

The outer braces prevent the newlines from being treated as command separators.
 4–43

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ns on

This is especially advantageous when there are many pattern body pairs.

When using the second form you must use backslash-newlines like this:

switch $x \
z1 {log $a} \
z2 {log $b} \
z3 {log $c}

The major advantage of the second form is that it’s easier to perform substitutio
the pattern arguments.

If you enter “-” for a body, switch will execute the body of the following pattern. This
means several patterns may execute the same body:

switch $x {
z1 -
z2 {log $a}
z3 {log $b}

}

In this example, switch generates the natural logarithm of $a when $x is z1 or z2 and
the natural logarithm of $b when $x is z3.
4–44

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.5.5 eval

Syntax

eval argument ?argument? …

Return

Result of a script

Description

The eval command lets you generate and execute scripts.

eval concatenates the arguments, using spaces to separate them, and executes the
result as a Tcl script. A major use is for generating commands, saving them to a
variable, and executing the variable as a script.

Example

You might want to use a variable as a counter. From time to time you might want to
reset this counter. Each time, you could type the following command:

> set counter 0

However, you could save this line to a variable, such as

> set cmd "set counter 0"

and then execute the following when you want to reset the counter:

> eval $cmd
 4–45

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.6 Tcl Error/Exception Procedures

The Tcl command that manages exceptions is catch, which can trap the error so that the
script does not abort. Tcl also contains several global variables (Section 4.7.3), errorCode
and errorInfo, that return information resulting from errors.

NOTE — In addition to catch, there are two more Tcl
commands, error (see Appendix A.11) and return (see
Appendix A.48), that are related to exceptions. While
these commands do not trap exceptions, they can be used
when processing exceptions.

4.6.1 catch

Syntax

catch command ?varName?

Return

0 the script completed normally
1 an error occurred
2 the return command was invoked
3 the break command was invoked
4 the continue command was invoked

Description

The catch command evaluates a command or Tcl script, returning an integer
identifying the command’s completion status. Instead of aborting, catch lets the script
continue executing.

If you specify the varName argument, the entered variable name assumes the
command’s return value or error message.

Example

> catch {expr 2 * (3 + 4} msg
1
> set msg
unmatched parentheses in expression “2 * (3 + 4”
4–46

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.6.2 Tcl Error Global Variables

4.6.2.1 errorCode

Syntax

set errorCode

Return

Error information

Description

The Tcl errorCode global variable returns error information in the form of a list of
one or more elements, the first element identifying a general class of errors and all
other elements identifying class-dependent information.

Example

> expr 2 * (3 + 4
unmatched parentheses in expression “2 * (3 + 4”
> set errorCode
NONE

NOTE — errorCode is filled by only a few commands,
primarily those for file access functions and child
processes.
 4–47

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ed
4.6.2.2 errorInfo

Syntax

set errorInfo

Return

Error information

Description

The Tcl errorInfo global variable returns diagnostic information on the most recent
error. When an error occurs, Tcl generates a basic error message. errorInfo returns a
more elaborate message than what is returned by errorCode.

Example

> expr 2 * (3 + 4
unmatched parentheses in expression “2 * (3 + 4”
> set errorInfo
can’t read “unmatched parentheses in expression “2 * (3 + 4”
 while executing
“expr 2 * (3 + 4””: no such variable

Since, in this first example, we are entering the Tcl commands on the command-line,
errorInfo returns just the reason why an error failed. Often, though, you will save a
script and load it using the source command. For example, let’s assume we’ve sav
the above expr command to a file called script1.

> set x [expr 2 * (3 +4]
> source script1
unmatched parentheses in expression “2 * (3 + 4”
> set errorInfo
unmatched parentheses in expression “2 * (3 + 4”

while executing
“expr 2 * (3 + 4”

(file “script1” line 1)
invoked from within

“source script1”

Not only does errorInfo return the reason why the script failed, but it also returns the
name of the script where the error occurred and the line number of the command that
caused the failure.

Returning the name of the script where the error occurred can be very important since
the error might not occur in the script you load directly, but in one that script loads,
such as if we had a script, called script2, that contained the following

> source script1
4–48

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
We would then get the following:

> source script2
unmatched parentheses in expression “2 * (3 + 4”
> set errorInfo
unmatched parentheses in expression “2 * (3 + 4”

while executing
“expr 2 * (3 + 4”

invoked from within
“set x [expr 2 * (3 + 4]...”

(file “script1” line 1)
invoked from within

“source script1”
(file “script2” line 1)
invoked from within

“source script2”
 4–49

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ir
4.7 Procedures

A Tcl procedure is a script that is used to invoke other Tcl commands. Procedures make it
easy for you to package commands so that they can be reused easily.

4.7.1 proc

Syntax

proc proc_name argList body

Description

The Tcl proc command can be used to define new Tcl command procedures. Once
defined, such procedures can be used in the same manner as other built-in commands.
proc has the syntax

proc_name can be any name you give the command. argList is a list

Try typing

proc sum { a b } { return [expr $a+$b] }

This example defined a new command “sum” that takes 2 arguments and returns the
sum. The proc command itself takes 3 arguments:

1. The name of the new command you are implementing

2. A list specifying the arguments to the new command

3. A body that is in turn a list of Tcl commands.

By default, all variables used within a procedure are local. You can now use sum as a
new command

> sum 2 3
5

4–50

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

ny
ted.

e
4.7.2 return

Syntax

return ?options? ?string?

Description

The return command immediately returns (or exits) from a procedure without
executing the entire script. If specified, return returns the entered string value. If
string is not specified an empty string is returned. In the sum procedure we created
above, the procedure evaluates the expression [expr $a+$b] and returns the correct
value.

NOTE — The options for return are detailed in
Appendix A.48.

4.7.3 Local and Global Variables

The variables in a Tcl procedures are called local variables because they can only be
accessed within the procedure; they’re different from the variables created outside a
procedure which are global. When the procedure returns, the local variables are dele
Global variables last forever unless explicitly deleted.

For example, let’s use the sum procedure we created above to add two numbers:

> set x 6
> set y 8
> sum $x $y
48

$x and $y are passed to sum as the argument list, and the local variables a and b are
initialized with these values. Since $a and $b are local variables, they are deleted after th
procedure returns, as shown in the following:

> set a
can’t read “a”: no such variable
> set b
can’t read “b”: no such variable
 4–51

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ewrite

dure.
ant

rts

in a
dure,

e and

ts:
Each invocation of the procedure creates a new set of local variables. You can have a
procedure create local variables, but only those local variables corresponding to the
arguments will have a value when the procedure starts executing. For example, let’s r
the sum procedure to create a local variable.

> proc sum {a b} {
set z [expr $a+$b]
return $z

}
> sum 5 1.2
6.2
set z
can’t read “z”: no such variable

Because z is a local variable to the procedure, it can‘t be accessed outside of the proce
But what if you want to use a variable from the calling script in the procedure or you w
to use a local variable from the procedure in the calling script? To do this, Tcl suppo
global variables.

Global variables are variables named outside any procedure.

You use the global command to make already created global variables accessible with
procedure and to create new global variables. Take for example, the following proce
which is used to raise an entered value to a specified power:

> proc pwr {a} {
global x z
set z [expr pow($a,$x)]

}
> set x 5
5
> pwr 3
> set z
243

The global command above make the global variable x accessible within the procedur
created the global variable z if it did not already exist. You can change the value of $x, to
generate different powers or, as in the following example, to generate the square roo

> set x [expr 1.0/2.0]

> pwr 144
> set z
12.0
4–52

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3

tye of
4.8 String Manipulation

Tcl supports two pattern matching forms for string manipulation. The first follows the shell
file name expansion rules, and is similar to globbing. The second uses regular expressions
such as those used for egrep.

4.8.1 string match

Syntax

string match pattern string

Return

1 if pattern matches string
0 otherwise

Description

string match compares the pattern with the string. If they match, it returns a true
response (1). If they don’t, it returns a false response (0) This is called the glob-s
matching. pattern and string must be identical, however, the following special
sequences may appear in pattern:

* Matches any sequence of characters in string, including a null
string.

? Matches any single character in string.

[chars] Matches any character in the set given by chars. If a sequence of
the form x–y appears in chars, then any character between x and
y, inclusive, will match.

\\x Matches the single character x. This provides a way of avoiding
the special interpretation of the characters *?[]\ in pattern.

Example

In this example, string match extract each element in the list that contains the letter e.

> set x {Stella Pollock Picasso Wyeth Lischtenstein}
> set y {}
> foreach i $x {

if [string match *e* $i] {
lappend y $i

}
}
Stella Wyeth Lischtenstein
 4–53

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

.

4.8.2 regexp

Syntax

regexp ?-indices? ?-nocase? ?--? exp string ?matchVar?
?subVar subVar …?

Return

1 if exp matches all or part of string
0 otherwise

Description

The regexp command matches the regular expression exp with the string. If they
match, it returns a true response (1). If they don’t, it returns a false response (0)

See Appendix A.45 for information on regular expressions.

regexp takes the following switches:

–indices Changes what is stored in the MatchVars. Instead of storing the
matching characters from string, each variable will contain a list of two
decimal strings giving the indices in string of the first and last
characters in the matching range of characters.

–nocase Causes upper-case characters in string to be treated as lower case
during the matching process.

-- Marks the end of switches. The argument following this one will be
treated as exp even if it starts with a –.
4–54

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.9 File Input/Output

Tcl provides stdio-style file input/output functions. (See the stdio manual page.) The most
basic of these is the ability to open and close a file.

NOTE — In addition to open and close, Tcl provides the
following commands for performing input/output
functions:

• cd

• eof

• file

• flush

• gets

• glob

• puts

• pwd

• read

• seek

• tell

Complete descriptions of these commands can be found in
Appendix A.
 4–55

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

s

pty
4.9.1 open

Syntax

open fileName ?access? ?permissions?

Return

fileId to the open file

Description

The open command opens the file, fileName, and returns a unique identifier, fileId,
which is synonymous to a MYNAH handle. fileId takes the form fileN, where N is a
unique iterated number for each successive fileId.

The access argument indicates how the file is to be accessed. access can be either a
string in the form that would be passed to the fopen library procedure or a list of
POSIX access flags.

By default, a file is opened in read-only mode.

In the first form, access can be one of the following values:

In the second form, access consists of a list of any of the following flags.

NOTE — One of the flags must be either RDONLY,
WRONLY or RDWR.

r Open the file in read-only mode; the file must already exist.

r+ Open the file in read/write mode; the file must already exist.

w Open the file in write-only mode. Truncate it if it exists. If it doesn’t exist,
create a new file.

w+ Open the file in read/write mode. Truncate it if it exists. If it doesn’t exist,
create a new file.

a Open the file in write-only mode. The file must already exist, and the file i
positioned so that new data is appended to the file.

a+ Open the file in read/write mode. If the file doesn’t exist, create a new em
file. Set the initial access position to the end of the file.

RDONLY Open the file in read-only mode.

WRONLY Open the file in write-only mode.

RDWR Open the file in read/write mode.

APPEND Set the file pointer to the end of the file prior to each write.

CREAT Create the file if it doesn’t already exist (without this flag it is an
error for the file not to exist).
4–56

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
The permissions argument is used to set the permissions of a file that is created when
it is opened, such as when using the w+ access argument. permissions defaults to
0644, giving only you read/write permissions for the file but allowing all other users
to read the file.

Since a fileId works the same as a MYNAH handle, you can use the set command to
assign the fileId to a variable.

Example

These examples illustrate opening a file using the first access form. In the first
example, you want to open an existing file with the fileName Test1 in read/write
mode. In the second example, you create and open a file, also in read/write mode, and
assign it to a variable.

> open Test1 r+
file1

> set x [open Test2 w+]
file2

This example illustrates creating and opening a file using the second access method.
In addition, the permissions argument is used so that only you can read or write the
file.

> set y [open Test3 {RDWR CREAT} 0600]
file3

EXCL If CREAT is specified also, an error is returned if the file already
exists.

NOCTTY If the file is a terminal device, this flag prevents the file from
becoming the controlling terminal of the process.

NONBLOCK Prevents the process from blocking while opening the file.

TRUNC If the file exists it is truncated to zero length.
 4–57

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999
4.9.2 close

Syntax

close fileId

Return

An empty string

Description

The close command simply closes a file previously opened using the open
command.The input must be the fileId generated by an invocation of the open
command or a handle assigned to a fileId. You can not use close on a fileName; the
fileName exists only in the operating system and not in Tcl.

Example

These examples illustrate closing the first two examples of using the open command.
The first example works directly on the fileId and the second works on the variable
assigned to a fileId.

> close file1

> close $x
4–58

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Tcl Basics
Revision 1, February 1999 Release 5.3
4.10 Using xmytclsh

The xmytclsh tool lets you interactively run scripts. xmytclsh reads Tcl, TclX, and
MYNAH Tcl extensions commands from the standard input or from a file using the source
command. (See Section 4.11 for information on the source command.)

NOTE — xmytclsh is a re-implementation of the Tcl
utility tclsh, adding support for the TclX and MYNAH
extensions.

You may wish to use xmytclsh to verify the examples included in this section or to test your
own examples.

NOTE — xmytclsh is primarily useful for debugging
commands as you incorporate them into scripts. It is not
recommended for running scripts, such as for end-to-end
testing, since it does not generate output files.

The syntax is

xmytclsh ?-h? ?-d filename? ?-l level?

where

-h Prints this help message

-d filename Turns on tracing. filename specifies a trace file (tracing is off unless -d
is specified). If tracing is on, child script executions will be traced
through all processes.

-l level Specifies the level of trace output (off, low, high).

When you type xmytclsh, your UNIX system prompt is replaced with a > prompt. You can
begin entering your Tcl commands and extensions or import a script.

To exit xmytclsh you must use the exit or xmyExit extensions.

Entering Control-C in xmytclsh interrupts the currently running command (e.g.,
xmySleep 20 or a long-running while loop) and gives you a clean > prompt.

See Section 2.3 for information on executing script files.

NOTE — The standard Tcl package supports three
predefined variables that aid in processing command-line
arguments, such as when invoking a Tcl script: argv0,
argv, and argc. argv0 stores the name of the script. argv
stores the command-line arguments. argc stores the
number of command line arguments. These variables are
not defined for xmytclsh.
 4–59

MYNAH System Scripting Guide BR 007-252-004
Tcl Basics Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 file.
4.11 Importing Scripts Using the source Command

As you accumulate scripts, you may find that you are creating lines of script, such as a
procedure that can be used in serveral scripts. Rather than entering these lines in each script,
you can save them into files, and then import the files into the new script using the source
command.

When using xmytclsh, you can also use source to load and execute an entire script,
however, since this does not generate any of the MYNAH reports it is not very useful.

Syntax

source script

Description

The source command lets you read in and execute a Tcl script you’ve saved to a
For example, you could use an editor to create a file, e.g. test1, containing the
following lines:

> set x {4 9 25}
> set y [sqrt[join $x *]]

You could then type

> source test1
30
4–60

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Using the Compare Master
Revision 1, February 1999 Release 5.3

e,

5. Using the Compare Master

The Compare Master feature lets you save expected comparison values to a file, which can
be sourced into a script. The actual values that are encountered when the script is executed
are saved to a file, called CmpMstr. You can then source these new values into your script.

NOTE — Table 5-1 maps the MYNAH comparison
extensions that use the Compare Master feature with the
appropriate package.

5.1 Compare Master Basics

To use the Compare Master feature, you

1. Create a main Tcl source file, for example sample.tcl, and a Compare Master file, for
example sample.cmp.

• In the source file, write your comparison statements with the expected values
coded using variable, for example,

$c1 compare -region {1 1 10 1} -expectMaster Cmp_1

NOTE — Region dimensions use the format
{row column width height}.

In addition, you must source in the Compare Master file, for example

xmySource -prependScriptDir sample.cmp

• In the Compare Master file, create a series of set commands that assign expected
comparison values to the variables you coded in the source file, for example

set Cmp_1 {"successful"}

2. Execute the source file.

When the script finishes executing, by default it produces a new Compare Master fil
called CmpMstr, in the script output directory. The CmpMstr file contains the actual value
encountered while the script was performing the comparisons.

Table 5-1. Comparison Extensions

If you use this package … See

General xmyCompare, Section 7.2.3

TermAsync compare, Section 9.5.1.1

Term3270 compare, Section 10.4.1.1
 5–1

MYNAH System Scripting Guide BR 007-252-004
Using the Compare Master Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e
pare

l
 main

ent in
he

If comparisons in the original Compare Master file (e.g., sample.cmp) are no longer valid
or if for some reason you need to change the data, you can copy a newly generated CmpMstr
file into the original Compare Master file and the main Tcl source file can be re-executed.
For example, if the expected values are not encountered, you can copy the CmpMstr file to
the directory containing the original Compare Master file and rename it sample.cmp.

Keep the following in mind when using the Compare Master feature:

• Since each script execution creates a different output directory (depending on th
number of output backups configured), you will have a choice of using a new Com
Master file from any of the previous runs.

• The CmpMstr file will not be generated if an output directory is not specified.

• The output directory is never generated for scripts run using xmytclsh.

• There will be just one new CmpMstr file produced for each execution of the main Tc
script. This is regardless of the number of dependent scripts being sourced by the
script or the number of procedures executed from a proc library.

5.2 Region Dimension Restrictions

The region size dimensions (width and height) you specify for the comparison statem
the source file must match exactly the dimensions of the expected value you set in t
Compare Master file. If they don’t, the script will fail and you will receive the following
message:

expected data and region are not the same size

For example, using the code in Step 1, the compare statement specifies a ten-character
value, such as the word successful. If you set the variable Cmp_1 to a string that is greater
than ten characters, such as

set Cmp_1 {"unsuccessful"}

or less than ten characters, such as

set Cmp_1 {"failure"}

the script will fail.

You can compensate by editing the values in your initial Compare Master file, either
truncating a string that is greater than the specified range, for example

set Cmp_1 {"unsuccessf"}

or adding spaces or any other characters to match the specified range, for example

set Cmp_1 {"failure123"}
5–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Using the Compare Master
Revision 1, February 1999 Release 5.3
5.3 Suppressing the Compare Master

If you do not want to generate a new CmpMstr file, enter the following line of code at the
beginning of your script:

set xmyVar(CreateNewCompareMaster) no

If the above line does not exist or if xmyVar(CreateNewCompareMaster) is set to any
other value, the CmpMstr file will be created when the script is executed.

5.4 Example

Presume you have a script file, sample.tcl, containing the following code:

xmySource -prependScriptDir sample.cmp
set c1 [xmyTermAsync connect]
$c1 compare -region {1 1 10 1} -expectMaster CmpMstr(sample_1)
$c1 compare -region {2 1 12 1} -expectMaster CmpMstr(sample_2)

and you have a Compare Master file, sample.cmp, containing the following:

set CmpMstr(sample_1) {"successful"}
set CmpMstr(sample_2) {"732-555-1212"}

If you execute sample.tcl and the comparison found the string failure instead of successful,
the newly generated CmpMstr file would contain the following:

set CmpMstr(sample_1) {"failure "}
set CmpMstr(sample_2) {"732-555-1212"}
 5–3

MYNAH System Scripting Guide BR 007-252-004
Using the Compare Master Issue 4, December 1998
Release 5.3 Revision 1, February 1999
5–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6. xmyVar Global Script Variables

This section contains the complete list of the variables in the global xmyVar array. The
variables are read-write except where indicated. These are array elements that are available
to all domains.

NOTE — One of the variables is the MYNAH symbol
table, which contains user-supplied data associated with a
script. Symbol tables contain symbol-value pairs; they
can be read and modified by the script during execution.

Symbol tables are described in more detail in Sections
6.18, 7.2.18, 7.2.19, 7.2.20, and 7.2.21.

6.1 Channel

Syntax

set xmyVar(Channel)

Description

xmyVar(Channel) returns the Telexel channel name of the process. This is the
communications channel on which the Script Engine receives all its messages.

This variable is read-only.
 6–1

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.2 CreateNewCompareMaster

Syntax

set xmyVar(CreateNewCompareMaster)

Description

xmyVar(CreateNewCompareMaster) specifies whether a new Compare Master file
is created when you run a script.

If xmyVar(CreateNewCompareMaster) is not defined or set to any value other than
no, a new Compare Master file is created.

Example

> set xmyVar(CreateNewCompareMaster) no
6–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.3 DatabaseMode

Syntax

set xmyVar(DatabaseMode)

Description

xmyVar(DatabaseMode) is set to true (1) if the SE is running in database mode, false
(0) otherwise. For MYNAH to be running in the database mode means the database is
up and MYNAH is interacting with it when it runs scripts.

This variable is read-only.

Example

A basic use is to determine whether you are in database mode or not.

> set xmyVar(DatabaseMode)
1

In this example, you test to see if you are in database mode. If you are not, you exit. If
you are, you create a connection.

> if {$xmyVar(DatabaseMode) = 0} {
xmyExit "Exiting, not in database mode"

} else {
set Conn [xmyTerm3270 connect]

}

 6–3

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.4 EngineMode

Syntax

set xmyVar(EngineMode)

Description

xmyVar(EngineMode) returns one of FullState, ConnOnly, or StateLess.
Command-line SEs always run in FullState mode. Background and embedded SEs
run in any of the three modes.

This variable is read-only.

Example

The simplest example is to return the engine mode.

> set xmyVar(EngineMode)
fullState

In this example, you reconnect only if you are in stateless mode to save overhead
involved in reconnecting.

> if {$xmyVar(EngineMode) == "stateLess"} {
set Conn [xmyTerm3270 connect]
xmySymTblPut -tag Conn -value $Conn

} else {
set Conn [xmySymTblGet -tag Conn]

}

6–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.5 EngineType

Syntax

set xmyVar(EngineType)

Description

xmyVar(EngineType) is set to one of the three SE types: embedded, background,
or commandline.

This variable is read-only.

Example

You can use xmyVar(EngineType) to find out what SE type is being used.

> set xmyVar(EngineType)
commandline

This example prompts you for a password if you are running the script interactively.
If not, the script a the default password.

> if {$xmyVar(EngineType) == "embedded"} {
keylset v -prompt "Enter Password"
set pword [xmyPrompt [list $v]]

} else {
set pword "default"

}

 6–5

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 is
us

s

n

the
gates

g
6.6 ExitHandler

Syntax

set xmyVar(ExitHandler) Handler_procedure

Description

xmyVar(ExitHandler) takes as input the name of a Tcl procedure to call immediately
after the script normally or abnormally terminates. The Tcl procedure should have the
following syntax:

proc myExitHandler {code returnValue} {}

where

As long as the Tcl interpreter is not corrupted during script execution, this function is
always called.

NOTE — The ExitHandler function is called only when
executing a script in the background. It is not called if the
script is executed using xmytclsh or the GUI’s embedded
SE.

An ExitHandler can influence the Run Summary field in the Runtime object. This
important because the Run Summary field is one of the columns in the Job Stat
window of the GUI and is therefore always visible to users.

It is recommended that users write an ExitHandler procedure. Once the procedure i
written, it can be made use of in one of three ways:

• Each script can have a set xmyVar(ExitHandler) line

• Each script can call a user written initialization procedure and the initializatio
procedure has the set xmyVar(ExitHandler) line

• Configure SE groups to run a start-up script and the start-up script has the set
xmyVar(ExitHandler) line.

Since the ExitHandler is evaluated immediately after the script finishes, it masks
final run status of the script and the interpreter result unless the procedure propa
them upward to the script submitter using the return command, as in the first example
below.

code Specifies the return code of the script. Usually this is the strin
ok or error, but can also be any acceptable code of the
return -code code command,

returnValue Specifies the last interpreter result value.
6–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3

 code
When the xmyExit method is used in the ExitHandler, the script’s final return code
will always be “OK.” If the prior return code ($code) is needed, the argument to
xmyExit should include the code, as in the third example below.

Examples

The following example uses the return command to propagate the script’s return
and the interpreter’s result back to the caller:

> proc myExitHandler {code returnValue} {
if {$code != "ok"} {

exec echo "$xmyVar(ScriptName) failed: $returnValue" \
| mailx user@sys

}
return -code $code $returnValue

}

> set xmyVar(ExitHandler) myExitHandler

The following example determines what string should be returned. (The Run
Summary field of the Runtime object will be set to this string.) Note that neither
parameter to the procedure is returned.

> proc myExitHandler {code returnValue} {
global xmyVar
if {$xmyVar(FailedCompares) > 0 ||

$xmyVar(WarningCompares) > 0} {
xmyExit "inconclusive"

} else {
xmyExit "success"

}

}> set xmyVar(ExitHandler) myExitHandler

This last example illustrates how to include the return code ($code) and the
interpreter’s results ($returnValue) in the xmyExit string to be returned.

> proc myExitHandler {code returnValue} {
global xmyVar
xmyExit “code=$code : returnValue=$returnValue”

}

> set xmyVar(ExitHandler) myExitHandler
 6–7

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.7 FailedCompares

Syntax

set xmyVar(FailedCompares)

Description

xmyVar(FailedCompares) is the number of compares that have failed in the
currently executing script.

This variable is read-only.

There are several MYNAH language commands that automatically update
xmyVar(FailedCompares). The following list identifies the commands according to
their extension packages:

• General package

— xmyCompare

— xmyDiff

• TermAsync package

— $connection compare

• Term3270 Package

— $connection compare

• TermFCIF package

— $handle compare

— $handle compareTags

— $handle extraTags

Each of these commands will also produce compare blocks in the compares file.

Example

In this example, you expect to find four failed comparisons. If this is not true, you have
the script return a string stating how many failed comparisons were found.

> if { $xmyVar(FailedCompares) != 4 } {
set result "$result|failed compares should be 4,

instead $xmyVar(FailedCompares)"
}

6–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
This time you check to see if there were any failed comparisons. If there were, you exit
with the exit string failure. If there weren’t, you exit with the exit string success.

> if {$xmyVar(FailedCompares) > 0} {
xmyExit "failure"

} else {
xmyExit "success"

}

 6–9

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.8 GoodCompares

Syntax

set xmyVar(GoodCompares)

Description

xmyVar(GoodCompares) is the number of compares that have been executed
successfully in the currently executing script.

This variable is read-only.

There are several MYNAH language commands that automatically update
xmyVar(GoodCompares). The following list identifies the commands according to
their extension packages:

• General package

— xmyCompare

— xmyDiff

• TermAsync package

— $connection compare

• Term3270 Package

— $connection compare

• TermFCIF package

— $handle compare

— $handle compareTags

— $handle extraTags

Each of these commands will also produce compare blocks in the compares file.

Example

In this example, you expect to find six successful comparisons. If this is not true, you
have the script return a string stating how many successful comparisons were found.

> if { $xmyVar(GoodCompares) != 6 } {
set result "$result|good compares should be 6, \

instead $xmyVar(GoodCompares)"
}

6–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.9 LibraryPath

Syntax

set xmyVar(LibraryPath)

Description

xmyVar(LibraryPath) returns the value of the SE configuration LibraryPath
parameter.

This variable is read-only.
 6–11

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.10 MaxFails

Syntax

set xmyVar(MaxFails)

Description

xmyVar(MaxFails) is used to set the maximum number of compare statements
allowed to fail before the script exits. The script will abort when the
xmyVar(MaxFails) value is reached.

Example

The following sets the maximum number of compare statements so that a script will
abort when when two failed compare statements have occured.

> set xmyVar(MaxFails) 2
6–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.11 MaxFailsHandler

Syntax

set xmyVar(MaxFailsHandler)

Description

xmyVar(MaxFailsHandler) takes as input the name of a Tcl procedure to call when
the number of failed compares equals xmyVar(MaxFails). The Tcl procedure should
have the following syntax:

> proc myFailsHandler {} {
MaxFailsHandler script

}

This function executes in the same context of the script, so system and user variables
are all available. For example, the following is a valid handler:

> set xmyVar(MaxFailsHandler) myFailsHandler
> proc myFailsHandler {} {

global xmyVar
exit $xmyVar(FailedCompares)

}

xmyVar is declared as global so that when the script terminates, xmyVar will pass the
number of failed comparisons.

NOTE — Remember, the script will abort when the
number of failed compares set by xmyVar(MaxFails) is
reached.

Example

In the following, we first define the procedure maxhandler. The return string from
maxhandler’s script, the string max fails exceeded, is returned to the caller of the
script.

> proc maxhandler {} {
xmyExit "max fails exceeded"

}

> set xmyVar(MaxFails) 2
> set xmyVar(MaxFailsHandler) maxhandler
> set xmyVar(OutputLevel) {*}
 6–13

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.12 OutputDir

Syntax

set xmyVar(OutputDir)

Description

xmyVar(OutputDir) is the name of the directory that is to contain script output.

This variable is read-only.

Example

In this example you create your own file, userData, in the output directory.

> set fileName $xmyVar(OutputDir)/userData
> set filePtr [open $fileName w]
> foreach item $alist {

puts $filePtr $item
}
> close $filePtr

6.13 OutputLevel

Syntax

set xmyVar(OutputLevel)

Description

xmyVar(OutputLevel) is a Tcl list containing the type of output that should be
written to the script output directory, e.g., { *.* }.

Example

In this example you use the star (*) wildcard to write all output to the output directory.

> set xmyVar(OutputLevel) {*}
6–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.14 RuntimeId

Syntax

set xmyVar(RuntimeId)

Description

xmyVar(RuntimeId) is the ID of the database Runtime Object used to record the
status of the current script.

This variable is read-only.

> set xmyVar(RuntimeId)
43

6.15 ScriptName

Syntax

set xmyVar(ScriptName)

Description

xmyVar(ScriptName) is the full name of the script being executed, e.g.,
/home/scripts/script1.tcl.

This variable is read-only.

Example

> set xmyVar(ScriptName)
/home/scripts/script1.tcl
 6–15

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.16 SEGroup

Syntax

set xmyVar(SEGroup)

Description

xmyVar(SEGroup) is the name of the SE group to which the SE running the script
belongs. Embedded SEs and Command-line SEs have a group name of "".

This variable is read-only.

Example

> set xmyVar(SEGroup)
SeGp1

6.17 SubmittedBy

Syntax

set xmyVar(SubmittedBy)

Description

xmyVar(SubmittedBy) contains a UNIX username. In Command-line and
Embedded SEs, xmyVar(SubmittedBy) contains the UNIX username of the person
who started the process. In Background SEs, xmyVar(SubmittedBy) contains the
UNIX username of the person who submitted the script (via the GUI or CLUI).

This variable is read-only.

Example

In this example, a different password is used depending on who ran the script. The file
‘logins’ contains test logins and passwords.

> set l [xmyUdb read -file $env(XMYHOME)/logins -decrypt]
> set aPassword [keylget l $xmyVar(SubmittedBy)]
> if {$aPassword == ""} {

xmyExit "no password found for user $xmyVar(SubmittedBy)"
} else {

LoginToSut $xmyVar(SubmittedBy) $aPassword
}

6–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.18 SymTbl

Syntax

set xmyVar(SymTbl)

Description

xmyVar(SymTbl) is the MYNAH symbol table passed into scripts at start-up and
passed back to the execution requester at script termination time.

This variable is read-only.

The format of the symbol table is a Tcl list of lists, where each sublist contains a
variable (tag)/value pair. Like any Tcl list, its size is limited only by the amount of
memory available to the process in which it is executed.

During the execution of the parent script, the symbol table is passed along with
requests for child script execution. New or changed values are returned when the
results of child execution are handled (after sendWait or Wait commands). New or
changed values are also passed to the original sender of the parent script execution
request at completion time.

NOTE — When working with Child Scripts (see
Section 8), the symbol table can not be passed between
SEs running on different dispatchers.

Entries in the symbol table can be created using xmySymTblPut (Section 7.2.21).
xmyVar(SymTbl) will return the entire symbol table while xmySymTblGet
(Section 7.2.20) will return specific values for a specified tag.

Example

> set Conn [xmyTerm3270 connect]
.xmyTerm3270_1

> xmySymTblPut -tag Conn -value $Conn
> set xmyVar(SymTbl)
{Conn .xmyTerm3270_1}

> xmySymTblPut -tag test -value 42
> set xmyVar(SymTbl)
{Conn .xmyTerm3270_1} {test 42}
 6–17

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.19 SymTblNAC

Syntax

set xmyVar(SymTblNAC)

Description

xmyVar(SymTblNAC) is an internal list not useful to users.

This variable is read-only.

6.20 TestVersionId

Syntax

set xmyVar(TestVersionId)

Description

xmyVar(TestVersionId) is the current unique Test Version ID based on the scoping
of xmyBegin/xmyEnd statements.

This variable is read-only.
6–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.21 TimeoutHandler

Syntax

set xmyVar(TimeoutHandler)

Description

xmyVar(TimeoutHandler) is the name of a Tcl procedure to call when there is no
response from the SUT in the number of seconds specified at the domain or connection
level. The Tcl procedure should have the following syntax:

proc TimeoutHandler {conn pkg} {}

where

conn is the handle of the connection on which the timeout occurred.

pkg is the domain extension package identifier (e.g., xmyTermAsync).

If no TimeoutHandler is defined and a timeout occurs, the script exits with the status
TCL_ERROR. If a TimeoutHandler is defined, the engine will execute the timeout
handler before replying to the requester of script execution. The reply status in this
case will be TCL_OK if the TimeoutHandler executed successfully. To override this
behavior and return TCL_ERROR regardless of whether a TimeoutHandler is
defined, a handler similar to the one in the example can be used.

NOTE — Timeouts are set at the domain level.

Example

This example returns an error so that the requester of script execution sees a status of
TCL_ERROR.

> proc myTimeoutHandler {conn pkg} {
return -code error "timeout in conn $conn, pkg $pkg"

}

 6–19

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6.22 UpdateCompares

Syntax

set xmyVar(UpdateCompares)

Description

xmyVar(UpdateCompares) is the flag that tells the MYNAH System whether to
update counters. When this variable is set to true (1), which is the default, compare
statements update the value of the variables xmyVar(GoodCompares),
xmyVar(FailedCompares), and xmyVar(WarningCompares).

Example

In this example, xmyVar(UpdateCompares) is set to false, letting you run some
compares with without updating the GoodCompares, FailedCompares, and
WarningCompares variables.

> set xmyVar(UpdateCompares) false

> xmyCompare -expr {$x==5}
> xmyCompare -expr {$x==6}

> xmyCompare -expr {$x==5} -label label5
> xmyCompare -expr {$x==6} -label label6

> xmyCompare -expr {$x==5} -warning
> xmyCompare -expr {$x==6} -warning
6–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 xmyVar Global Script Variables
Revision 1, February 1999 Release 5.3
6.23 WarningCompares

Syntax

set xmyVar(WarningCompares)

Description

xmyVar(WarningCompares) is the number of warning (not failed) compares
executed in the current script. This count is incremented when the -warning option is
used in compare methods.

This variable is read-only.

There are several MYNAH language commands that automatically update
xmyVar(WarningCompares). The following list identifies the commands according
to their extension packages:

• General package

— xmyCompare

— xmyDiff

• TermAsync package

— $connection compare

• Term3270 Package

— $connection compare

• TermFCIF package

— $handle compare

— $handle compareTags

— $handle extraTags

Each of these commands will also produce compares blocks in the compares file.

Example

In this example, you expect to find two warning comparisons. If this is not true, you
have the script return a string stating how many warning comparisons were found.

> if { $xmyVar(WarningCompares) != 6 } {
set result "$result|warning compares should be 2,

instead $xmyVar(WarningCompares)"
}

 6–21

MYNAH System Scripting Guide BR 007-252-004
xmyVar Global Script Variables Issue 4, December 1998
Release 5.3 Revision 1, February 1999
6–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7. General MYNAH Tcl Extensions

7.1 Overview

The Tcl interpreter in a Script Engine (SE) contains the general MYNAH extension
package, which implements a set of Tcl commands that are automatically available to a
script when it starts executing.

7.2 General Commands

Table 7-1 lists the general MYNAH extensions, grouping them in the categories listed in
Table 1-3.

Table 7-1. General MYNAH Extensions (Sheet 1 of 2)

Category Command Description Section

Connection exit Re-implementation of the Tcl exit
command to act like xmyExit.

7.2.1,
Page 7–3

xmyExit Explicitly exits the script and the Tcl
interpreter.

7.2.7,
Page 7–16

xmyLoadPkg Loads a Tcl extension package. 7.2.9,
Page 7–18

xmyUnloadPkg Removes the named extension package
from the SE.

7.2.22,
Page 7–38

Data
Entry/Retrieval

xmyDate Returns the requested date and time.7.2.4,
Page 7–8

xmyPrint Writes to the output file in the script
output directory.

7.2.11,
Page 7–24

xmyPrompt Allows an embedded script to receive
data from you at script execution.

7.2.12,
Page 7–25

xmySource Reads in the file and sends it to a Tcl
interpreter.

7.2.17,
Page 7–33

xmySymTblDel Remove the tag/value pair reference
from symbol table.

7.2.18,
Page 7–34

xmySymTblExists Determines if a variable exists in the
MYNAH symbol table.

7.2.19,
Page 7–35

xmySymTblGet Retrieves the value of a variable from
the symbol table.

7.2.20,
Page 7–36

xmySymTblPut Lets you add or change values in the
symbol table.

7.2.21,
Page 7–37
 7–1

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Comparisons xmyBegin Begins a block that delimits a test. 7.2.2,
Page 7–4

xmyCompare Updates the script variables
xmyVar(GoodCompares) or
xmyVar(FailedCompares) or
xmyVar(Warningcompares).

7.2.3,
Page 7–6

xmyDiff Compares two files. 7.2.5,
Page 7–11

xmyEnd Terminates a block that delimits a test.7.2.6,
Page 7–15

xmyMask Class command used to produce an
instance of a mask object.

7.2.10,
Page 7–20

xmyReadGrep Reads the next line from a file that
matches a regular expression.

7.2.13,
Page 7–26

xmyRegex Searches for a regular expression in the
given input data string.

7.2.14,
Page 7–29

xmySimilar Compares numbers to see if they differ
by an entered percentage.

7.2.15,
Page 7–31

xmyUpdateResult Updates the status for the Result object7.2.23,
Page 7–39

Location xmyGetLine Returns a line corresponding to an
entered integer.

7.2.8,
Page 7–17

Waiting xmySleep Pauses the script 7.2.16,
Page 7–32

Table 7-1. General MYNAH Extensions (Sheet 2 of 2)

Category Command Description Section
7–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.1 exit

Syntax

exit ?exitString?

Return

No result

Description

The standard Tcl exit command is re-implemented to behave exactly like xmyExit.
See Section 7.2.7, for more information.

Example

> exit “too many failed compares”
 7–3

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

r

at a
7.2.2 xmyBegin

Syntax

xmyBegin -testid id

xmyBegin -label label

Return

No result

Description

The xmyBegin command starts a block that delimits a test. xmyBegin is used when
database results reporting is required. (i.e., Test Management.) An
xmyBegin/xmyEnd block collects compare results for that block and associates them
with a test.

If the MYNAH System is running in non-database mode, xmyBegin does nothing
(including syntax checking).

There are two versions of this command:

• The -testid version starts a block that delimits a test. The id is inserted in the code
by the user, who gets the id from the database. The id was generated when the use
created the Test object. It represents a test version object. xmyBegin must be
terminated in the same script by xmyEnd. If not, incomplete results will be
reported to the database.

NOTE — See Section 8 of the MYNAH System Users
Guide, for information on Test objects.

• The -label version must be enclosed in an xmyBegin/xmyEnd block with a testid.
It provides a runtime-defined grouping of compares.

Labels need not be unique and can be nested.

A label cannot contain spaces. If you do use spaces, the system assumes th
space divides the label string into several labels. For example, if you use

xmyBegin -label “test abc”

the system generates two Result objects, one for test and one for abc.

It is an error for two xmyBegin commands to have the same testid. The SE maintains
a list of all testids encountered to enforce this restriction.
7–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
Example

> xmyBegin -testid 2334
> if {$xmyVar(FailedCompares) == 0} {
 xmyExit "my result=ok"
} else {
 xmyExit "my result=fail"
}
> xmyEnd -testid 2334

Exceptions

If xmyBegin -label label is not preceded by xmyBegin -id id at some point in the
script.

Two xmyBegin commands with the same testid.
 7–5

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.3 xmyCompare

Syntax

xmyCompare -expr arbitraryExpression
?-recvValue left_value ?-expectMaster right_value??
?-label label? ?-warning?

Return

The result of evaluating arbitraryExpression (1 or 0).

Description

The xmyCompare command updates the script variables xmyVar(GoodCompares)
or xmyVar(FailedCompares), depending on the result of evaluating
arbitraryExpression. If the xmyCompare method is contained inside a begin/end
block (see xmyBegin, Section 7.2.2), the results for that block are also updated.

xmyCompare takes the following options:

-expr arbitraryExpression Indicates the expression to be evaluated.

-expr and -recvValue are mutually exclusive.

-recvValue left_value Specifies the received variable or value to be
compared, which is analogous to the left hand value
of the -expr expression. -recvValue is supplied
when using the Compare Master feature (Section 5).

-recvValue and -expr are mutually exclusive.

-expectMaster right_value Specifies the name of the Tcl variable that will
contain the expected string, which is analogous to
the right hand value of the -expr expression.
-expectMaster is supplied when using the Compare
Master feature (Section 5).

-expectMaster can be specified only if the
-recvValue option is specified.

-label label Indicates that this is a labeled compare. The label
will be written to the script output file and saved in
the CompareResult database object.

-warning Indicates that the result of compare should update
WarningCompares instead of the
FailedCompares.
7–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
Side Effects

Writes compare event to script output and updates script variables listed in the
description.

Example

Script command (where $result would have been set somewhere in the code):

> xmyCompare -expr {$result==”ok”}

Script output event (if compare succeeded):

19951201:125637:compare:General:data::good:<some-index-number>

The index numbers contain the number of bytes into the compares file to look for the
record of that compare. The numbers are indexes into the compares file in the output
directory.

The following example illustrates using the Compare Master, and is analogous to
coding

> xmyCompare -expr {$x==”1”}

In the Compare Master file, script.cmp, enter

set xyz “1”

and enter in your script

> xmySource script.cmp
> set x [$conn1 screen -region {1 1 1 1}]
> xmyCompare -recvValue $x -expectMaster xyz
 7–7

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.4 xmyDate

Syntax

xmyDate ?-time timestring? ?-increment n? ?-decrement n?

xmyDate -month ?-time timestring? ?-increment n? ?-decrement n?

xmyDate -monthName ?-time timestring? ?-increment n? ?-decrement n?

xmyDate -day ?-time timestring? ?-increment n? ?-decrement n?

xmyDate -dayName ?-time timestring? ?-increment n? ?-decrement n?

xmyDate -year ?-time timestring? ?-increment n? ?-decrement n?

xmyDate -hour ?-time timestring? ?-increment n? ?-decrement n?

xmyDate -minute ?-time timestring? ?-increment n? \
?-decrement n?

xmyDate -second ?-time timestring? ?-increment n? \
?-decrement n?

xmyDate -julian ?-time timestring? ?-increment n? \
?-decrement n?

Return

Date or time corresponding to entered arguments.

Description

The xmyDate command returns the requested date and time functionality as
determined by the provided arguments.

NOTE — The descriptions and examples in this section
assume today is Wednesday, August 23, 1995, 10:00 AM
EDT.

xmyDate returns a date or time as determined by the following arguments:

1. If no arguments are provided, xmyDate returns the current date in seconds since
00:00:00 GMT, January 1, 1970.

If -time is provided, xmyDate converts the timestring following -time to seconds
since 00:00:00 GMT, January 1, 1970 instead of using the current date.

If either -increment or -decrement option is provided followed by a value, the
current date in seconds since 00:00:00 GMT, January 1, 1970 increased or decrease
by the appropriate value is returned.

2. If -month is provided, xmyDate returns the current month (1 - 12).
7–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
NOTE — The TclX fmtclock command returns a three
character string for the month. For example, getclock
returns
809186400.
As input to fmtclock, it returns
Wed Aug 23 10:00:00 EDT 1995.

3. If -monthName is provided, xmyDate returns the full name of the current month.

4. If -day is provided, xmyDate returns the current day of the month (1 - 31).

5. If -dayName is provided, xmyDate returns the current day as a three character
string.

6. If -year is provided, xmyDate returns the current year as a four character string.

7. If -hour is provided, xmyDate returns the current hour as a two character string.

8. If -minute is provided, xmyDate returns the current minute as a two character
string.

9. If -second is provided, xmyDate returns the current second as a two character
string.

10. If -julian is provided, xmyDate returns the Julian date equivalent of the current
date.

For Items 2 through 8, xmyDate first determines whether an optional -time argument
followed by timestring is present. If it is, timestring is used instead of the current date
and time. The appropriate field is then extracted or the Julian calculation performed.
For example, if the argument month is used in the xmyDate command then the month
part of the timestring is extracted and used for the xmyDate command.

You can also use either the -increment or -decrement option followed by a value. If
one is present, then the appropriate arithmetic is performed on the extracted field, and
the calculated value is returned. If neither is present, the extracted field is returned.

For Item 10, either the current date or the value following -time is converted to a Julian
date and then the -increment or -decrement arithmetic is performed and the result
returned.
 7–9

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
If -year is provided, xmyDate returns the current year as a four character string.

NOTE — If a timestring contains a two character year,
xmyDate determines the century, based on whether the
year is in the range 70-99 or the range 00-38. Any year in
the range 70-99 is assumed to mean 1970-1999, and any
year in the range of 00-38 is assumed to mean 2000-2038.

NOTE — Values in the range 39-69 are NOT supported.

For more information on permissible formats for timestring use the tclhelp facility..

Example

This example returns the seconds since 00:00:00 GMT, January 1, 1970.

> xmyDate
809186400

This example calculates the current month, August (08) and increments it by five,
January (01).

> xmyDate -month -increment 5
01

This example increments the current date in seconds since 00:00:00 GMT, January 1,
1970 by five seconds.

> xmyDate -increment 5
809186405

This example increments the number of seconds between 00:00:00 GMT,
January 1, 1970 and the entered timestring, the last second of 1995, by five seconds.

> xmyDate -time {Dec 31, 1995 11:59:59 PM EST} -increment 5
820472404

This example increments the month of December by one, returning 01 (for January)

> xmyDate -month -time {Dec 1} -increment 1
01

This example increments the month of December by one, returning the name January.

> xmyDate -monthName -time {Dec 1} -increment 1
January.

This example returns the Julian date equivalent of the current date.

> xmyDate -julian
235
7–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3

l

7.2.5 xmyDiff

Syntax

xmyDiff ?-label label? ?-warning? ?-noFormat? \
?-listFile listFile? \
?-sedScriptFile sedScriptFile? \
?-scriptBaseFile scriptBaseFile?

xmyDiff ?-label label? ?-warning? ?-noFormat? \
?-listFile listFile? \
?-sedScriptFile sedScriptFile? \
-file1 file1 -file2 file2

Return

1 if there were differences

0 if there were no differences

Description

xmyDiff’s first form compares scriptBaseFile.out with scriptBaseFile.mstr. xmyDiff
assumes scriptBaseFile.out is in the current script output directory and that
scriptBaseFile.mstr is in the same directory as the current script.

xmyDiff’s second form compares file1 with file2.

Both forms take the following options:

-label label Indicates that this is a labeled compare. The labe
will be written to the script output file and saved in
the CompareResult database object.

-warning Causes the script variable
xmyVar(WarningCompares) to be incremented
instead of xmyVar(FailedCompares) if
differences are found.

-noFormat If this option is specified, the files to be compared
will not be formatted first. This option speeds up
processing of non-FCIF messages.
 7–11

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

s

Files generated by the Term3270 package may contain the UNIX carriage return
character, ^M (<control>-M), at the end of each line. The MYNAH System includes
an sed script, strip_ctl_m, to strip out the ^M characters from these files when
xmyDiff compares them. This script is located in $XMYHOME/data/sedscripts and
can be specified as the sedScriptFile to the -sedScriptFile option.

For example, if you are comparing file1 with file2 and either file1 or file2 has ^M
characters that should be stripped out prior to the compare operation, you would
execute

xmyDiff -sedScriptFile strip_ctl_m file1 file2

NOTE — If your files have control-M characters in them,
you are strongly advised to strip them out using

-listFile listFile Specifies the name of a file containing a list of
sed(1) scripts to be applied to the files to be
differenced. If listFile does not start with ‘/’,
MYNAH will assume it resides in the
$XMYHOME/data/sedscripts directory.
Furthermore, if any of the sed script files it contain
do not start with ‘/’, MYNAH will assume those
files reside in the $XMYHOME/data/sedscripts
directory. listFile can be a list of file names instead
of a single file name. This option can be used in
combination with the -sedScriptFile option.

-sedScriptFile sedScriptFile Specifies the name of the sed(1) script to be applied
to the files to be differenced. If sedScriptFile does
not start with ‘/’, MYNAH will assume it resides in
the $XMYHOME/data/sedscripts directory. This
option can be used in combination with the -listFile
option. sedScriptFile can be a list of file names
instead of a single file name.

xmyDiff’s first form also takes the following option:

-scriptBaseFile scriptBaseFile Specifies the name of scriptBaseFile.out. If
scriptBaseFile is not specified, the default value is
the name of the script stripped of its .tcl suffix.

xmyDiff’s second form also takes the following options:

-file1 file1 Specifies the name of the first file in the
comparison.

-file2 file2 Specifies the name of the file to compared with
file1.
7–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
-sedScriptFile strip_ctl_m as shown above, otherwise
you will get unpredictable results.

NOTE — Since the strip_ctl_m sed script resides in the
$XMYHOME/data/sedscripts directory, the xmyDiff
subcommand will find it automatically and you don’t have
to specify the full directory.

Exceptions

Missing/invalid arguments

Failure to open temporary work file in /tmp

Failure to open any specified sed script file

Failure to open any specified list file

Combining -file1 and -file2 arguments with -scriptBaseFile argument

Failure to open -file1 or -file2

Specifying only one of -file1 or -file2

Failure to determine the script base file name

Failure to determine the master file name

Failure to open the master file

Failure to determine the output file name

Failure to open the output file

Failure to fork xmyDiff shell process

Exit failure in xmyDiff shell process
 7–13

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Side Effects

Updates the values of the script variables xmyVar(GoodCompares),
xmyVar(FailedCompares), and xmyVar(WarningCompares).

Creates an event in the script output file and adds differenced records to the compares
file.

NOTE — When an exception occurs, the compare events
are not recorded in the script output file or the script
compare file.

Example

Script command:

> xmyDiff -warning -scriptBaseFile script1

Script output event (if no differences were found):

19960523:141014:compare:General:diff::good - no differences:2024
7–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.6 xmyEnd

Syntax

xmyEnd -testid id

xmyEnd -label label

Return

No result

Description

The xmyEnd command terminates a block that delimits a test. The argument must
correspond to an id or label argument to an earlier xmyBegin command. If it
corresponds to an id, then the results object for that test object will be updated at script
completion time. If the begin/end block is nested inside another begin/end block, the
compare counts (the values of goodCompares, failedCompares, and
warningCompares) are added to the compare counts of the outside block.

A label cannot contain spaces. If you do use spaces, the system assumes that each a
space divides the label string into several labels. For example, if you use

xmyEnd -label “test abc”

the system generates two Result objects, one for test and one for abc.

When xmyEnd is executed, the results for that block are saved and flagged as a
database update that must be performed at script completion time.

Exceptions

If no corresponding xmyBegin.
 7–15

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.7 xmyExit

Syntax

xmyExit ?exitString?

Return

No result

Description

The xmyExit command explicitly exits the script. It also exits the Tcl interpreter
unless the SE is running in fullState mode. xmyExit returns the exit code TCL_OK
and the value of exitString. If exitString is not specified, the previous value is used.
The Tcl error command must be used to return a code other than TCL_OK.

Command line SEs write the exitString to stdout. Embedded SEs return it to the
invoker.

NOTE — If the xmyVar(ExitHandler) variable
(Section 6.6) is set, the exitString value is ignored when
the script ends.

Side Effects

Write summary events to script output.
7–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3

rs
7.2.8 xmyGetLine

Syntax

xmyGetLine -text string -lineNumber integer

Return

A string containing the requested data or the null string if string is null or integer is
out of range.

Description

The xmyGetLine command returns the “line” of string corresponding to integer.
xmyGetLine expects string to contain embedded newline characters. Line numbe
start at 1.

Example

> set thirdLine [xmyGetLine -text “first\nsecond\nthird\n”
-lineNumber 3]
 7–17

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.9 xmyLoadPkg

Syntax

xmyLoadPkg packagename ?-relocateNow? ?-initFunc initFunc?

Return

No result

Description

The xmyLoadPkg command allows MYNAH and non-MYNAH extension packages
to be loaded into a MYNAH SE. For standard MYNAH packages, only the
(case-sensitive) logical package name must be specified. Table 7-2 lists the MYNAH
package names that can be loaded.

It is assumed that MYNAH packages are in $XMYDIR/lib and have a package
initialization function with the following name:

xmy<logical package name>PkgAppInit

for example

xmyTerm3270PkgAppInit

To load a non-MYNAH extension package using xmyLoadPkg, it must exist in a
shared library with a global initialization function with the following syntax:

int AppInit(Tcl_Interp *interp);

This initialization function should return TCL_OK on success, or TCL_ERROR
otherwise.

xmyLoadPkg takes the following options:

Table 7-2. Loadable MYNAH Packages

Name

TermAsync

Term3270

TOP

PRT3270

ScriptExec

AppApp

-relocateNow Causes all symbols to be resolved at load time, rather than
when they are first accessed. This is useful when developing
non-MYNAH packages.
7–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3

e

g.
WARNING — The initialization function for
non-MYNAH packages should not contain the prefix
“xmy”, since this is reserved for MYNAH packages.

There is no default search path for non-MYNAH packages, so the full path to th
shared library should be specified as the packagename argument.

Subsequent calls to xmyLoadPkg for a package that is already loaded does nothin

Subsequent calls to xmyLoadPkg for a non-MYNAH package result in the AppInit
function being called again.

Example

> xmyLoadPkg TermAsync

Exceptions

• Missing/invalid arguments

• Package not found

• InitFunc (default or explicit) not found

-initFunc initFunc Specifies the name of the initialization function
 7–19

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.10 xmyMask

xmyMask is a class command that is used to produce an instance of a mask object. A mask
is used to denote some pattern of text that should be ignored during a compare execution.
This pattern is a regular expression as defined for the regex(3X) program.

You may be working with an application that has screens containing dates, times, and
sequence numbers. It becomes a problem during a compare execution when these dates,
times, or sequence numbers appear within the regions to be compared. xmyMask provides a way of
automatically masking out these dates, times, and sequence numbers.

NOTE — For more information on regular expressions,
see the regex(3X) Manual.

Masks can be applied to any domain level compare commands that involve text regions.
Sections 7.2.10.1 through 7.2.10.4 describe the methods used with the xmyMask
command.

7.2.10.1 create

Syntax

xmyMask create -pattern pattern

Return

Handle to a mask instance

Description

The create method is used to create an instance of a mask object. The callback for
create constructs an instance of the mask object class.

create takes the following option:

-pattern pattern Specifies the regular expression pattern to be associated with
the mask.

When applied to an existing mask, -pattern becomes read-only
(i.e., pattern is an invalid argument) and returns the current
value.
7–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
Example

This creates a mask that masks out dates that appear in the form mm/dd/yy.

> set dates [xmyMask create \
-pattern {[0-1][0-9]/[0-3][0-9]/[0-9][0-9]}]

.xmyMask_1

> $dates -pattern
[0-1][0-9]/[0-3][0-9]/[0-9][0-9]

This one creates a mask to mask out times that appear in the form hh:mm:ss.

> set times [xmyMask create \
-pattern {[0-1][0-9]:[0-5][0-9]:[0-5][0-9]}]

.xmyMask_2

You can get specific with your masks. For example, this would mask out dates that
occur during the month of July during the 1990s, asssuming the date appears in the
form JUL dd, 199y:

> set JUL [xmyMask create \
-pattern {JUL [0-3][0-9], 199[0-9]}]

.xmyMask_3
 7–21

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.10.2 destroy

Syntax

handle destroy

Return

No result

Description

The destroy method is used to destroy an instance of a mask object. Once the object
has been destroyed its handle is removed from the Tcl name space. The callback for
destroy destroys an instance of the mask object class.

Example

> $mask1 destroy
7–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.10.3 disable

Syntax

handle disable

Return

No result

Description

The disable method deactivates a previously enabled mask. After disable is called, no
compare commands will recognize the pattern associated to the mask instance.

Example

> $mask disable

7.2.10.4 enable

Syntax

handle enable

Return

No result

Description

The enable method activates the mask instance so that all subsequent comparison
commands within the script will ignore the pattern defined in the mask.

NOTE — A new mask is not enabled automatically at
creation time. See Section 7.2.10.1.

Example

> $mask1 enable
 7–23

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.11 xmyPrint

Syntax

xmyPrint ?-pkg pkg? ?-type type? ?-text text?

Return

No result

Description

The xmyPrint command lets you write to the output file in the script output directory.
Lines are prepended with a time stamp and the category user. All fields are
colon-separated.

xmyPrint takes the following options:

-pkg pkg Specifies the MYNAH extension package for which you want to
create output.

-type type Specifies a keyword used to identify the type of output to create.

-text text Specifies the text to write to the output file.

Example

> xmyPrint -type “problem” -text “script shouldn’t be here”

would produce a line similar to the following in the output file:

19951208:140000:user::problem:script shouldn’t be here

Note the double colons delimiting the unspecified pkg field.

Exceptions

• Missing/invalid arguments

• Print operation failure.
7–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.12 xmyPrompt

Syntax

xmyPrompt [list {keylset_list}]

Return

Input provided by user as a list of strings

Description

The xmyPrompt command lets a script data from you at script execution time. It takes
a list of keyed lists as an argument. (See the tclhelp facility for a description of keyed
lists.) Each sublist describes one line of the prompt window that is displayed. This
command is only useful in embedded SEs, since background and standalone SEs do
not have GUIs. If xmyPrompt is executed in a background SE, it returns an empty list.

The keylset_list items are created using the TclX keylset command, which has the
syntax

keylset listvar key value ?key2 value2 ...?

xmyPrompt uses the following keylset options:

NOTE — A keyed list passed to xmyPrompt can contain
any number of other tag-value pairs, but any pairs besides
the ones listed above will be ignored by xmyPrompt.
However, you can enter the prompt data into larger keyed
lists that they are using for other reasons.

Example

> keylset a -prompt logid -default wunn
> keylset c -prompt password -echo false
> keylset d -prompt “other logid” -default madmin

> set result [xmyPrompt [list $a $c $d]]

Exceptions

Missing/invalid arguments

-prompt promptString Specifies the prompt to display in the prompt window.

-default defaultValue Specifies a default data to enter at the prompt.

-echo echoFlag Specifies whether the entered response to the prompt
will be echoed back to the prompt window. The default
is TRUE.
 7–25

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e

n
.
7.2.13 xmyReadGrep

Syntax

xmyReadGrep -fd fd -selection selection ?-var variable?

Return

Line from file if variable is not specified.

Number of characters read if variable is specified.

Description

The xmyReadGrep command reads the next line from fd that matches selection (a
regular expression), and discards the line’s terminating newline.

xmyReadGrep takes the following options:

Each application on a particular file begins reading at the line after the last line
returned.

By default, each xmyReadGrep application on a particular file begins reading at th
line after the last line returned. Thus, if your script requires multiple xmyReadGrep
commands, you must determine how you want your script to resume searching.

-fd fd Specifies the file to search for the specified selection. This
must be a fileid that was created when you opened a file
using the Tcl open command.

Note — You can save the fileid to a variable and use this
variable to specify the file.

-selection selection Specifies the selection to search for in the specified field.

• If -var variable is specified, the matching line is placed
in variable and the return value is the number of
characters on the matching line;

• If no line matches, variable is set to the empty string
and -1 is returned;

• If -var variable is not specified then the matching line
(or the NULL string if no line matches) is returned.

-var variable Specifies a variable to contain the matched text. The
matching line (or Null string, if no line matches) is placed i
variable and its length (or -1 if no line matches) is returned
7–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3

 the

ly

 limit

• If you want your script to search from the beginning of the file, perform one of
following:

— Close the file after an xmyReadGrep application and re-open the file before
the next xmyReadGrep application

— Rewind the open file using the Tcl seek command.

NOTE — The seek method is faster than the opening and
closing files method.

• If you want your script to begin searching after the last line that was previous
read, do not close the file until all xmyReadGrep applications are executed. Do
not use the seek command between applications.

It is best to close the file before exiting the script since engines running in FullState
mode do not close file descriptors at script completion time and since there is a
on the number of open file descriptors a script can have at one time.

Example

In this example, you open the file test.tcl, saving the generated fileid to the variable
open_file, and you then use this variable as the fd argument to the -fd attribute.

> set open_file [open test.tcl]
file10
> xmyReadGrep -fd $open_file -selection OutputLevel

Here you check the return value of the xmyReadGrep command to see if a string of
text was found.

NOTE — The next check is for the null return code ("")
because the -var attribute was omitted.

> set file [open script1.tcl]
file11
> set retvalue [xmyReadGrep -fd $file -selection "hello world"]
11
> if {$result == ""} {

xmyPrint -text "not found"
return

}

 7–27

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
This example performs the same function as the previous one, but also saves the
results to the variable varname.

NOTE — The next check is for the return code -1 because
the -var attribute was specified.

> set retvalue [xmyReadGrep -fd $file -selection "hello world" \
-var varname]

11
> if {$retvalue == -1} {

puts -text "not found"
}

This is an example of using the seek command to rewind the file.

NOTE — The file is closed after the final
xmyReadGrep.

> set ifd [open /home/user1/myfile]
file1
> set retvalue [xmyReadGrep -fd $ifd -selection “hello world” \

-var outputvar]
11
> seek $ifd 0
> set retvalue [xmyReadGrep -fd $ifd -selection “.ello \[wW\]orld” \

-var outputvar]
11
> close $ifd

This is an example of using the close command to rewind the file.

> set ifd [open /home/user1/myfile]
file1
> set retvalue [xmyReadGrep -fd $ifd -selection “hello world” \

-var outputvar]
11
> close $ifd
> set ifd [open /home/user1/myfile]
file1
> set retvalue [xmyReadGrep -fd $ifd -selection “.ello \[wW\]orld” \

-var outputvar]
11

Exceptions

Missing/invalid arguments
7–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.14 xmyRegex

Syntax

xmyRegex -regExp regExp -data data ?-offset offset?
?-location location? ?-length length?
?-label label? ?-warning?

Return

1 if regular expression found

0 otherwise

Description

The xmyRegex command searches for a regular expression in the given input data
string at offset characters into data. If the regular expression is found, the offset from
the beginning of the data is returned in location and the length is returned in length.

xmyRegex updates the script compare variables (xmyVar(GoodCompares),
xmyVar(FailedCompares), and xmyVar(WarningCompares)) depending on
whether it finds the regular expression in the input data

xmyRegex takes the following options

NOTE — For the -location and -length options if there is
no match, the -location and -length variables are not
touched. If these variables are unset before the call to
xmyRegex, then they will not exist in the Tcl interpreter
after the call to xmyRegex if there was no match. If you
then try to print them, the script will exit with an error

-regExp regExp Specifies the regular expression to search for.

-data data Specifies the data string to search.

-offset offset Specifies the offset into the data string in which to search.

-location location Specifies a variable to contain the location of the offset from
the beginning of the data where the regular expression was
found.

-length length Specifies a variable for the length of the matched expression.

-label label Specifies a label that will appear in the output file’s compare
event.

-warning Specifies that a non-match should increment
xmyVar(WarningCompares) instead of
xmyVar(FailedCompares).
 7–29

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
code. You should put the xmyRegex command in an if
statement (see example) or set the length and location
variables to, say, the null string.

Side Effects

xmyRegex writes results to the compares file and writes a compare event to the
output file.

Example

> if {[xmyRegex -regExp “searchstring*” -data $inputstring \
-offset 10 -location loc -length len]} {
puts “found at location $loc”
puts “with length $len”

}

Exceptions

Missing/invalid arguments
7–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.15 xmySimilar

Syntax

xmySimilar -value1 value1 -value2 value2 \
-percentage percentage

Return

1 if values differ by no more than the percentage specified

0 otherwise

Description

The xmySimilar command compares numbers to see if they differ by less than a given
percentage. It does not update xmyVar(GoodCompares) or
xmyVar(FailedCompares).

NOTE — The percentage used by the algorithm is the
specified percent of the average of the two values supplied
by the user, and hence it does not matter what order the
values are given in.

xmySimilar takes the following options:

Example

> xmySimilar -value1 $result1 -value2 $result2 -percentage 5

Exceptions

Missing/invalid arguments

-value1 value1 Specifies the first number to compare.

-value2 value2 Specifies the number to compare with value1

-percentage percentage Specifies the percentage by which value1 and value2
are expected to differ.
 7–31

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.16 xmySleep

Syntax

xmySleep seconds

Return

No result

Description

The xmySleep command pauses the script for the indicated number of seconds. Data
from the SUT and Telexel messages are received by the SE while xmySleep is active.

NOTE — If a value for “seconds” is given that is too
large, the MYNAH System will use the largest value
possible under the current operating system. What this
number is will depend on which hardware and operating
system the MYNAH System runs.

Example

> xmySleep 10

Exceptions

Missing/invalid argument.
7–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.17 xmySource

Syntax

xmySource ?-prependScriptDir? filename

Return

No result

Description

The xmySource command reads in the file filename and sends it to a Tcl interpreter
as a script.

Sourcing a script with this command (rather than the standard Tcl source command)
automatically turns the xmyVar(OutputLevel) down low so that no output is written
to the output file during the sourcing process, thus reducing the amount of output
generated.

xmySource takes the following option:

Example

> xmySource asnyc_script.1

-prependScriptDir Takes the Compare Master file (Section 5) from the
same directory as the script directory.
 7–33

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.18 xmySymTblDel

Syntax

xmySymTblDel -tag variable

Returns

0 if the tag was not in the symbol table, 1 otherwise

Description

The xmySymTblDel command removes the tag/value pair referenced by
-tag variable from the symbol table. Symbol table changes (including deletions) in a
child script are propagated to the parent script when the child script finishes.

Exception

Missing/invalid argument

Example

> if {[xmySymTblDel -tag logid]} {
xmyPrint -text “tag $logid found and deleted”

} else {
xmyPrint -text “tag $logid does not exist in the symbol table”

}

7–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.2.19 xmySymTblExists

Syntax

xmySymTblExists -tag variable

Return

1 if the named variable exists in the MYNAH symbol table

0 otherwise

Description

The xmySymTblExists command determines if a variable, specified by -tag variable,
exists in the MYNAH symbol table. Since a variable can have a null value, calling
xmySymTblGet does not determine whether the variable exists.

Example

The following example reuses the example system table we used for
xmyVar(SymTbl) (Section 6.18). Since the tag Conn exists in the table,
xmySymTblExists returns a 1, but since the tag login does not exist, a 0 is returned.

NOTE — Remember, tag/value pairs are entered using
xmySymTblPut (Section 7.2.21).

> set Conn [xmyTerm3270 connect]
.xmyTerm3270_1
> xmySymTblPut -tag Conn -value $Conn
> set xmyVar(SymTbl)
> xmySymTblPut -tag test -value 42
> set xmyVar(SymTbl)
{Conn .xmyTerm3270_1} {test 42}

> xmySymTblExists -tag Conn
1
> xmySymTblExists -tag login
0

 7–35

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.20 xmySymTblGet

Syntax

xmySymTblGet -tag variable

Return

Value of variable or " " if not found.

Description

The xmySymTblGet command retrieves the value of variable from the symbol table.
Since variables can have null values, there is no indication that an invalid variable
name was specified.

You can use xmySymTblExists to test if a variable exists.

Example

> xmySymTblGet -tag Conn
.xmyTerm3270_1

Exceptions

Missing/invalid argument
7–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3

r

r
7.2.21 xmySymTblPut

Syntax

xmySymTblPut -tag variable ?-value value?

Return

No result

Description

The xmySymTblPut command lets you add or change values in the symbol table and
takes the following options:

Putting a value into the symbol table is equivalent to exporting a variable in versions
of MYNAH prior to 5.0. The null string (“) is the default value if the value is not
supplied.

Example

> set Conn [xmyTerm3270 connect]
.xmyTerm3270_1
> xmySymTblPut -tag Conn -value $Conn
> set xmyVar(SymTbl)
> xmySymTblPut -tag test -value 42
> set xmyVar(SymTbl)
{Conn .xmyTerm3270_1} {test 42}

> xmySymTblExists -tag Conn
1
> xmySymTblExists -tag login
0

> xmySymTblPut -tag login -value 22
> xmySymTblPut -tag hello -value 3
> xmySymTblPut -tag test -value 42

Exceptions

• Missing/invalid argument

• Insert Failure

-tag variable Specifies the name of the tag in the symbol table to added o
changed.

-value value Specifies the value of the tag in the symbol table to added o
changed.
 7–37

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.2.22 xmyUnloadPkg

Syntax

xmyUnloadPkg packagename

Return

No result

Description

The xmyUnloadPkg command removes the named extension package from the SE.
Using xmyUnloadPkg reduces the size of the Tcl name space slightly. In most
situations it will be unnecessary. xmyUnloadPkg deletes the underlying package if
the name matches one of the loaded MYNAH packages.

Example

> xmyUnloadPkg TermAsync

Exceptions

• Missing/invalid argument

• Package not loaded
7–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3

 by
7.2.23 xmyUpdateResult

Syntax

xmyUpdateResult ?-testid testId? -status string

Return

No result

Description

The xmyUpdateResult command lets you update the status for the Result
object.xmyUpdateResult takes the following options:

Example

> xmyBegin -testid 200
> if { $xmyVar(failedCompares) > 17 } {

xmyUpdateResult -status “unsuccessful”
xmyEnd -testid 200
exit “max failedCompares”

}
> xmyEnd -testid 200

Exceptions

• Missing/invalid arguments

• No testid specified outside of an xmyBegin/xmyEnd block

-testID testID Specifies the testid to use. If testid is not specified, the “current”
testid is used. The “current” testid is contained in the closest
enclosing xmyBegin command.

-status string Specifies a status used to override the default status provided
the SE, which is based solely on counts of bad and warning
compare statements. The string must be “unsuccessful”,
“inconclusive” or “successful”.
 7–39

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

t file

n,
),

ey

E’s
 a
7.3 Encryption Utilities

The MYNAH System includes several utilities that are used to work with encrypted files.
These are the xmyUdb command and the CLUI’s xmyCmd scramble sub-command.

7.3.1 xmyUdb

Syntax

xmyUdb read -file filename ?-decrypt ?-key key?

xmyUdb write -list list -file filename \
?-encrypt ?-key key?

Returns

xmyUdb read returns a keyed list representing the contents of file filename.

xmyUdb write returns nothing.

Description

The first form of the xmyUdb language command reads a user database from a fla
and places it into a keyed list. The subcommand read must precede the other
arguments. This form takes the following arguments:

The second form of xmyUdb writes a user database to the specified file. This form
takes the following arguments:

-file filename Contains the name of the file to be read. If just a file name is give
it is assumed to be in the SE’s run directory ($XMYHOME/run/se
otherwise the user must give a full path (starting with ‘/’). This
argument is required.

-decrypt Instructs xmyUdb to decode the file before reading it.

-key key Specifies the (scrambled or unscrambled) key to be used to decode
the file before reading it. The xmyUdb read command uses the k
length to determine whether it is scrambled and unscrambles it
automatically before using it. If -decrypt is specified but a key is not
provided, xmyUdb attempts to retrieve a key from the MYNAH
configuration file Engine option Key.

-file filename Contains the name of the file to which you want to write the
database. If just a file name is given, it is assumed to be in the S
run directory ($XMYHOME/run/se), otherwise the user must give
full path. This argument is required.
7–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3

y
The unencrypted form of the file created by xmyUdb write and read by xmyUdb contains
lines of ASCII data, where each line contains a tag and a value separated by space or tab
characters.

NOTE — -key can only be specified with -decrypt or
-encrypt. It can not be specified separately.

Example

> set pwords [xmyUdb read -file $env(XMYHOME)/lib/pwords \
-decrypt]

> set firstPassword [keylget pwords firstPassword]

> xmyUdb write -list $pwords \
-file $env(XMYHOME)/lib/passwords \
-encrypt

Exceptions

• Missing/invalid argument

• File not found

• Encryption/decryption failed

• Key not found

-list list Specifies the keyed list to be written. The argument must be the
name of a variable, without the “$” before it. This argument is
required.

-encrypt Causes the file to be encoded before being written.

-key key Specifies the (scrambled or unscrambled) key to be used to encode
the file before writing it. The xmyUdb write command uses the ke
length to determine whether it is scrambled and unscrambles it
automatically before using it. If -decrypt is specified but a key is not
provided, xmyUdb attempts to retrieve a key from the MYNAH
configuration file Engine option Key.
 7–41

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7.3.2 xmyCmd scramble

Syntax

xmyCmd scramble ?-k key? ?output-file?

Description

The scramble CLUI sub-command lets you encrypt the key associated with a script.
The scrambled keys can only be unscrambled by an SE.

scramble takes the following options:

Examples

In this example, you specify the key, and xmyCmd scramble generates the scrambled
key.

> xmyCmd scramble -k desKey
f;;.W>+tv

This time you do not specify the key, and xmyCmd scramble prompts you to enter
the key.

> xmyCmd scramble
(No need to precede special characters with a backslash)
Enter key (8 char max): cryptKey
h<.(2/Y@-

-k key Specifies the key to be saved. A key can only have a maximum of
eight characters.

If this option is not used, you are prompted for the key.

output-file Specifies the name of the file to which the scrambled key is to be
written. If this option is not used, the scrambled key is written to the
standard output.
7–42

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General MYNAH Tcl Extensions
Revision 1, February 1999 Release 5.3
7.4 Performance Measurement Functions

There are no specific Tcl language commands for measuring performance. Instead, SUT
timing events in the script output file and the xmyPrint command are used to gather timing
data. For example, the following code fragment times a set of operations:

> set startTime [xmyDate]
> $conn send pf1 # send keys to the SUT
> $conn wait
> $conn send pf3
> $conn wait
> xmyPrint -type “timing” -text “start time: $startTime”
> xmyPrint -type “timing” -text “end time: [expr\

[xmyDate]-$startTime]”
 7–43

MYNAH System Scripting Guide BR 007-252-004
General MYNAH Tcl Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
7–44

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Child Script Extension Package
Revision 1, February 1999 Release 5.3
8. Child Script Extension Package

This section describes the set of Tcl extensions for the Child Script Package, which is used
to start and control script execution from a parent script, implementing requests for script
execution on remote SEs.

NOTE — To access the Child Script Package you must
first run xmyLoadPkg ScriptExec.

xmySE is the class command used to create connections to the BEE. Table 8-1 lists the
methods used by xmySE to work with connections.

xmySE, when used with either the waitAll (Section 8.3) or the waitAny (Section 8.4)
method, is also used to freeze the parent script until the appropriate response is received.

Table 8-1. xmySE (Child Script) Methods

Method Description Section

connect Creates a connection to the background execution environment. 8.2,
Page 8–2

cancel Cancels the asynchronous request. 8.2.1,
Page 8–4

destroy Deletes the associated message object. 8.2.2,
Page 8–5

pause Temporarily disables the request associated with the message
object.

8.2.3,
Page 8–6

resume Restarts a paused child script. 8.2.4,
Page 8–7

send Sends a child script execution request. 8.2.5,
Page 8–8

sendWait Sends a request for child script execution and waits for a
response.

8.2.6,
Page 8–9

wait Waits until a reply is received or a timeout occurs. 8.2.7,
Page 8–10
 8–1

MYNAH System Scripting Guide BR 007-252-004
Child Script Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
8.1 Child Script Connection Methods

This section describes the methods used to work with Child Script connections.

8.2 connect

Syntax

xmySE connect ?-sd sdName? ?-se seGroupName?
?-timeout timeout?

Return

A handle to the connection used by subsequent send and sendWait methods.

Description

The xmySE connect method creates a connection to the BEE. connect optionally
takes the name of the SD and the SE group to which the parent script wants to send
requests.

NOTE — Only 24 connections can be open at a given
time from a single script execution. If a script opens more
than 24 scripts at one time, scripts from a standalone
engine will hang and scripts running from a background
engine will fail.

connect accepts the following options:

-sd sdName Specifies the name of the SD to use when creating a
connection. If this is not specified, connect uses the default
from the MYNAH xmyConfig file.

This option is only useful when its package is being used
by the GUI process, since an SE cannot send to other SDs.

-se seGroupName Specifies the name of the SE group to use when creating a
connection. If this is not specified and you are running
connect in the Script Builder, the environment variable
XMYSEGROUP must be set to the desired SE Group, e.g.,
XMYSEGROUP=SeGp1.

-timeout timeout Determines how long future wait and sendWait
commands will wait for the child script to complete
executing before aborting. If you do not specify a timeout,
this option will default to 30 minutes.
8–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Child Script Extension Package
Revision 1, February 1999 Release 5.3
Example

> set hSE [xmySE connect -timeout 10]
.xmySE_1

Exceptions

• Invalid/missing arguments

• Telexel connect failure
 8–3

MYNAH System Scripting Guide BR 007-252-004
Child Script Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
8.2.1 cancel

Syntax

msgHandle cancel

Return

No result

Description

The cancel method cancels the asynchronous request associated with the message
object handle. On return, the message object is deleted.

Example

> $hSE cancel
8–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Child Script Extension Package
Revision 1, February 1999 Release 5.3
8.2.2 destroy

Syntax

msgHandle destroy

Return

No result

Description

The destroy method deletes the associated message object. It does not send a request
to the child script.

NOTE — Destroy should only be used for message
objects created using the send command. It should not be
used after sendWait command as sendWait does not
create any message object.

Example

> $hSE destroy
 8–5

MYNAH System Scripting Guide BR 007-252-004
Child Script Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
8.2.3 pause

Syntax

msgHandle pause

Return

No result

Description

The pause method pauses a child script. While the child script is paused the parent
continues to execute. It is not an error to call pause more than once for the same script.

Example

> $hSE pause
8–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Child Script Extension Package
Revision 1, February 1999 Release 5.3
8.2.4 resume

Syntax

msgHandle resume

Return

No result

Description

The resume method restarts a paused child script. It is not an error to call resume more
than once for the same script.

Example

> $hSE resume
 8–7

MYNAH System Scripting Guide BR 007-252-004
Child Script Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e
8.2.5 send

Syntax

handle send -script scriptName

Return

A handle to a message object used to identify the outstanding request.

Description

The send method sends a child script execution request. The current symbol table is
passed with the request.

NOTE — The symbol table can not be passed between
SEs running on different dispatchers.

send accepts the following option:

The send command returns immediately.

Exceptions

• Invalid/missing arguments

• Telexel Send operation failure

• Timeout

-script scriptName Specifies the name of the child script to execute.

The scriptName can be a full path, a relative path, or a bas
file name. Relative paths, such as ./script1.tcl or
../../script1.tcl, are assumed to be relative to the paths
specified in the xmyConfig file’s LibraryPath option. Base
files names are also assumed to be in one of the LibraryPath
directories.

Specifying a scriptName starting with “/” turns off
LibraryPath searching.
8–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Child Script Extension Package
Revision 1, February 1999 Release 5.3

e

it
8.2.6 sendWait

Syntax

handle sendWait -script scriptName
?-timeout timeout?

Return

The exit string of the child script

Description

This sendWait method sends a request for child script execution and waits for a
response, which is a message indicating that the child script has completed executing.
The response contains any new or changed symbol table variables. sendWait updates
the parent script symbol table before returning.

sendwait accepts the following options:

The send and sendWait methods compose and send a request to the SD.

The symbol table passed to the child script is the same as the current symbol table in
the parent script.

Exceptions

• Invalid/missing arguments

• Telexel Send failure

• Timeout

Side Effects

The symbol table is updated with new and changed values from the child script.

-script scriptName Specifies the name of the child script to execute.

The scriptName can be a full path, a relative path, or a bas
file name. Relative paths, such as ./script1.tcl or
../../script1.tcl, are assumed to be relative to the paths
specified in the xmyConfig file’s LibraryPath option. Base
files names are also assumed to be in one of the LibraryPath
directories.

Specifying a scriptName starting with “/” turns off
LibraryPath searching.

-timeout timeout Gives you the option of specifying the amount of time to wa
for a response before aborting.

Default = 1 hour.
 8–9

MYNAH System Scripting Guide BR 007-252-004
Child Script Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
8.2.7 wait

Syntax

msgHandle wait ?-timeout timeout?

Return

The exit string of the child script.

Description

The wait method waits until timeout is reached or a reply to the outstanding send is
received, which is a message indicating that the child script has completed executing.
handle is a message object identifier.

Timeout specifies the maximum amount of time to wait for a response.

Exceptions

• Missing/invalid arguments

• Timeout

Side Effects

The symbol table is updated with new and changed values from the child script.
8–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Child Script Extension Package
Revision 1, February 1999 Release 5.3

n it is
r
8.3 xmySE waitAll

Syntax

xmySE waitAll ?-messages {msgHandle1 ... handleN}?\
?-timeout timeout?

Return

No return

Description

The xmySE waitAll method blocks the parent script until all of the requested child
scripts complete or the timeout expires.

xmySE waitAll accepts the following options:

For each specified message, script compare counts and the symbol table are only
updated the first time the reply to the send request is seen. A reply is “seen” whe
waited on. Therefore it is safe to wait on the same message more than once. Fo
example, after waitAll returns, the wait method can be used to retrieve the Tcl
interpreter result for a specific send request.

Exceptions

• Nonexistant message handle specified

• No send requests to wait for

• Timeout

• Script cancelled while waiting

-messages {handle1 ... handleN} Specifies the handle(s) associated with a
script(s). The argument to -messages is a Tcl list
of message handles. If -messages is not
specified, waitAll blocks until replies are
received for all child script execution requests.

-timeout timeout Specifies the amount of time to wait for a
response before aborting. The default is 1800
seconds.
 8–11

MYNAH System Scripting Guide BR 007-252-004
Child Script Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

n it is

l

age

8.4 xmySE waitAny

Syntax

xmySE waitAny ?-messages {msgHandle1 ... handleN}?\
?-timeout timeout?

Return

The message handle associated with the script that completed

Description

The xmySE waitAny method blocks the parent script until one of the requested child
scripts completes or the timeout expires.

xmySE waitAny accepts the following options:

For each specified message, script compare counts and the symbol table are only
updated the first time the reply to the send request is seen. A reply is “seen” whe
waited on. Therefore it is safe to wait on the same message more than once.

For example, after waitAny returns, the wait method can be used to retrieve the Tc
interpreter result for the child script that finished.

Each invocation of waitAny is completely independent, meaning that multiple
invocations of waitAny with the same message list will each return the same mess
handle.

Exceptions

• Nonexistant message handle specified

• No send requests to wait for

• Timeout

• Script cancelled while waiting

• Execution results in FMM reply improperly formatted

• Execution results missing data

-messages {handle1 ... handleN} Specifies the handle(s) associated with a
script(s). The argument to -messages is a Tcl list
of message handles. If -messages is not
specified, waitAny defaults to any child script
request (even requests that have already been
waited on.)

-timeout timeout Specifies the amount of time to wait for a
response before aborting. The default is 1800
seconds.
8–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Child Script Extension Package
Revision 1, February 1999 Release 5.3
8.5 General Child Script Concerns

There are several concerns to keep in mind when you execute Child Scripts.

8.5.1 Deadlock

Deadlock can occur if Parent Scripts and Child Scripts are executed on the same engine
group and the Parent Scripts are using up all of the Script Engines. If this happens,
competing Parent Scripts can’t run Child Scripts. To avoid this resource deadlock, Parent
Scripts should be executed on separate engine groups from Child Scripts.

8.5.2 Zombie Processes

A Zombie process can occur when a Child Script is submitted in parallel to the execution
of a Parent Script, which completes before the child. This is not a harmful situation.
 8–13

MYNAH System Scripting Guide BR 007-252-004
Child Script Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
8–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9. TermAsync Extension Package

9.1 Overview

The TermAsync Extension Package provides the functions necessary for interactions with
the asynchronous terminal device. This package provides emulation of the vt100 terminal
as well as partial emulation of other terminals, based upon the system terminfo database.

NOTE — To access the TermAsync Extension Package
you must first run xmyLoadPkg TermAsync.

The following is the list of commands in the MYNAH TermAsync Extension Package.

9.1.1 Methods Overview

Section 9.5.1 contains detailed descriptions of the TermAsync Method extensions. The
extensions are listed in alphabetical order (within each category). Table 9-1 lists the
extensions, organizing them in general functional categories. Table 9-1 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 9-1. TermAsync Method Extensions (Sheet 1 of 2)

Category Method Description Section

Connection connect Establishes a connection to the
asynchronous host from the MYNAH
Tcl script.

9.5.1.2,
Page 9–9

disconnect Destroys a connection made to the
host through the connect method.

9.5.1.4,
Page 9–12

Data
Entry/Retrieval

response Returns the latest response of the
application.

9.5.1.8,
Page 9–16

send Sends a string to the SUT. 9.5.1.10,
Page 9–20

screen Returns a list of strings that represents
a screen image.

9.5.1.9,
Page 9–18

Comparisons compare Compares a region of an asynchronous
screen with a compare pattern body.

9.5.1.1,
Page 9–7

disableMask Disables a mask object. 9.5.1.3,
Page 9–11

enableMask Enables an already created mask
object for a particular connection
instance.

9.5.1.5,
Page 9–13
 9–1

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.1.2 Attributes Overview

Section 9.5.2 contains detailed descriptions of the TermAsync Attribute extensions. The
extensions are listed in alphabetical order. Table 9-2 lists the extensions, organizing them
in general functional categories. Table 9-2 also gives a brief description of each extension
and the section where the detailed description can be found.

Waiting sendWait Sends a string to the SUT and waits
until a second string is returned from
the SUT.

9.5.1.11,
Page 9–22

wait Stops script execution until a
condition is verified or a timeout
occurs.

9.5.1.12,
Page 9–23

Attributes getAttributes Returns the attribute (e.g., blinking,
highlighted, etc.) value at specified
position.

9.5.1.6,
Page 9–14

listAttributeTypes Returns the list of valid attributes. 9.5.1.7,
Page 9–15

Table 9-2. TermAsync Attribute Extensions (Sheet 1 of 2)

Category Method Description Section

Connection -connections Returns a list of asynchronous
connections.

9.5.2.3,
Page 9–26

-name Returns the name of the connection.9.5.2.8,
Page 9–27

-shell Returns the start-up shell. 9.5.2.12,
Page 9–28

-status Returns the status of the connection.9.5.2.15,
Page 9–29

-terminal Returns the terminal being emulated.9.5.2.16,
Page 9–30

-terminfo Returns the file name of the auxiliary
terminfo file.

9.5.2.17,
Page 9–30

Table 9-1. TermAsync Method Extensions (Sheet 2 of 2)

Category Method Description Section
9–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
Data
Entry/Retrieval

-bufferlen Returns the size of the buffer that
caches SUT responses.

9.5.2.1,
Page 9–25

-delay Returns or sets the number of
milliseconds used as padding in the
send statement.

9.5.2.4,
Page 9–26

-size Returns the size of the screen. 9.5.2.14,
Page 9–29

Location -column Returns the cursor’s current column
position.

9.5.2.2,
Page 9–25

-position Returns the row and column position
of the cursor.

9.5.2.9,
Page 9–28

-row Returns the cursor’s current row
position.

9.5.2.11,
Page 9–28

Comparisons -failedCompares Returns or sets the number of failed
compares.

9.5.2.5,
Page 9–26

-goodCompares Returns or sets the number of
successful compares.

9.5.2.6,
Page 9–27

-masks Returns a list of enabled masks for a
connection

9.5.2.7,
Page 9–27

-warningCompares Returns or sets the number of user
defined warnings.

9.5.2.19,
Page 9–30

-wildcard Returns or sets the default
comparison wildcard character.

9.5.2.20,
Page 9–31

Waiting -prompt Returns or sets the default waiting
string.

9.5.2.10,
Page 9–28

-timeout Returns or sets the default number of
seconds to wait for a SUT response.

9.5.2.18,
Page 9–30

Attributes -showAttributes Returns or sets what character
attributes are to be included in the
SUTimage file.

9.5.2.13,
Page 9–29

Table 9-2. TermAsync Attribute Extensions (Sheet 2 of 2)

Category Method Description Section
 9–3

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.2 System Prompts

UNIX prompts often differ from installation to installation. What prompts are expected also
differ if you execute scripts in the background or the foreground.

NOTE — This section uses the TermAsync method
sendWait to illustrate these techniques. Briefly,
sendWait sends a string, such as a login id or a UNIX
command, to the connection and waits until an expected
string is returned, such as

sendWait "ls\r" -expect "\$ "

In this case, sendWait send the ls command and waits
until it receives the $ prompt. For a complete explanation
of sendWait see Section 9.5.1.11.

As you use the Script Builder to capture an emulated connection, it automatically generates
a sendWait statement each time you enter a command, such as ls or ftp, entering the
prompt sign it encounters as the expected string. The Script Builder determines the prompt
to be the shortest sub-string from the end of the response that is unique (i.e., only one
occurrence in the response). An example would be the prompt for an ftp session, ftp>, for
which sendWait would enter "> " as the expected string, ignoring the system id.

If you then run the script using the Script Builder, this is no problem since you created the
script in the foreground and are executing it in the foreground; the same prompt is expected.
If you execute the script in the background, however, this can cause problems since the
system may assumes the local prompt sign is the UNIX default prompt, the dollar sign ($).
If your local prompt sign is different, your script will fail since it is waiting for a response
it will not receive.

You can simply change all expected strings for a local connection to the dollar prompt. If
you use the script to connect to a remote system (such as via telnet or ftp), you will not
have to do this; the system will expect the prompt the Script Builder generated.

There is always the possibility, however, that there may be discrepancies between the
expected prompt and the actual prompt. If you want to be completely sure that the prompts
will match, you can use your script to specify the prompt by adding a line similar to

sendWait "PS1=\"$ \"\r" -expect "\$ "

immediately after the TermAsync connect method. (See Section 9.5.1.2 for information on
the connect method).

The following script automates an anonymous ftp session. The lines up to the line where
we send the ftp command are all on the local system. To ensure that the actual and expected
prompt match, we add the above line to export the PS1 variable. The other lines (up to the
bye, which closes the ftp connection) all expect the prompt you would encounter during an
ftp session; they would not expect the prompt we exported.
9–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3

pt.

ta is
ion is

xmyLoadPkg TermAsync
set conn2 [xmyTermAsync connect]
$conn2 wait {[$conn2 response -numberOfCharacters] >= 1}
$conn2 sendWait "PS1=\"\$ \"\r" -expect "\$ "
$conn2 wait -expect "\$ "
$conn2 sendWait "cd /users/kjb/NEW\r" -expect "\$ "
$conn2 sendWait "ftp fake_ftp.com\r" -expect ": "
$conn2 sendWait "anonymous\r" -expect "d:"
$conn2 sendWait "kjb@\r" -expect "> "
$conn2 sendWait "cd pub/new_this_week\r" -expect "> "
$conn2 sendWait "prompt\r" -expect "> "
$conn2 sendWait "mget *\r" -expect "> "
$conn2 sendWait "bye\r" -expect "\$ "
$conn2 disconnect
xmyExit

Where you enter the line to change the PS1 variable is very important. When the Script
Builder creates a connection, it immediately generates a wait statement as in

set conn2 [xmyTermAsync connect]
$conn2 wait -expect ": "

You must place the line to change the PS1 variable between these two lines, and edit the
expected value of the wait statement.

9.3 Waiting for a Response

The TermAsync package contains two methods, sendWait and wait, that suspend the script
execution until the SUT has returned with the proper response. The arguments to these
methods are -timeout and -expect, where:

• timeout is the amount of the time the wait should wait before timing out and calling
the timeout handler. If the timeout is set to 0, the SE returns control back to the scri

• expect is the literal string to search for when data is received from the SUT. If da
available, control is returned back to the script. If no data is available, an except
thrown (fails), and the time-out handler is called.

When no expect data is supplied, the wait will complete when the first receive is made from
the SUT. Otherwise, when a timeout and expect are supplied, the wait command will wait
until the host has transmitted the exact string specified in the -expect argument, or until the
supplied timeout time has been reached, at which point the timeout handler will be called.

NOTE — If your script has multiple waits, it may be best
to combine them into one wait method with an expect
rather than have the script pause as it processes each wait.
 9–5

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.4 Adding an Extra Enter in a Script

You should create an extra enter command at the end of all of your TermAsync scripts to
ensure that any final “receive” appears in the SUTimages file (Section 2.5.4).

NOTE — An enter is represented as a sendWait method
(Section 9.5.1.11) that expects the system prompt to be
the response.

For example, if you create the following code in the Script Builder,

$conn4 sendWait "clear\r" -expect "\$ "
$conn4 sendWait "pwd\r" -expect "\$ "
$conn4 compare -region {1 1 47 3} -expect {\

"\$ pwd " \
"/y2k/TEST/r5.201/solaris/y2k/builder/roll2000 " \
"\$ " } \
-ignore {2 11 6 1} \
-ignore {2 38 8 1}

The SUTimages file will contain the following text:

IMAGE HEADER - String Sent (index:4233)
pwd^M
IMAGE FOOTER -

The response from the pwd is not recorded. However, if you press the Return key after the
compare, the following code will be recorded:

$conn4 sendWait "clear\r" -expect "\$ "
$conn4 sendWait "pwd\r" -expect "\$ "
$conn4 compare -region {1 1 47 3} -expect {\

"\$ pwd " \
"/y2k/TEST/r5.201/solaris/y2k/builder/roll2000 " \
"\$ " } \
-ignore {2 11 6 1} \
-ignore {2 38 8 1}

$conn4 sendWait "\r" -expect "\$ "

The response from the pwd will be recorded in the SUTimages file.
9–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5 xmyTermAsync class

xmyTermAsync is the Tcl class command providing language extensions that are
necessary for interactions with the asynchronous device. Its methods provide the basis of
operations on an asynchronous connection that you will need to create sufficiently
sophisticated test cases in your scripts.

9.5.1 Methods

The TermAsync package contains the following methods.

9.5.1.1 compare

Syntax

handle compare -region region \
-expect data ?-expectMaster xyz? \
?-ignore region? " ?-ignore region? \
?-mask maskHandle? " ?-mask maskHandle? \
?-wildcard char? -warning \
?-outputLabel label?

Return

1 if the data on screen matches the expected data

0 otherwise

Description

The compare method compares a region of the screen against the expected data,
entered using the -expect data option. If a comparison is successful, the count of good
compares for the connection is increased by one. If a comparison fails, the number of
failed compares for the connection is increased, unless -warning is specified, in which
case the number of warnings is increased. Also the global variables GoodCompares,
FailedCompares, and WarningCompares are updated accordingly.

compare takes the following attributes:

-region region Defines the region of the screen to compare against the
expected data. region is a list of four numbers {row column
width height}, e.g., {1 1 80 24}.
 9–7

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

> set main_screen(date_time_field) {1 15 17 1}
> set main_screen(user_field) {1 39 10 1}
> set my_screen {1 1 50 5}
> $myconn compare -region $my_screen -expect {\

{MY APPLICATION Main Menu } \
{Date and Time: 05/23/95 15:30:01 User: joe } \
{ } \
{1. Screen1 } \
{2. Screen2 } \
} \
-ignore $main_screen(date_time_field) \
-ignore $main_screen(user_field) \
-outputLabel “Application Main Menu”

> set t1 {"MAIN MENU"}
> $myconn compare -tag "title" -expect $t1

-expect data Defines the expected content of the screen region. data is a Tcl
list of lists, where each list represents a row in the region to be
compared. If the actual data contains the wildcard character,
the character will match any character on the screen for that
particular position.

-expect and -expectMaster are mutually exclusive.

-expectMaster xyz Specifies the name of the Tcl variable containing the expected
value, which is supplied by the Compare Master file
(Section 5). The same variable will be used for writing out to
the new Compare Master file.

-expectMaster and -expect are mutually exclusive.

-mask maskHandle Specifies a handle to an xmyMask. (See Section 7.2.10 for a
discussion on xmyMask.) The compare statement ignores the
subregions identified by the masks that are active, and the
subregions identified by the masks that are passed as
arguments.

-ignore region Defines a subregion compare will ignore.

-wildcard char Defines the wildcard character, the default is *.

-warning Increase the number of warnings rather than the number of
failed compares.

-outputLabel label Specifies a label for this particular compare command that will
be written into the output file. The label from the output file can
be used to refer back to the compare command in the input
script. This is for cross reference purposes only.
9–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.1.2 connect

Syntax

xmyTermAsync connect \
?-terminal string? \
?-timeout seconds? \
?-shell filename? \
?-bufferlen length? \
?-terminfo filename? \
?-name connection_name? \
?-wildcard char? \
?-delay milliseconds? \
?-showAttributes on|off? \
?-size {row column}? \
?-prompt string?

Return

Handle to an asynchronous connection.

Description

The connect method is used to establish a connection to the asynchronous host from
the MYNAH Tcl script. connect returns a handle to a connection back to the script.
Default configuration parameters are provided.

NOTE — Only 24 asnynchronous connections can be
open at a given time from a single script execution. If a
script opens more than 24 connections at one time, scripts
from a standalone engine will hang and scripts running
from a background engine will fail.

The following connect options can be used to override the default configuration
parameters:

-terminal string Sets the terminal type being emulated.

Valid types are vt100 and xterm.

NOTE — While other terminal types may be used, only
these two types have been tested and verified with the
MYNAH System.

-timeout seconds Sets the time that the MYNAH System waits for a
response from the SUT (time-out).
 9–9

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

use

ed

 is
Example

> set myconn [xmyTermAsync connect -terminal vt100 \
-timeout 10 -size {30 90}]

Exceptions

• connect will fail (throw an exception) if the connection cannot be established (beca
of an Operating System error).

• connect will fail if a duplicate name is specified.

-shell filename Defines the shell invoked when the MYNAH System
connects to the SUT.

NOTE — The default shell that is invoked when you
create an asynchronous connection is the k-shell. If you
don’t need the k-shell, you may want to specify the
bourne shell, i.e. enter -shell /bin/sh, since it is simpler
and requires less overhead.

-bufferlen length Defines the size of the buffer that stores the last
response form the SUT. (It must be a non-negative
number.)

-terminfo filename Defines the location of the auxiliary terminfo file.

-name connection_name Defines the name of the connection, overwriting the
default .xmyTermAsync_N.

-wildcard char The character used for masking regions.

-delay milliseconds The delay in milliseconds used by the send method.

-showAttributes on|off Determines what character attributes are to be includ
in the SUTimage file.

The on option causes the character attributes on the
screen to be included in the SUTimage file.

The off option causes the character attributes on the
screen to NOT be included in the SUTimage file.

-size {row column} Sets the row and column size of the screen. The size
specified as a list in the format, {row column}, where

24 ≤ row ≤ 50

and

80 ≤ column ≤ 132.

-prompt Specifies a default string that the wait and sendWait
methods are using if no other argument is supplied.
9–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.1.3 disableMask

Syntax

handle disableMask list_of_masks

Return

None

Description

The disableMask method disables a mask, created by the xmyMask command, for
the connection.

Example

> $myconn disableMask $mask1 $mask2

Exception

Mask handle not enabled on connection.
 9–11

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.1.4 disconnect

Syntax

handle disconnect

Return

None

Description

The disconnect method destroys the connection handle.

Example

> $myconn disconnect
9–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.1.5 enableMask

Syntax

handle enableMask list_of_masks

Return

None

Description

The enableMask method enables a mask, created by the xmyMask command, for the
connection. Any subsequent compare statements on the connection will ignore the
pattern defined in the mask object.

Example

> $myconn enableMask $mask1 $mask2

Exception

Invalid mask handle
 9–13

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.1.6 getAttributes

Syntax

handle getAttributes ?-position {row column}?

Return

A list of attributes

Description

The getAttributes method returns the attribute (i.e. blinking, highlighted etc.) value
at the given row and column. If the -position option is not specified then the current
position is taken as the default.

Example

> $myconn getAttributes
BOLD, BLINK
9–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.1.7 listAttributeTypes

Syntax

xmyTermAsync listAttributeTypes

handle listAttributeTypes

Return

NONE, STANDOUT, UNDERLINE, REVERSE, BLINK, DIM, BOLD,
INVISIBLE, PROTECT, GRAPHIC, ALTERNATE

Description

The listAttributeTypes method returns the list of valid attributes.

Example

> $myconn listAttributeTypes
STANDOUT UNDERLINE REVERSE BLINK DIM BOLD INVISIBLE PROTECT
 9–15

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.1.8 response

Syntax

handle response ?-tail number? ?-file filename? ?-append?

handle response ?-head number? ?-file filename? ?-append?

handle response -unique

handle response -numberOfCharacters

handle response -numberOfLines

handle response ?-after string? -after# integer? \
?-before string? ?-before# integer? \
?-file filename? ?-append?

Return

A string or an integer

Description

The response method returns the latest response of the application. If no arguments
are specified, the complete response from the application is returned. The characters
sent by the SUT between two send statements define the latest system response.

The response may contain the last string that was sent if the SUT does echoing (e.g.,
as does the UNIX shell).

response takes the following attributes:

-tail number Returns the number of lines or characters from the end of
the last system response.

number is an integer followed by the suffix ch or ln (for
characters or lines, respectively).

-head number Returns the number of lines or characters from the
beginning of the last system response.

number is an integer followed by the suffix ch or ln (for
characters or lines, respectively).

-file filename Returns an empty string and the response is saved to the
specified filename.

-append Used with -file, -append appends the response to the
specified filename. If this attribute is not used and
filename is an existing file, response will overwrite the
file.
9–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
NOTE — The latest response of the application is
returned with all embedded null characters (i.e., ASCII 0)
stripped out. The -numberOfCharacters option will
return the actual number of characters including null
characters. Null characters are not stripped if the response
is written to a file (using -file).

Exceptions

An exception is raised if the receive fails, such as if the connection died.

Example

> $myconn send "ls -la\n"
> $myconn wait "myprompt $"
> set lines [$myconn response -numberOfLines]
> $myconn response -tail 10ch

-unique Returns the shortest string from the end of the response
that does not have any other occurrences in the response.

-numberOfCharacters Returns the number of characters sent by the application in
its last response.

-numberOfLines Returns the number of lines of last application response.

-after string Returns the SUT response after the first (or user specified)
occurrence of the string pattern.

-after# integer Specifies which occurrence after the string pattern to
return.

-before string Returns the SUT response after the before (or user
specified) occurrence of the string pattern.

-before# integer Specifies which occurrence before the string pattern to
return.
 9–17

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.1.9 screen

Syntax

handle screen ?-region region?
?-mask maskHandle? … ?-mask maskHandle?
?-ignore region? … ?-ignore region?\
?-wildcard char? ?-file filename? ?-append?

handle screen -score ?-method name?

Return

The first format of the screen method returns a list of lists representing a screen image.
If -file filename is specified, the list is saved to a file.

The second format returns an integer.

Description

The screen method returns a string that represents a screen image, specified in a list
format, of the region ({row column width height}). Each element of the list is a list of
characters (or strings) that represents a row in the screen.

screen takes the following attributes:

-region region Defines the region parameters of the screen image to return.
region is a list in the format {row column width height}, e.g.,
a valid entry would be -region {1 40 40 24}.

-mask maskHandle Specifies a handle to an xmyMask. (See Section 7.2.10 for a
discussion on xmyMask.) The screen statement ignores the
sub-regions identified by the masks that are passed as
arguments.

-ignore region Defines a sub-region screen will ignore.

-wildcard char Defines the wildcard character that will replace the characters
in the -ignore region subregion. The default is *.

-file filename Returns an empty string and saves the response to the
specified filename.

-append Used with -file, -append appends the response to the
specified filename. If this attribute is not used and filename
is an existing file, response will overwrite the file.

-score Returns an integer representing the screen score.
9–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
Example

This example captures the current screen and saves to the file myfile.

> set file [open "myfile" w]
> set myscreen {$myconn screen -region {1 1 80 25}\

-mask {10 10 5 5} -wildcard #
> puts $file $myscreen

This example can be more concisely re-written as the following:

> $myconn screen -region {1 1 80 25} -mask {10 10 5 5}\
 -wildcard # -file "myfile"

-method name Defines the method used to compute the screen score. In the
normal method, the score is computed by assigning to each
character on the screen a score from 1 to 128 and adding them
up. In the method is highlight, the single character score is
incremented by 128 if the character is highlighted. The default
is normal.
 9–19

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.1.10 send

Syntax

handle send string-expression ?-delay milliseconds? ?-secret?

handle send -key key ?-repeat number? ?-delay milliseconds?\
?-secret?

Return

None

Description

The send method evaluates string-expression, sends it to the SUT, and updates the
internal data representation of the screen. string-expression can be any Tcl expression
that returns a string.

send also takes the following attributes:

-delay milliseconds Represents the padding. If the padding is greater than zero the
system sends a character at a time, and it waits for the specified
number of milliseconds before sending the next character.

-key key Specifies the escape sequence defined for the key that is sent to
the SUT.

The following special keys are defined by default. (The escape
sequence is defined in the terminfo or auxiliary terminfo files.)
This argument is case insensitive.

backspace, return, delete, line_feed,
enter, esc, tab,

left_arrow, down_arrow, up_arrow,
right_arrow, right_1 .. right_10,

left_1 .. left_10,top_1 .. top_9,
numeric_0 .. numeric_9,

pf1.. pf4.

-repeat number Specifies the number of times the key is sent.

-secret Specifies that the string that is sent won’t be recorded in the
SUTimage file in the String Sent section. Instead, the string
<hidden data> is placed in the file.

Note — If the application echoes the string that is sent on the
screen, the SUTimage file will contain the string in the Screen
and Response section of the file.
9–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
Example

> $myconn send "/usr/local/bin/dq\n"
> $myconn send -key tab -repeat 3
> $myconn send "25967"
> $myconn send -key return

Exceptions

An exception is raised if the send fails, for example because the connection died.
 9–21

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

n
9.5.1.11 sendWait

Syntax

handle sendWait string-expression \
?-expect string-expression? ?-timeout timeout? ?-secret?

Return

The sendWait method sends a string to the SUT and waits until a second string is
returned from the SUT. It is a shorthand for a send immediately followed by a wait.

sendWait takes the following attributes:

Example

> $myconn sendWait "ls -la\n" -expect "myprompt $"

string-expression Specifies the string to send to the SUT.

-expect string-expression Specifies the string you expect to be returned by the
SUT. If you don’t specify an expected string, sendWait
will expect the default prompt. This default prompt ca
be

• Set on a per connection basis an option to the
connect command (Section 9.5.1.2.)

• Changed for the current connection using the
-prompt attribute (Section 9.5.2.10.)

• Applied to the xmyTermAsync class command to
set a default script-wide prompt.

Note — If the response contains null characters (i.e.,
ASCII 0), the nulls are stripped from the response
before comparing with the expected string. Therefore,
you should not have to worry about embedded null
characters in the expected string.

-timeout timeout Specifies number of seconds to wait before sendWait
returns control back to the script

-secret Specifies that the string that is sent won’t be recorded in
the SUTimage file in the String Sent section. Instead,
the string <hidden data> is placed in the file.

Note — If the application echoes the string that is sent
on the screen, the SUTimage file will contain the string
in the Screen and Response section of the file.
9–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.1.12 wait

Syntax

handle wait tcl-expression ?-timeout seconds?

handle wait -expect expression ?-timeout seconds?

Return

No result

Description

The wait method stops the script execution until a particular condition is verified or a
timeout has occurred. In its first form, wait stops execution until an entered Tcl
expression is satisfied. In its second form, execution waits until the expected
expression is encountered.

wait also takes the following attributes:

-timeout seconds Stop execution for the specified number of seconds. If a
timeout value is not set explicitly, the default connection
timeout value is assumed.

-expect expression The script waits until the string specified in expression
appears at the end of the SUT response. If you don’t specify
an expected string, wait will expect the default prompt. This
default prompt can be

• Set on a per connection basis an option to the connect
command (Section 9.5.1.2.)

• Changed for the current connection using the -prompt
attribute (Section 9.5.2.10.)

• Applied to the xmyTermAsync class command to set
default a script-wide prompt.

Note — If the response contains null characters (i.e., ASCII
0), the nulls are stripped from the response before comparing
with the expected string. Therefore, you should not have to
worry about embedded null characters in the expected string.
 9–23

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

The following lines first determines what the prompt is on the system to which you
created a connection. It then sends an ls command to the system and waits until the
system returns the prompt.

> set myconn [xmyTermAsync connect]
> xmySleep 2; #sleep for a few seconds
> set prompt [$myconn response -tail 1ln]
> $myconn send "ls -la\n"
> $myconn wait -expect $prompt

If you know what the prompt will be, you can enter it directly as the argument to
-expect, as in the following:

> $myconn wait -expect "prompt % "

This time you want execution to wait until the cursor is in row 10 and column 10.

> $myconn wait { [$h -position] == "10 10" }

Exceptions

Timeout reached, SUT has not returned, timeout handler called
9–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.2 Attributes

The following is the list of attribute methods that can be used for a particular connection to
get (or set) configuration parameters or status information.

9.5.2.1 -bufferlen

Syntax

handle -bufferlen

Description

The bufferlen attribute returns the size of the buffer that caches SUT responses.

9.5.2.2 -column

Syntax

handle -column

Description

The column attribute returns the current column position.
 9–25

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.2.3 -connections

Syntax

xmyTermAsync -connections

Return

List of asynchronous connections

Description

The connections attribute lists all the open asynchronous connections.

Example

> xmyTermAsync -connections
{.xmyTermAsync_1 xmyTermAsync_2}

9.5.2.4 -delay

Syntax

handle -delay ?milliseconds?

Description

The delay attribute returns or sets the number of milliseconds used as padding in the
send method.

9.5.2.5 -failedCompares

Syntax

handle -failedCompares ?number?

Description

The failedCompares attribute returns or sets the number of failed compares.
9–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.2.6 -goodCompares

Syntax

handle -goodCompares ?number?

Description

The goodCompares attribute returns or sets the number of successful compares
performed using the compare method for this handle.

9.5.2.7 -masks

Syntax

handle -masks

Return

List of enabled masks

Description

The -masks attribute lists all of the mask handles associated to a particular connection.

Example

> $myconn -masks
.xmyMask01 .xmyMask03

9.5.2.8 -name

Syntax

handle -name

Description

The name attribute returns the name of the connection.
 9–27

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.2.9 -position

Syntax

handle -position

Description

The position attribute returns the position of the cursor in a list format: {row column}.

9.5.2.10 -prompt

Syntax

handle -prompt ?string?

Description

The prompt attribute returns or sets the default waiting string for the sendWait and
wait methods.

9.5.2.11 -row

Syntax

handle -row

Description

The row attribute returns the current row position.

9.5.2.12 -shell

Syntax

handle -shell

Description

The shell attribute returns the shell used to start up the connection, e.g., /bin/sh.
9–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3

er
9.5.2.13 -showAttributes

Syntax

handle -showAttributes ?mode?

Description

The showAttributes attribute returns (true or false) or sets the mode (on or off) of the
connect method’s -showAttributes attribute. That is, this determines what charact
attributes are to be included in the images file.

9.5.2.14 -size

Syntax

handle -size

Description

The size attribute returns the size of the screen in a list format: {row column}.

9.5.2.15 -status

Syntax

handle -status

Description

The status attribute returns the connection’s status, whether it is alive(up) or not
(down).

0 - The connection is down

1 - The connection is up.
 9–29

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.2.16 -terminal

Syntax

handle -terminal

Description

The terminal attribute returns the terminal being emulated, e.g., vt100.

9.5.2.17 -terminfo

Syntax

handle -terminfo

Description

The terminfo attribute returns the file name of the auxiliary terminfo file.

9.5.2.18 -timeout

Syntax

handle -timeout ?seconds?

Description

The timeout attribute returns or sets the default number of seconds to wait for a SUT
response.

9.5.2.19 -warningCompares

Syntax

handle -warningCompares ?number?

Description

The warningCompares attribute returns or sets the number of user defined warnings.
9–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.5.2.20 -wildcard

Syntax

handle -wildcard ?char?

Description

The wildcard attribute returns or sets the default wildcard character used in compare
and screen methods.
 9–31

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.5.3 Changing Configuration Parameters

Syntax

 xmyTermAsync \
?-terminal string? \
?-timeout seconds? \
?-shell filename? \
?-bufferlen length? \
?-terminfo filename? \
?-wildcard char?\
?-delay milliseconds?
?-showAttributes mode?
?-prompt string?

Return

None

Description

All of the arguments for the connect method (Section 9.5.1.2), with the exception of
the -name argument, can also be applied to the xmyTermAsync class command to set
default attributes script-wide. After the command is issued, all the new connections
will inherit the new default for the attribute.

Example

To change the default timeout to 10 seconds, type

> xmyTermAsync -timeout 10

9.5.4 Querying Configuration Parameters

Syntax

xmyTermAsync -terminal

xmyTermAsync -timeout

xmyTermAsync -shell

xmyTermAsync -bufferlen

xmyTermAsync -terminfo

xmyTermAsync -wildcard

xmyTermAsync -delay

xmyTermAsync -showAttributes

xmyTermAsync -prompt
9–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
Return

A Tcl string (or integer) that represent the current value of the parameter,

Description

All of the arguments for the connect method (Section 9.5.1.2), with the exception of
the -name argument, can also be used with the xmyTermAsync class command to
query the current default configuration parameters.

Example

> xmyTermAsync -terminal
vt100

> xmyTermAsync -timeout
10
 9–33

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9.6 Async Procedures

This section describes Tcl procedures delivered with the MYNAH System that are designed
specifically to aid Async scripting.

NOTE — Currently, there is only one Async specific
procedure.

9.6.1 xmyPrintScreen

Syntax

xmyPrintScreen handle Destination

Return

Prints an entire Async screen

Description

The xmyPrintScreen procedure prints the entire Async screen based on the entered
Async connection handle. The Destination can be stdout, stderr, or a filename.

Example

The following example opens a file and prints the entire Async screen to the file
temp.txt, designated by the variable $fp.

> set fp [open temp.txt w]
> xmyPrintScreen $conn_async $fp
9–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
9.7 Async Scripting

The previous section detailed the extensions in the TermAsync Package, but how do these
extensions fit together to form scripts. Let’s look a few examples.

In this first example (Figure 9-1) we want to

1. Logon to a remote system

2. Use the ls command to display the contents of the current directory.

3. Use the pwd command to display the current directory

4. Retrieve this information

5. Disconnect from the remote system.

Let’s assume there is an anonymous ftp archive that each week places new files in a
directory called new_this_week. You can create a script (Figure 9-2) that each week

xmyLoadPkg TermAsync
keylset c -prompt password -echo false
set a [xmyPrompt [list $c]]
set conn1 [xmyTermAsync connect]
$conn1 wait -expect ": "
$conn1 sendWait "rlogin 128.96.186.123\r" -expect "d:"
$conn1 send "$a\r"
$conn1 sendWait "ls\r" -expect "# "
$conn1 sendWait "pwd\r" -expect "# "
$conn1 response -file OUTPUT/out10
$conn1 screen -file OUTPUT/out11
$conn1 disconnect

Figure 9-1. Sample TermAsync Script 1
 9–35

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
accesses this archive and places them in a directory called /u/kjd/NEW, assuming your
home path is /u/kjd.

xmyLoadPkg TermAsync
set conn2 [xmyTermAsync connect]
$conn2 wait -expect ": "
$conn2 sendWait "cd /users/kjb/NEW\r" -expect ": "
$conn2 sendWait "ftp ftp.bercco.com\r" -expect ": "
$conn2 sendWait "anonymous\r" -expect "d:"
$conn2 sendWait "kjb@\r" -expect "> "
$conn2 sendWait "cd pub/new_this_week\r" -expect "> "
$conn2 sendWait "prompt\r" -expect "> "
$conn2 sendWait "mget *\r" -expect "> "
$conn2 sendWait "bye\r" -expect ": "
$conn2 disconnect
xmyExit

Figure 9-2. Sample TermAsync Script 2
9–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TermAsync Extension Package
Revision 1, February 1999 Release 5.3
The script in Figure 9-3 logins to the NY Public Library and retrieves the title and author
of the non-fiction best seller. The result is printed (using xmyPrint) in the output file.

only user and error output
set xmyVar(OutputLevel) {user error}
xmyLoadPkg TermAsync

set nylib [xmyTermAsync connect -timeout 30 -shell /bin/sh]
$nylib sendWait "PS1=\"\$ \"\r" -expect "\$ "
$nylib wait -expect "\$ "

connect with ny public library
$nylib sendWait "telnet nyplgate.nypl.org\r" -expect ": "
$nylib sendWait "nypl\r" -expect ": "
choose DB
$nylib sendWait "1\r" -expect "s the key labeled \"Return.\""
$nylib sendWait "\r" -expect "m"

choose best seller list
$nylib sendWait "5\r" -expect "m"

choose non fiction
$nylib sendWait "2\r" -expect ": \033\[0m\033\[1m"

make sure we go the right screen
set rightScreen [$nylib compare -region {3 2 34 1} -expect {\
 "List: NYT Nonfiction Best Sellers " }]

if the screen is the one we want print title & author of
best seller into log file

if { $rightScreen } {
 set NF_BestSellerAuthor [$nylib screen -region {5 9 60 1}]
 set NF_BestSellerTitle [$nylib screen -region {6 9 60 1}]
 xmyPrint -text "Best Selling Book (non fiction): \
 $NF_BestSellerTitle \n \
 by $NF_BestSellerAuthor "
}

now logoff && disconnect

$nylib sendWait "q\r" -expect "m"
$nylib sendWait "so\r" -expect "m"
$nylib sendWait "7\r" -expect ": "
$nylib sendWait "3\r" -expect "\$ "
$nylib disconnect

Figure 9-3. Sample TermAsync Script 2
 9–37

MYNAH System Scripting Guide BR 007-252-004
TermAsync Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
9–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10. Term3270 Extension Package

10.1 Overview

The Term3270 Extension Package provides the functions necessary for interactions with
the 3270 device.

The user interface to the 3270 SE is through a graphical terminal emulation for interactive
sessions and through the main GUI or Command Line User Interface (CLUI) when running
automated test cases to the background execution environment. These extensions will let
you directly manipulate scripts to tailor the test case against the SUT.

NOTE — To access the Term3270 Extension Package
you must first run xmyLoadPkg Term3270.

10.1.1 Methods Overview

Section 10.4.1 contains detailed descriptions of the Term3270 Method extensions. The
extensions are listed in alphabetical order (within each category). Table 10-1 lists the
methods, organizing them in the general functional categories. Table 10-1 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 10-1. Term3270 Method Extensions (Sheet 1 of 2)

Category Method Description Section

Connection connect Establishes a connection to the 3270
host from the MYNAH Tcl script.

10.4.1.2,
Page 10–16

disconnect Destroys a connection made to the
host through the connect method.

10.4.1.4,
Page 10–20

Data
Entry/Retrieval

fieldLength Returns the length of the specified
field.

10.4.1.7,
Page 10–23

screen Returns the portion of the screen
specified through location and
dimensions.

10.4.1.16,
Page 10–32

send Simulates the pressing of a 3270
function key.

10.4.1.17,
Page 10–34

type Sends the keystrokes specified by a
“text” parameter.

10.4.1.19,
Page 10–36
 10–1

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Location fieldBegin Moves the cursor to the first position
of the field located by the given
location parameters.

10.4.1.6,
Page 10–22

fieldNext Moves the cursor to the first position
of the next field.

10.4.1.8,
Page 10–24

find Finds the specified string on the
current screen, returning the row and
column position of its location.

10.4.1.9,
Page 10–25

findLabel Finds the specified label on the current
screen, returning the row and column
position of its location.

10.4.1.10,
Page 10–26

format Loads tag name files used for finding a
screen location through tagnames.

10.4.1.11,
Page 10–27

moveCursor Moves the cursor to the position
specified by the given parameters

10.4.1.15,
Page 10–31

Comparisons compare Compares a region in the current 3270
display screen of a connection with a
compare pattern body.

10.4.1.1,
Page 10–14

disableMask Disables a mask object. 10.4.1.3,
Page 10–19

enableMask Enables an already created mask
object for a particular connection
instance.

10.4.1.5,
Page 10–21

ignore Defines a region to ignore during
subsequent compare statements.

10.4.1.13,
Page 10–29

Waiting sendWait Sends the special function key to the
3270 SUT and waits for the SUT’s
reply.

10.4.1.18,
Page 10–35

wait Notifies that incoming data is being
sent from the host and that the script
should wait until the host has fully
completed its transmission.

10.4.1.20,
Page 10–37

Attributes getAttribute Finds the attribute byte value of a
location in the connection object’s
display.

10.4.1.12,
Page 10–28

listAttributeTypes Lists all of the attribute descriptors.10.4.1.14,
Page 10–30

Table 10-1. Term3270 Method Extensions (Sheet 2 of 2)

Category Method Description Section
10–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.1.2 Attributes Overview

Section 10.4.2 contains detailed descriptions of the Term3270 Attribute extensions. The
extensions are listed in alphabetical order. Table 10-2 lists the extensions, organizing them
in general functional categories. Table 10-2 also gives a brief description of each extension
and the section where the detailed description can be found.

Table 10-2. Term3270 Attribute Extensions (Sheet 1 of 3)

Category Attribute Description Section

Connection -connections Returns a list of currently open
3270 connections.

10.4.2.4,
Page 10–40

-host Returns the name of the host. 10.4.2.9,
Page 10–42

-model Outputs the name of the model
the xmyTerm3270 instance is
configured.

10.4.2.17,
Page 10–44

-name Specifies a name for connection
handles.

10.4.2.18,
Page 10–45

-port Outputs the name of the port
number.

10.4.2.19,
Page 10–45

-queryConnection Returns the connection’s state.10.4.2.20,
Page 10–46

-status Returns the connection’s status.10.4.2.24,
Page 10–47

-timeout Specifies amount of time that the
connection will wait to receive a
solicited screen.

10.4.2.26,
Page 10–48

-TN3270E Supports TN3270E protocol for
connecting to a host that begins
transmission in TN3270E

10.4.2.27,
Page 10–48
 10–3

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Data
Entry/Retrieval

-collectKeyCount Indicates whether or not a
function key count should be
kept.

10.4.2.2,
Page 10–39

-dataBytesReceived Number of bytes received. 10.4.2.5,
Page 10–40

-formatName Contains the format/screen name
of a connection’s current screen.

10.4.2.7,
Page 10–41

-keyCount Displays the number of program
keys pressed.

10.4.2.12,
Page 10–43

-lastKeyPressed Returns the name of the last
function key pressed.

10.4.2.13,
Page 10–43

-tagDir Indicates the path(s) to look for
tag name files.

10.4.2.25,
Page 10–47

Location -column Returns the cursor’s current
column position.

10.4.2.1,
Page 10–39

-row Returns the cursor’s current row
position.

10.4.2.21,
Page 10–46

Comparisons -compareInvisibleFields Indicates whether invisible fields
should be processed.

10.4.2.3,
Page 10–40

-failedCompares Returns the number of failed
compares.

10.4.2.6,
Page 10–41

-goodCompares Returns the number of good
compares performed.

10.4.2.8,
Page 10–41

-masks Returns a list of enabled masks
for a connection.

10.4.2.16,
Page 10–44

-screenIdFile Indicates the file from which the
screen identification information
is to be taken.

10.4.2.22,
Page 10–46

-warningCompares Number of warnings generated
during compares.

10.4.2.28,
Page 10–48

Table 10-2. Term3270 Attribute Extensions (Sheet 2 of 3)

Category Attribute Description Section
10–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
Waiting -initialWait Indicates whether an initial read
should be performed during
logon.

10.4.2.10,
Page 10–42

-initialWaitExpect Supplies the string expression
that initialWait should wait for.

10.4.2.11,
Page 10–42

-lastResponseTime Returns the time between last
send and new screen ready on
the connection.

10.4.2.14,
Page 10–43

-lastTransmitTime Returns the last time a send was
done.

10.4.2.15,
Page 10–44

Attributes -showAttributes Write application’s screen
attribute bytes to the SUTimage
file.

10.4.2.23,
Page 10–47

Table 10-2. Term3270 Attribute Extensions (Sheet 3 of 3)

Category Attribute Description Section
 10–5

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.2 Term3270 Attribute Definitions

Table 10-3 lists the conventions and definitions for the attributes that are generally used by
the Term3270 methods. When a method uses attributes not listed in Table 10-3, those
attributes will be detailed in the method description.

Table 10-3. Term3270 Attribute Definitions (Sheet 1 of 3)

Attribute Definition

-append Used with -file, -append appends the response to the
specified filename. If this attribute is not used and filename
is an existing file, response will overwrite the file.

-character position position can be a value in the range of 1 to whatever the last
position is on the 3270 presentation space, the last position
being determined by the type of model. For instance, for
model 2, the character position could have a value of 1 to
1920 (24 rows x 80 columns).

-dimension dimension dimension denotes the ability to specify the dimensions of a
block. dimension consists of a list of two items, first the
width, then the height, for example -dimension {5 8}.

-direction iteration This is used during label processing. The way this parameter
works is that, from the label location, the argument finds the
number of fields away from the label, specified by iteration,
in the direction from the field, specified by -direction, and
uses that field for whatever function it is to perform.

-direction can be right, left, up, and down. iteration is an
integer, e.g., a valid entry would be -right 12.

The default is -right 1.

When a label appears above a field and the first character of
the label does not align with the first character space in the
field, characters typed in the field appear aligned with the first
character of the label. For example, if the screen contains the
following label and field under the label

 NAME
 _ _ _ _ _ _ _ _ _ _

executing

$conn1 type -text "Tom" -label "NAME" -down 1

results in the following. (Note that the value Tom begins
under the N, which is the first character in the label.)

 NAME
 _ _ _ Tom _ _ _ _
10–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

l
ed

hat

;

y

le
-expect pattern pattern is the string you expect to find or receive from a SUT.

-expect and -expectMaster are mutually exclusive.

-expectMaster xyz Specifies the name of the Tcl variable containing the
expected value, which is supplied by the Compare Master file
(Section 5). The same variable will be used for writing out to
the new Compare Master file.

-expectMaster and -expect are mutually exclusive.

-file filename Used with the screen method (Section 10.4.1.16), -file
returns an empty string and the response is saved to the
specified filename.

-ignore region -ignore region is used to denote a region of the screen that is
to be ignored during a comparison.

-label label label is a string used to search against the current 3270 screen
for the purposes of finding the field associated to the label.
When the label is found, usually a fieldNext is implicitly
called with the proper label arguments, such as -direction,
-iteration or -occurrence, to find the location of the desired
field.

-mask maskhandle -mask maskhandle is used to denote a pattern that should be
ignored during a comparison. The maskhandle is created
using xmyMask (Section 7.2.10).

-occurrence occurrence occurrence is used during label processing. occurrence is an
integer value that specifies the i’th occurrence of the labe
field on the screen that should be used to locate the desir
field.

-offset offset offset specifies the number of positions from the actual
location specified, through tagname or label processing, t
the intended action should be performed. For label
processing, the offset determines the final position from
where the command should start looking for the user
specified field position. Offsets will not wrap to the next line
instead an exception of illegal argument will be incurred.

-position position position lets you specify the location within a screen displa
by row and column values. position is a list consisting of two
elements, first the row, then the column value, for examp
-position {10 55}.

-protectedField -protectedField is an optional attribute for the fieldNext
method that tells fieldNext to find the next protected field.

Table 10-3. Term3270 Attribute Definitions (Sheet 2 of 3)

Attribute Definition
 10–7

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 for
-region region region defines a block or region on the screen, and the
location of that block within the screen. region is a list of four
items: row, column, width, and height values.

-searchFrom -searchFrom is an optional flag to label processing
statements. If it is used, search begins at the current cursor
position and proceeds to search for the label in the 3270
screen until it finds it or reaches the last position on the
screen.

-string string string is a string used to search against the current 3270
screen.

-tag tagname tagname denotes the ability to specify the location of a screen
display as defined in user tag name files.

-unprotected -unprotected is an optional flag to label processing
statements. If it is used, the search finds the next instance of
the label within the 3270 screen, regardless of whether the
label’s field is protected or unprotected.

ERROR: Error Message This denotes the error message returned from a command
a particular error.

Table 10-3. Term3270 Attribute Definitions (Sheet 3 of 3)

Attribute Definition
10–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

is

tring

 a Tag

e

plete
10.3 Term3270 Location Processing

The Term3270 Package supports three methods for referring to physical screen locations
on a synchronous terminal.

• Row and column coordinates that refer to actual screen locations. This method
useful when the other two are not available or not desirable.

• Label names for screen locations where the label names are determined by a s
‘label’ that appears on the screen at run time.

• Tag names for screen locations where the tag names are defined by the user in
Name File.

The following subsections describe each of these methods, explaining how to use th
method as well as the strengths and weaknesses of each method.

To help illustrate how you use each method, we will use the Term3270 fieldNext extension.
fieldNext moves the cursor to the first position of the next unprotected field. For a com
description of fieldNext and its syntax, please see Section 10.4.1.8.

NOTE — The examples in the following sub-sections
assume you created an Term3270 connection using the
variable conn1.
 10–9

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

.

. For
d

 least
d may

en to
 have
Figure 10-1 contains an example of a 3270 screen We will be using this screen to illustrate
each location method. We’ve added row and column markers to aid our discussions

10.3.1 Row/Column Processing

The first, and simplest, method of referring to a screen location is by row and column
example, to move the cursor to the RECONNECT: entry field, which is at row 11 an
column 41, you could enter

$conn1 fieldNext -position {9 41}

As we said, this is the simplest way of referring to a screen location, but it is also the
reliable. With each new release, text locations often change. For example, a new fiel
be added between the ENTITY and RECONNECT entry fields in Figure 10-1. In this case,
the statements that reference the RECONNECT: entry field would have to be rewritt
reflect the new row and column locations. If you’re testing multiple releases, you must
a script for each release. Each script in turn may reference this field several times.
Rewriting all of the row/column statements may be increasingly tedious.

Figure 10-1. Example 3270 Screen

 1 2 3 4 5 6 7 8
 12345678901234567890123456789012345678901234567890123456789012345678901234567890
 --
 1: 06/04/96 08:58
 2: EXMP01 EXMP ENTITY SELECTION SCREEN N
 3:
 4:
 5:
 6:
 7:
 8:
 9: ENTITY : _
10:
11: RECONNECT: _
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23: Copyright (C) 1989, 96 BELLCORE, ALL RIGHTS RESERVED.
24: (VC)
10–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

the

fault

r the
ens.

270

he
ore

ll this
r to
ve to
d
10.3.2 Label Processing

The second method of referring to a screen location is by label processing. In label
processing the screen locations for fields are determined by a string label that appears on
the screen. To find the ENTITY: entry field from Figure 10-1 using label processing, you
could enter

$conn1 fieldNext -label "ENTITY:"

fieldNext would search for the first occurrence of the string ENTITY: on the screen.

The default behavior of label processing is for the search to begin at the top left corner of
the 3270 screen, proceeding left to right, top to bottom until it reaches the first occurrence
of the label as a protected field, or until it reaches the end of the screen, in which case, an
exception is thrown.

The different options that can be specified for label processing can be used to modify the
default behavior.

• -direction iteration is used to specify which direction, and how many fields away,
desired field is located from the label. -direction can be right, left, up, and down.
iteration is an integer, e.g., a valid entry would be -right 12. The default is -right 1.

• -occurrence is used to find the i’th occurrence of the label on the screen. The de
occurrence is 1.

• -unprotected is used to find the label string on the screen, regardless of whethe
label is a protected or unprotected field. This is mainly used for unformatted scre
The default is to find only labels that belong to protected fields.

The following is an example of a 3270 Tcl command that makes use of these label
processing options. It finds the second occurrence of the label string “FISH” on the 3
screen, moves down 2 fields, moves to the right 4 fields, and types “TROUT” at the
beginning of the field found at that location.

$conn1 type -label “FISH” -occurrence 2 -down 2 \
-right 4 -text “TROUT”

But what if the screen changes? Let’s take a look at a few scenarios

• The label and field simply move. If there is only one occurrence of the label on t
screen, then your script will still be able to find the correct location. If there are m
than one occurrences of the label on the screen, you may have to change the
-occurrence option.

• The label and field stay at the same location, but the name of the field changes. A
may require is a simple search and replace in the script using your favorite edito
reflect the new name. If the length of the label has changed, you may will also ha
add or change the -direction option, but you may be able to do this by a search an
replace, too.
 10–11

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e field

ns
also
en and
• The label stays at the same location, but its name changes and the location of th
moves. This will probably require a great deal more work, especially if you’re
performing tests on multiple releases.

Like row/column processing, label processing is very easy to set up, but, if the scree
change, it takes less work to rewrite your scripts. Scripts using label processing are
easier to read since the location entries are the exact string as it appears on the scre
not (sometimes) cryptic row/column coordinates.

NOTE — A label is any string on the screen contained in
a protected field. The MYNAH Script Builder has the
ability to generate labels for the various Term3270
commands, if Label processing option is selected. It is
easier to let the Script Builder generate the labels. This
way, the generated scripts would get executed without any
errors. If there are any errors in execution of the generated
code, please contact MYNAH Support. You may choose
a label manually and code it in the script, but there exists
a risk of the label getting rejected in a few cases.

10.3.3 Tag Name Processing

The third method of referring to a screen location is by tag name processing, where
scripting statements are written using user-defined labels called tags that reference
locations on a screen in place of row and column integer values.These definition reside in
files called Tag Name files. Multiple scripts can reference these files. If the format of the
screen changes, only the definitions of the tags related to the screen need to be updated. For
example, to move to the RECONNECT: entry field on Figure 10-1 using tag name
processing, assuming there is a tag for this screen called recon, you could type

$conn1 fieldNext -tag recon

The MYNAH script accesses the appropriate Tag Name files to determine the row and
column coordinates associated with the tag names in the script. The Tag Name files are
loaded using the format method, as in

$conn1 format MainMenu

where MainMenu is a Tag Name file.
10–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

 tag
cted

 must

u

 to
Script

 an

e.

atches
t is
NOTE — A user or the MYNAH Administrator must
have set up Tag Name files prior to anyone trying to use
them. The MYNAH Administrator will then save the Tag
Name file in a special directory, called the
TagDirectory, used to contain Tag Name files. The
steps for creating Tag Name files are found in Section 7 of
the MYNAH System Administration Guide.

Like label processing, scripts using tag names are easier to read since you’re using text,
quite often related to what is actually on the screen, to determine a screen location.

When a field’s position changes, only the row and column values associated with the
names in the Tag Name files have to be changed rather than every reference to the affe
row and column or label values in the scripts.

Unlike row/column and label processing, which can be used immediately, tag name
processing requires a great deal of preliminary setup. As we mentioned earlier, they
first be created and then the MYNAH Administrator must place them in the TagDir. If a
position changes, you must inform the MYNAH Administrator to make the necessary
changes to the appropriate Tag Name file. If you use row/column and label processing yo
can immediately change your scripts.

Tag name processing also uses the Screen Identification file, which makes it possible to
generate format/screen names automatically.

The Screen Identification file is needed to identify the format/screen the user is on and
generate a format statement during an initial script capture session using the GUI’s
Builder.

The Screen Identification file contains regular expression patterns (as defined for the
regex(3X) program) in conjunction with screen location. As a user navigates through
application, the Screen Identification file determines if these two conditions exist

• The format/screen name exists on the format/screen being displayed

• A regular expression can be defined to uniquely describe the format/screen nam

If these conditions determine that a string matching a pattern is found at a particular
location on the current screen, the system identifies that portion of the screen that m
the pattern as the format for the screen. Once this format is determined, a statemen
generated, and this statement is then used to load a Tag Name file of the same name.
 10–13

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4 xmyTerm3270 Class

xmyTerm3270 is the Tcl class command providing language extensions that are necessary
for interactions with the 3270 device. Its methods provide the basis of operations on a 3270
connection that you will need to create sufficiently sophisticated test cases in your scripts.

10.4.1 Methods

The Term3270 package contains the following methods.

10.4.1.1 compare

Syntax

handle compare -dimension dimension \
-expect {body of compare pattern} ?-expectMaster xyz? \
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-outputLabel label?

handle compare -region region \
-expect {body of compare pattern} ?-expectMaster xyz? \
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-outputLabel label?

handle compare -tag tagname -dimension dimension \
-expect {body of compare pattern} ?-expectMaster xyz? \
?-offset offset? \
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-outputLabel label?

handle compare -label label -dimension dimension \
-expect {body of compare pattern} ?-expectMaster xyz? \
?-offset offset? \
?-direction iteration? ?-occurrence occurrence? \
?-searchFrom? ?-unprotected?
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-outputLabel label?
10–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

e

ack
nly.

Return

0 for failure

1 for success

Description

The compare method compares a region in the current 3270 display screen of a
connection with the compare pattern body. When the location is not specified,
compare uses the current cursor position. If a failure occurs, compare increments the
connection’s -failedCompares attribute by 1. If a success occurs, it increments th
connection’s -goodCompares attribute by 1.

NOTE — See Table 10-3 for descriptions of the compare
attributes.

If you use tagname processing (the third form shown above) and you set the
-dimension attribute’s width to zero (0), compare enters the width for this tagname
entered in the tagname file.

The -warning flag tells the compare statement to log a warning should the
comparison fail, rather than log a compare failure.

-outputLabel is used to specify a label for this particular compare command that will
be written into the output file. The label from the output file can be used to refer b
to the compare command in the input script. This is for cross reference purposes o

Example

In this first example, the expect value is A.

> set result [$conn1 compare -region {10 20 1 1} \
-expect {{A}}

In this second example, the expect attribute’s argument is a variable. The variable’s
value must be a list.

> set t1 {“MAIN MENU”}
> $conn1 compare -tag “title” -expect $t1 \

-outputLabel “Label number one”

Exceptions

• Error performing screen location processing

• Illegal screen position

• System error has occurred

• Error obtaining region from specified region values
 10–15

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.2 connect

Syntax

xmyTerm3270 connect \
?-host hostnamelist? \
?-model model #? \
?-port portnumber? \
?-compareInvisibleFields boolean? \
?-TN3270E boolean? \
?-timeout seconds? \
?-showAttributes boolean? \
?-initialWait boolean? \
?-initialWaitExpect string expression? \
?-name connection name? \
?-collectKeyCount boolean? \
?-tagDir tagname directory? \
?-screenIdFile screenid file? \
?-XLT TranslatePath?

Return

Handle to xmyTerm3270 instance

Description

The connect method is used to establish a connection to the 3270 host from the
MYNAH Tcl script. connect returns a handle to a connection back to the script.
Defaults are provided for port (23, or Telnet) and model number (2) should they not
be specified within the script. The attribute list provides the instance of
xmyTerm3270Conn class with initial values that will impact the configuration of this
singular connection. Attribute values that can be set and are not supplied will attain
their values after the loading of the 3270 extension package, where the class attribute
values will be set depending on what is available through configuration files.

NOTE — Only 24 3270 connections can be open at a
given time from a single script execution. If a script opens
more than 24 scripts at one time, scripts from a standalone
engine will hang and scripts running from a background
engine will fail.

connect takes has the following attributess

-host hostnamelist The name of the host. You can specify more
than one host.

This overrides the Host setting in the
xmyConfig file.
10–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

e
NOTE — All boolean based options are either TRUE or
FALSE.

To specify more than one host name, create a list of host names, using one or more
spaces to separate the list items, and enclose the list within double quotes. (Curly
brackets are allowed in a Tcl script.). Spaces are the only valid separators.

If you specify multiple hosts, the MYNAH System uses the first name on the list when
trying to establish a connection. If the connection is successful, the remaining
specified host names are ignored. If the connection fails for any reason, the MYNAH

-model model # The name of the model for the connection.

-port portnumber The name of the port number.

-compareInvisibleFields boolean Indicates whether invisible fields should be
processed.

-TN3270E boolean Supports TN3270E protocol for connecting
to a host that begins transmission in
TN3270E.

-timeout seconds The amount of time that the connection will
wait to receive a solicited screen.

-showAttributes boolean Indicates whether to write an application’s
screen attribute bytes to the SUTimage file.

-initialWait boolean Indicates whether an initial read should be
performed during logon.

-initialWaitExpect string expression The string expression that initialWait
should wait for.

-name connection name A name for the connection handle.

-collectKeyCount boolean Indicates whether or not a function key
count should be kept.

-tagDir tagname directory Indicates the path(s) to look for tag name
files.

-screenIdFile screenid file Indicates the name of the screen
Identification file.

-XLT TranslatePath Specifies the location of the
EBCDIC-ASCII translation file, which is
used to define the presentation space whil
making a 3270 connection.

This overrides the TranslatePath setting in
the xmyConfig file.
 10–17

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ed
System attempts to use each successive host name until a successful connection is
made or the end of the list is reached. Upon successful connection, the return will be
a handle to the xmyTerm3270 instance. For each failed connection, an error message,
with the hostname, is generated. If no connection can be established with any host
from the list, then the following error message is generated:

Unable to establish connection to any host.

On a per connection basis, the attributes -initialWait, -host, -model, -port, -name,
and -TN3270E can only be set through this initial connect call.

connect automatically creates a handle name, using the form .xmyTerm3270_n+.
Each successive connection increments the count, i.e., the first handle would be
.xmyTerm3270_1, and the second would be .xmyTerm3270_2. While you can use
these relative handle names, using the set command, as in the following example,
creates an absolute handle name.

Example

This example illustrates specifying a specific host and the location of the
EBCDIC-ASCII translation file.

> set conn1 [xmyTerm3270 connect -host pyib1 -model 2 \
-port 23 -XLT=$XMYHOME/data/misc/SMS800.xlate]

.xmyTerm3270_1

This example illustrates specifying multiple hosts.

> set conn [xmyTerm3270 connect -host "xyz pyibm4 abc"]

Exceptions

If an exception is raised, the connection is not made.

• System error occurred, can’t connect to host

• Connection can not be made, maximum number of EHLLAPI sessions reach

• Time-out

• Licensing problems.
10–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.4.1.3 disableMask

Syntax

handle disableMask {list of maskhandles}

Return

No result

Description

The disableMask method disables a mask object that has been activated for a
particular connection instance through the enablemask method. After disablemask,
any subsequent compare statements on the connection will no longer ignore the pattern
defined in the mask object.

Example

> $conn1 disableMask $mask1 $mask2 $mask3

Exceptions

• Mask handle not enabled on connection
 10–19

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.4 disconnect

Syntax

handle disconnect

Return

No result

Description

The disconnect method destroys a connection made to the host through the connect
method. Once the disconnect call has been made, the connection is no longer valid and
can not be used. The handle is deregistered from the Tcl name space and is no longer
recognized by the interpreter.

Example

> $conn1 disconnect

Exceptions

System error has occurred
10–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.4.1.5 enableMask

Syntax

handle enableMask {list of mask handles}

Return

No result

Description

The enableMask method enables an already created mask object, using xmyMask
(Section 7.2.10), for a particular connection instance. Any subsequent compare
statements on the connection will ignore the pattern defined in the mask object.

Example

> $conn1 enableMask $mask1 $mask2 $mask3

Exceptions

Illegal mask handle(s) given to command
 10–21

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.6 fieldBegin

Syntax

handle fieldBegin

handle fieldBegin -position position

handle fieldBegin -tag tagname ?-offset offset?

handle fieldBegin -label label ?-offset offset?

Return

No return

Description

The fieldBegin method moves the cursor to the first position of the field located by the
given location parameters. When no location parameters are supplied, fieldBegin uses
the current cursor position. The location given could be any position within that field.

NOTE — See Table 10-3 for descriptions of the
fieldBegin attributes.

Example

This moves the cursor to the beginning of the field found at location row = 2 and
column =5.

> $conn1 fieldBegin -position {2 5}

Exceptions

• Error performing screen location processing

• Illegal screen position

• System error has occurred
10–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.4.1.7 fieldLength

Syntax

handle fieldLength

handle fieldLength -position position

handle fieldLength -tag tagname ?-offset offset?\
?-protectedField?

handle fieldLength -label label
?-offset offset? ?-direction iteration?\
?-occurrence occurrence? -searchFrom? ?-unprotected?

Return

Length of the specified field

Description

The fieldLength method returns the length of the current field (or the target field)
from the given location parameters. When no location parameters are supplied,
fieldLength uses the current cursor position.

NOTE — See Table 10-3 for descriptions of the
fieldLength attributes.

Example

> $conn1 fieldLength -label “PASSWORD:” -occurrence 1 \
-right 1

8

 10–23

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.8 fieldNext

Syntax

handle fieldNext

handle fieldNext ?-protectedField?

handle fieldNext -position position

handle fieldNext -tag tagname ?-offset offset?

handle fieldNext -label label ?-protectedField?
?-offset offset? ?-direction iteration?\
?-occurrence occurrence ? ?-searchFrom? ?-unprotected?

Return

No return

Description

The fieldNext method moves the cursor to the first position of the unprotected field
specified by the given location parameters. When no location parameters are supplied,
fieldNext uses the current cursor position.

NOTE — See Table 10-3 for descriptions of the
fieldNext attributes.

Example

> $conn1 fieldNext -label “USERID:” -occurrence 1 \
-right 1

Exceptions

• Error performing screen location processing

• Illegal screen position

• System error has occurred
10–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

10.4.1.9 find

Syntax

handle find -string string ?-occurrence occurrence? \
?-searchFrom?

Return

Position of string

Description

The find method finds the specified string on the current screen and returns the row
and column position of its location. The -occurrence parameter is used to find the i’th
occurrence of the given string on the screen. -searchFrom tells find to use the current
cursor position; otherwise, the top lefthand corner is used as the starting point.

NOTE — See Table 10-3 for descriptions of the find
attributes.

The search does not wrap the screen, i.e., the search stops when the lower right
position is reached.

Example

> $conn1 find -string “system” -occurrence 1
{8 17}

Exceptions

String not found
 10–25

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ng

e
re
10.4.1.10 findLabel

Syntax

handle findLabel -label label ?-occurrence occurrence? \
?-searchFrom? ?-unprotected?

Return

Position of label

Description

The findLabel method finds the specified label on the current screen and returns the
row and column position of its location.

In addition to the -lable atttibute (see Table 10-3), findLabel takes the following
attributes:

The search does not wrap the screen, i.e., the search stops when the lower right
position is reached.

Example

> $conn1 findLabel -label “CENTER” -occurence 2
{20 30}

Exceptions

Label not found

-occurrence occurrence Used to find the i’th occurrence of the label on the
screen.

-searchFrom Tells findLabel to use the current cursor position;
otherwise, the top lefthand corner is used as the starti
point.

-unprotected Tells findLabel to consider unprotected instances of th
label on the screen; otherwise, only protected labels a
considered.
10–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.4.1.11 format

Syntax

handle format screenid

Return

No result

Description

The format method is used solely for the purpose of finding screen locations through
tagnames, defined in tag name files. Tag name files are named after the screen id of
the screen they correspond to.

If tagnames are used, this statement should follow any screen update and precede any
commands done to that screen. The screenid, a unique screen identifier sent from the
host, is either located at the top screen label or in the user’s Screen Identification file.

If no screenid argument is supplied, format does nothing.

Example

This format method loads the tag name file clear.

> $conn1 format clear

This moveCursor command will use a tag from the clear tag name file, called
clear1tag.

$conn1 moveCursor -tag “clear1tag” -offset 0

Exceptions

• Illegal screen tagname table format

• Screen does not correspond to tag name file
 10–27

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.12 getAttribute

Syntax

handle getAttribute

handle getAttribute -position position

handle getAttribute -tag tagname ?-offset offset?

handle getAttribute -label label ?-offset offset? \
?-direction iteration? ?-occurrence occurrence? \
?-searchFrom? ?-unprotected?

Return

List of attribute descriptors

Description

The getAttribute method is used to find the attribute byte value of a location in the
connection object’s display, specified by the parameters to getAttribute. When
location is not specified, getAttribute returns attribute value for the current cursor
position.

NOTE — See Table 10-3 for descriptions of the
getAttribute attributes.

Example

> $conn1 getAttribute -position {10 20}
{UNPROTECTED INVISIBLE}

Exceptions

• Error performing screen location processing

• Illegal screen position

• System error has occurred

• No attribute byte was found (unformatted presentation space)
10–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.4.1.13 ignore

Syntax

handle ignore -dimension dimension

handle ignore -region region

handle ignore -tag tagname -dimension dimension \
?-offset offset?

handle ignore -label label -dimension dimension \
?-offset offset? ?-direction iteration? \
?-occurrence occurrence? ?-searchFrom? \
?-unprotected?

Return

No result

Description

The ignore method defines a region to ignore on a 3270 display screen This ignore
region is active on all subsequent statements that permit the -ignore region option.
Once a program function key is pressed, the ignore is no longer active. When location
is not specified, ignore uses the current cursor position.

NOTE — See Table 10-3 for descriptions of the ignore
attributes.

Example

> $conn1 ignore -tag “Dates” -offset 0 -dimension {1 1}

Exceptions

• Error performing screen location processing

• Illegal screen position
 10–29

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.14 listAttributeTypes

Syntax

xmyTerm3270 listAttributeTypes

handle listAttributeTypes

Return

List of attribute descriptors and descriptions for each listing.

Description

The listAttributeTypes method lists all of the attribute descriptors and provides
descriptions for each of the descriptors.

Example

> xmyTerm3270 listAttributeTypes

UNPROTECTED - unprotected field
MODIFIED - modified field
UNMODIFIED - unmodified field
PROTECTED - protected field
HIGHLIGHTED - highlighted field
INVISIBLE - invisible field
NUMERIC - numeric field
10–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

ation
10.4.1.15 moveCursor

Syntax

handle moveCursor -position position

handle moveCursor -tag tagname ?-offset offset?

handle moveCursor -label label ?-offset offset? \
?-direction iteration?\
?-occurrence occurrence? ?-searchFrom? ?-unprotected?

Return

No return

Description

The moveCursor method moves the cursor to the position specified in the given
parameters in the particular connection’s 3270 display. If the provided screen loc
is not a modifiable field, moveCursor behaves similarly to fieldNext by finding the
next rightward modifiable field relative to the supplied position.

NOTE — See Table 10-3 for descriptions of the
moveCursor attributes.

Example

> $conn1 moveCursor -tag “Login” -offset 0

Exceptions

• Error performing screen location processing

• Illegal screen position

• System error has occurred
 10–31

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.16 screen

Syntax

handle screen -dimension dimension \
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-file filename? ?-append? \
?-compareInvisibleFields?

handle screen -region region \
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-file filename? ?-append? \
?-compareInvisibleFields?

handle screen -tag tagname -dimension dimension \
?-offset offset? \
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-file filename? ?-append? \
?-compareInvisibleFields?

handle screen -label label -dimension dimension \
?-offset offset? ?-direction iteration?\
?-occurrence occurrence? ?-searchFrom? \
?-unprotected? \
?-ignore region? ... ?-ignore region? \
?-mask maskhandle? ... ?-mask maskhandle? \
?-file filename? ?-append? \
?-compareInvisibleFields true|false?

Return

Portion of the screen specified through location and dimensions

Description

The screen method returns a block of data defined by the width and height parameter,
starting at the location specified by the given location parameters. When no location
parameters are supplied, screen uses current cursor position.

NOTE — See Table 10-3 for descriptions of the screen
attributes.

In addition to the attributes listed in Table 10-3, the screen method also accepts the
-compareInvisibleFields attribute. If -compareInvisibleFields is set to true, then
invisible fields on the screen that occur within the given region are picked up. The
default value is false.
10–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
Example

> $conn1 screen -region {1 1 14 1}
“ENTER USER ID-”

Exceptions

• Error performing screen location processing

• Illegal screen position

• Illegal region specified

• System error has occurred
 10–33

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.17 send

Syntax

handle send 3270key

Return

No result

Description

The send method simulates the pressing of a 3270 function key to the host for this
particular connection. It does not wait for a response from the host, and script
execution is resumed upon transmission of the key input.

The 3270 keys that can be taken as an argument to this function are shown in
Table 10-4.

NOTE — The pa-2 key has a default timeout of 5
seconds.

Example

> $conn1 send pf-1

Exceptions

• Error inputting key

• System error has occurred

Table 10-4. 3270 Function Keys

pf1-24 attention leftTab cursorUp

pa1-3 sysReq rightTab cursorDown

clear cent cursorLeft delete

enter not cursorRight backspace

reset home eraseEOF
10–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

n be
eturn
back
s with
at
cifies

ys
10.4.1.18 sendWait

Syntax

handle sendWait -key 3270key ?-expect tcl_expression? \
?-timeout seconds?

Return

No result

Description

The sendWait method sends a special function key to the 3270 SUT and waits for the
SUT’s reply before resuming execution of the script. A Tcl regular expression ca
passed to provide the wait mechanism with a condition that, when found, should r
control back to the script. If no regular expression is provide, the first response
from the host returns control back to the script. The same keys are supported a
the send method, but sendWait is only meaningful when the key pressed is one th
causes the 3270 SUT to respond with screen(s) of data. The timeout attribute spe
the number of seconds to wait before sendWait returns control back to the script.

The -key attribute lets you specify the 3270 key to send to the SUT. The 3270 ke
that can be taken as an argument to this function are shown in Table 10-4.

Example

> set waitstring “INPUT APPLICATION NAME AND PRESS ENTER”
> $conn1 sendWait -key pf-3 -expect $waitstring

Exceptions

Timeout reached, SUT has not returned, timeout handler called
 10–35

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.1.19 type

Syntax

handle type -text text

handle type -position position -text text

handle type -tag tagname -text text ?-offset offset?

handle type -label label -text text \
?-offset offset? ?-direction iteration?\
?-occurrence occurrence? ?-searchFrom? \
?-unprotected?

Return

No result

Description

The type method sends the keystrokes defined within the text, beginning at the
location specified by the parameters to this statement.

If the specified location is not a modifiable field, an error message will be written in
the output file, but the command itself will succeed. The keyboard will not be locked.

When a location is not specified, type uses the current cursor position. type moves the
cursor to the location where the typing has ended. In the event that type fails, the
cursor position remains unchanged.

NOTE — See Table 10-3 for descriptions of the type
attributes.

Example

> $conn1 type -label “login” -text “tktee99”

Exceptions

• Error performing screen location processing

• Illegal screen position

• System error has occurred

• Error entering data (keyboard locked, system busy, protected field, etc.)
10–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

waited

he

at
10.4.1.20 wait

Syntax

handle wait ?-expect string? ?-timeout seconds?

Return

No result

Description

The wait method blocks the script until a screen is received from the host or returns
immediately if a screen has already been received from the host.

After each screen is sent to the host, the connection keeps track of the number of
screens received from the host that have not been waited on yet.

When wait is used without an -expect option, it performs one of the following:

• Returns as soon as any screen is received

• Returns immediately if a screen has already been received that has not been
on yet

• Aborts when the timeout expires.

When wait is used with an -expect option, it performs one of the following:

• Returns as soon as a screen is received that contains the expected string

• Returns immediately if the last screen received has not been waited on yet and
contains the expected string

• Aborts when the timeout expires.

 If a timeout value of zero is specified, the wait

• Returns immediately if the correct screen has been received (depending on t
-expect option)

• Aborts immediately if the correct screen has not been received.

Using a timeout value of zero is rarely necessary.

In general, a send method followed by a wait method is identical in behavior to a
sendWait method, with the following exception.

In situations where a screen is sent and no screens are expected, the wait method is not
needed. If a sendWait method is used, though, it will attempt to identify the fact th
no screen is expected and return immediately. However, if a send is followed by a
wait in this situation, the wait will time out waiting for a screen to be received.
 10–37

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

Following are four functionally identical logoff procedures that assume that after the
PF-3 key is sent, two screens are received from the host.

#
proc logoff1 {conn} {

$conn send pf-3
$conn wait
$conn wait

}

proc logoff2 {conn} {
$conn send pf-3
$conn wait -expect “PRESS ENTER”

}

proc logoff3 {conn} {
$conn sendWait -key pf-3
$conn wait

}

proc logoff4 {conn} {
$conn sendWait -key pf-3 -expect “PRESS ENTER”

}

Exceptions

Timeout reached, SUT has not returned, timeout handler called.
10–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.4.2 Attributes

For an attribute that can be set, if no value is ever specified, the default is obtained first from
the value of the attribute at a class level, which initially had obtained its values from the SE
configuration class object. Attributes on a class level derive their values from configuration
files initially, but thereafter can be set in a script. In Stateless and ConnOnly modes, class
attributes that are changed in a script will be reset to the value stored in configuration prior
to the execution of the next script. Class level attribute values will affect subsequent
instantiations of the class, which will inherit these values. Instance level attributes can be
used to set attributes on a per connection basis, overriding any values inherited from the
class level. Some attributes, however, can only be set at the time of connection and can not
be changed after the connect call.

When attributes are used without being given a value, either on a class or instance level, the
current value of that attribute is returned as output. Still other attributes cannot be set at all,
and are used merely to display stored information about a connection at a particular
moment. These attributes can not take arguments. Typically, with few exceptions, these
attributes have no meaning on a class level. (W/R) denotes an attribute that is readable and
writable. (R) means the attribute is only readable.

10.4.2.1 -column (R)

Syntax

handle -column

Description

The column attribute outputs the cursor’s current column position.

10.4.2.2 -collectKeyCount (W/R)

Syntax

xmyTerm3270 -collectKeyCount ?boolean?

Decription

The collectKeyCount attribute indicates whether or not a function key (entered
through the send or sendWait methods) count should be kept.
 10–39

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.2.3 -compareInvisibleFields (W/R)

Syntax

handle -compareInvisibleFields ?boolean?

xmyTerm3270 -compareInvisibleFields ?boolean?

Description

The compareInvisibleFields attribute indicates whether invisible fields should be
processed by statements done to a particular connection.

FALSE - don’t process
TRUE - process.

10.4.2.4 -connections (R)

Syntax

xmyTerm3270 -connections

Return

List of currently open 3270 connections by their Tcl name

Description

The -connections attribute lists the names of all the 3270 connections currently
available.

Example

> xmyTerm3270 -connections
{.xmy327001 .xmy327002 .xmy327003 .xmy327004}

10.4.2.5 -dataBytesReceived (R)

Syntax

handle -dataBytesReceived

Description

The dataBytesReceived attribute returns the number of bytes received in the last
message from the host.
10–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

ent

 far
10.4.2.6 -failedCompares (R)

Syntax

handle -failedCompares

Description

The failedCompares attribute returns the number of failed compares performed so far
on the connection.

10.4.2.7 -formatName (R)

Syntax

handle -formatName

Description

The formatName attribute returns the format/screen name of a connection’s curr
screen. Format/screen name is initially found through the Screen Identification file,
which maps a screen’s identifier to the proper tag name file.

10.4.2.8 -goodCompares (R)

Syntax

handle -goodCompares

Description

The goodCompares attribute returns the number of good compares performed so
on the connection.
 10–41

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.2.9 -host (W/R)

Syntax

handle -host

xmyTerm3270 -host ?hostname?

Description

The host attribute is used to output the name of the host to which the xmyTerm3270
instance is connected. host cannot be used to reset host information. This attribute can
only be set at connection time, as an argument to the connect class method.

If multiple host names are specified on the connect statement, host returns the name
of the one host to which that instance is connected.

10.4.2.10 -initialWait (W/R)

Syntax

handle -initialWait

xmyTerm3270 -intitalWait ?boolean?

Description

The initialWait attribute indicates whether an initial read should be performed during
logon.

FALSE- don’t read
TRUE - read.

Default: TRUE.

10.4.2.11 -initialWaitExpect (W/R)

Syntax

handle -initialWaitExpect

xmyTerm3270 -initialWaitExpect ?string expression?
10–42

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
Description

The initialWaitExpect attribute supplies the string expression that initialWait should
wait for. No expression means wait for the first screen to be sent from the host.

10.4.2.12 -keyCount (R)

Syntax

xmyTerm3270 -keyCount

Description

The keyCount attribute displays the number of program keys pressed for all 3270
connections.

10.4.2.13 -lastKeyPressed (R)

Syntax

handle -lastKeyPressed

Description

The lastKeyPressed attribute indicates the name of the last program function key or
enter key pressed.

10.4.2.14 -lastResponseTime (R)

Syntax

handle -lastResponseTime

Description

The lastResponseTime attribute returns the time between last send and when the new
screen ready on the connection. The information stored in this attribute will also be
used when logging performance output, the response time between a send, and when
the SUT has responded back accordingly.
 10–43

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.2.15 -lastTransmitTime (R)

Syntax

handle -lastTransmitTime

Description

The lastTransmitTime attribute returns the last time a send was done on this
connection.

10.4.2.16 -masks (R)

Syntax

handle -masks

Description

The masks attribute returns a list of all of the mask handles associated to a particular
connection through the enableMask instance method.

Example

> $conn1 -masks
.xmyMask01 .xmyMask02 .xmyMask03

10.4.2.17 -model (W/R)

Syntax

handle -model

xmyTerm3270 -model ?model number?

Description

The model attribute is used to output the name of the model the xmyTerm3270
instance is configured. model cannot be used to reset model information. This
attribute is useful when determining row or column from a 3270 display character
position value. model can only be set at connection time, as an argument to the
connect class method.
10–44

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.4.2.18 -name (W/R)

Syntax

handle -name

xmyTerm3270 connect -name ?connection Name?

Description

In the first form, the name attribute returns the connection name for a specified handle,
e.g., .xmyTerm3270_x.

In the second form, the name of the connection handle can be changed at the time of
connection.

10.4.2.19 -port (W/R)

Syntax

handle -port

xmyTerm3270 -port ?port number?

Description

The port attribute outputs the name of the port number to which the xmyTerm3270
instance is connected. port cannot be used to reset port number information. This
attribute can only be set at connection time, as an argument to the connect class
method.
 10–45

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.2.20 -queryConnection (R)

Syntax

handle -queryConnection

Description

The queryConnection attribute returns the connections’s state.

• BUSY - The connection is busy

• READY - The connection is ready

• DOWN - The connection is down

• LOCKED - The keboard is locked

10.4.2.21 -row (R)

Syntax

handle -row

Description

The row attribute outputs the cursor’s current row position.

10.4.2.22 -screenIdFile (W/R)

Syntax

handle -screenIdFile ?file?

xmyTerm3270 -screenIdFile ?file?

Description

The screenIdFile attribute indicates the file from which the screen identification
information is to be taken. It can be set only at connect time.
10–46

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3

10.4.2.23 -showAttributes (W/R)

Syntax

handle -showAttributes ?boolean?

xmyTerm3270 -showAttributes ?boolean?

Description

The showAttributes attribute writes the application’s screen attribute bytes to the
SUTimage file.

• TRUE - write

• FALSE - don’t write.

10.4.2.24 -status (R)

Syntax

handle -status

Description

The status attribute returns the connection’s status, whether it is alive(up) or not
(down).

0 - The connection is down

1 - The connection is up.

10.4.2.25 -tagDir (W/R)

Syntax

handle -tagDir ?path?

xmyTerm3270 -tagDir ?path?

Description

The tagDir attribute indicates the path(s) to look for tag name files.
 10–47

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.4.2.26 -timeout (W/R)

Syntax

handle -timeout ?seconds?

xmyTerm3270 -timeout ?seconds?

Description

The timeout attribute returns or sets the amount of time that the connection will wait
to receive a solicited screen before returning control back to the script.

10.4.2.27 -TN3270E (W/R)

Syntax

handle -TN3270E

xmyTerm3270 -TN3270E ?boolean?

Description

The TN3270E attribute supports the TN3270E protocol for connecting to a host that
begins transmission in TN3270E. For a connection, TN3270E can only be set at
connect time.

10.4.2.28 -warningCompares (W/R)

Syntax

handle -warningCompares

Description

The warningCompares attribute returns the number of warnings generated during
compares so far on the connection.
10–48

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
10.5 3270 Procedures

This section describes Tcl procedures delivered with the MYNAH System that are design
specifically to aid 3270 scripting.

NOTE — Currently, there is only one 3270 specific
procedure.

10.5.1 xmyPrintScreen

Syntax

xmyPrintScreen handle Destination

Return

Prints an entire Async screen

Description

The xmyPrintScreen procedure prints the entire 3270 screen based on the entered
3270 connection handle. The Destination can be stdout, stderr, or a filename.

Example

The following usage prints the entire 3270 screen to the standard output.

> xmyPrintScreen $conn_3270 stdout
 10–49

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10.6 When to use send and sendWait Methods

3270 scripts may potentially run faster than the host can respond, such as when the script
is running in a background SE (where scripts run significantly faster than in the
foreground). In this case a script which works fine in the foreground may fail when
executed in the background. However, the timing problems could occur in foreground, too.
Thus a script, which normally works fine in foreground, may fail occasionally.

To avoid such occurrences, you should always account (in your script) for the current
position relative to the host before proceeding with additional scripting. This will ensure
that the script does not continue sending data and functions keys to the host before the host
is ready for the data or keys. This will keep the script and the host synchronized.

10.6.1 MYNAH send and sendWait Methods

The MYNAH 3270 Language Extension Package contains the send and sendWait
methods to send a key to the host (for example, pf-1, Enter, Home). These methods cannot
be used interchangeably.

send is used in situations where you do not expect a new screen to come back, for example,
the home key.

To aid the checking process, the sendWait method, which waits for the next changed
screen to come back, was added to compliment the send method. In addition, the -expect
attribute waits until a particular string appears on the 3270 screen, such as FIND
SUCCESSFUL on line 24 of a particular IMS application. If you use the -expect attribute,
you must specific the expected string.

The MYNAH System compares a new screen against the old one. If there is no change, the
MYNAH System waits for another indication of a new screen arrival until a new changed
screen actually arrives or until there is a timeout.

The timeout on a sendWait does not result in an error (which it would result in termination
of script) if the sendWait method is used erroneously. However, if you use a -expect clause
on the sendWait, the timeout will result in an error. To alter this behavior, the errors in a
script can be handled with the use of the catch command. catch is basic Tcl command that
will ensure that the script does not terminate in case of errors but will give the control back
to the user to handle error processing.

The following example illustrates the use of the catch statement; it should be followed by
code to check for the variables t1 and errMsg.

set t1 [catch {$conn1 sendWait -key pf-1 \
-expect "SUCCESSFUL"} errMsg]
10–50

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Term3270 Extension Package
Revision 1, February 1999 Release 5.3
sendWait is a combination of the send and wait methods. If some processing needs to be
performed while the script waits for a response from the host, the two methods can be used
separately, as in the following:

$conn1 send pf-1

<some other processing, not related to this connection>

$conn1 wait

As a rule of thumb, use sendWait if you are expecting a response to your key stroke (for
example keys such as Enter, pf-1, pf-3). Use send when you do not expect a changed
screen to come back, (for example, the End key). If you use them interchangeably, you can
run into the timing problems. The following two cases illustrate improper usage scenarios.

10.6.2 Summarization

1. When in doubt, use sendWait method instead of a send method.

2. Normally, a sendWait by itself is good enough, but if you know what string you are
expecting, you are better off coding a -expect clause. This is a sure way of
synchronizing the script with the host response.

3. Do not use a high value for timeout in 3270 configuration or on the connect method.
A value of about 30 seconds should be good enough to take care of slow responses
from hosts and at the same time does not cause too much of delays in case of erroneous
usage of the sendWait method.

Case 1 If you use send instead of sendWait, the next method you execute could fail if
the host is still working on getting the changed screen back to you. It will give
a system is busy error message. The fix for such situations is to replace the send
with a sendWait.

Case 2 If you use sendWait instead of send, this is not a harmful scenario. The script
will wait for the next changed screen to come back and there is no changed
screen coming back in this case. The script will wait for the amount of time
specified in timeout. There is no damage done, it is just a waste of time.
 10–51

MYNAH System Scripting Guide BR 007-252-004
Term3270 Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
10–52

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11. General Application-to-Application Tcl Language
Extensions

The MYNAH General Application-to-Application (AppApp) extension package provides
functionality necessary for interaction with a SUT thru an application specific interface.

11.1 Overview

The application specific interface, called the Interface Collector, contains the necessary
logic to communicate with the SUT. Connections can be opened to the SUT and messages
sent and received to and from it. The MYNAH System uses TCP/IP to communicate with
the Interface Collector. The Interface Collector may use any protocol which the SUT
understands. Figure 11-1 illustrates this interaction.

The MYNAH Collector is a common MYNAH process used to manage a group of Interface
Collectors. The MYNAH Collector can also manage other protocol handlers. These
collectors are configured in the MYNAH configuration file, xmyConfig.

The MYNAH System supplies only a generic Interface Collector template. The application
specific logic should be developed using the template.

NOTE — To access the General AppApp extension
package, you must first run xmyLoad AppApp.

The General AppApp extension package provides functionality to do the following:

• Make one or more logical connections to the SUT

• Send ASCII messages or files to the SUT

• Send binary files toSUT

Figure 11-1. MYNAH General AppApp Interactions

MYNAH AppApp
extension package

MYNAH Collector

SUT 1

SUT 2

SUT 3

Interface Collector
2

Interface Collector
3

Interface Collector
1

 11–1

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

rea

e the

face

found.
• Wait for and receive ASCII messages from the SUT, saving them as files in an a
called the Message Response Directory

• Receive binary message file from the SUT

• Filter unwanted incoming messages using user defined match procedures

• Open and scan all received files saved in the Message Response Directory. Se
section on the Message Response Directory Tcl Language Extensions (Section15.1).

Before using the General AppApp extension package, the MYNAH Collector and Inter
Collector processes must be configured and running. Please refer to the MYNAH System
Administration Guide for more information.

11.1.1 Methods Overview

Section 11.2.1 contains detailed descriptions of the AppApp Method extensions. The
extensions are listed in alphabetical order (within each category). Table 11-1 lists the
extensions, organizing them in general functional categories. Table 11-1 also gives a brief
description of each extension and the section where the detailed description can be

Table 11-1. AppApp Method Extensions

Category Method Description Section

Connection connect Establishes a logical connection to the
MYNAH Collector and AppApp
processes from the MYNAH Tcl
script.

11.2.1.1,
Page 11–5

delete Deletes a specified message or all
messages for a connection

11.2.1.2,
Page 11–7

disconnect Destroys a connection made through
the connect method.

11.2.1.3,
Page 11–8

Data
Entry/Retrieval

send Sends a message to the SUT using the
AppApp connection established with
the connect method.

11.2.1.5,
Page 11–1
1

receive Returns a message from the SUT using
the AppApp connection established
using the connect method.

11.2.1.4,
Page 11–9
11–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.1.2 Attributes Overview

Section 11.2.2 contains detailed descriptions of the AppApp Attribute extensions. The
extensions are listed in alphabetical order (within each category). Table 11-2 lists the
extensions, organizing them in general functional categories. Table 11-2 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 11-2. AppApp Attribute Extensions (Sheet 1 of 2)

Category Attribute Description Section

Connection -connections Lists the names of all active
connections.

11.2.2.3,
Page 11–16

-connId Returns a unique identifier
associated with the given
connection

11.2.2.4,
Page 11–17

-IFhost Returns the host on which the
application specific Interface
Collector is running.

11.2.2.7,
Page 11–20

-name Lets you choose the name of the
connection.

11.2.2.11,
Page 11–26

Data
Entry/Retrieval

-append Instructs the receive operation to
append a specified number of
successfully received messages.

11.2.2.1,
Page 11–13

-data Gets the message associated with
the last receive method.

11.2.2.5,
Page 11–18

-file Gets the name of the file
containing the message
associated with the last receive
method.

11.2.2.6,
Page 11–19

-maxMsgs Specifies the maximum number
of messages that can be appended
together by the
xmyMsgMatchUntil procedure.

11.2.2.10,
Page 11–25

Comparisons -listen Returns or sets the listen mode
used when receiving messages.

11.2.2.8,
Page 11–21

-match Specifies a Tcl procedure name
that will be invoked for each
incoming message processed by
the receive method.

11.2.2.9,
Page 11–23
 11–3

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Waiting -broadcast Permits all the waiting scripts to
receive any messages received

11.2.2.2,
Page 11–15

-timeout Sets the timeout for the send and
receive operations.

11.2.2.18,
Page 11–33

Attribute -recvPort Returns the port number. 11.2.2.12,
Page 11–27

-recvStatus Returns the state of the receive
session.

11.2.2.13,
Page 11–28

-recvTime Returns the time stamp for the
received message.

11.2.2.14,
Page 11–29

-sendPort Returns the port number. 11.2.2.15,
Page 11–30

-sendStatus Returns the state of the send
session.

11.2.2.16,
Page 11–31

-sendTime Returns the time the last message
was successfully sent.

11.2.2.17,
Page 11–32

Table 11-2. AppApp Attribute Extensions (Sheet 2 of 2)

Category Attribute Description Section
11–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2 xmyAppApp class

xmyAppApp is the Tcl class command providing language extensions that are necessary
for automated interactions with the SUT using the General AppApp interface.

11.2.1 Methods

The AppApp package contains the following methods.

11.2.1.1 connect

Syntax

xmyAppApp connect -appName name ?-broadcast? \
?-listen listenOption? ?-match matchProc? \
?-maxMsgs maxMsgs? ?-name name? \
?-timeout timeout?

Returns

 A handle name to the created xmyAppApp class instance.

Description

The connect method establishes a logical connection to the MYNAH collector and the
local Interface Collector processes from the MYNAH Tcl script. Upon success, a
handle to a connection is returned to the script. The attribute list provides the instance
of xmyAppApp class with initial values that will impact the configuration of this
connection. Attribute values not supplied with the connect method will obtain their
values from the xmyAppApp command. If the value is undefined in the xmyAppApp
class command or defined as the empty string, the corresponding value from the
configuration file will be used.

connect takes the following attributes. These attributes are described in detail in
subsequent sections.

-appName name The name of the application, as defined in the xmyConfig
configuration file. See the MYNAH System Administration
Guide for details on the xmyConfig file.

-broadcast Each received message is sent to all the waiting scripts,
belonging to the same application.

-listen listenOption Listen option for the receive method.

-match matchProc The name of the Tcl procedure to be used for matching.

-maxMsgs maxMsgs Maximum number of messages that can be appended.
 11–5

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

g
Example

> set A2A_conn1 [xmyAppApp connect -appName app_1]

Exceptions

Unable to establish the connection because

• xmyCollector process is not running or cannot be contacted

• Interface Collector process is not running or cannot be contacted

• appName is not defined in the xmyConfig file

• appName is not known to the xmyCollector process

• appName is not defined to use the AppApp protocol

• Timeout waiting for the connection back from the xmyCollector process

-name name Name of the application which the given Interface
Collector is managing.

-timeout timeout The time in seconds before script times out on receivin
messages.
11–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.1.2 delete

Syntax

handle delete -file fileName

handle delete -file [handle -file]

handle delete -all

Returns

No result

Description

The delete method deletes the specified message or all messages for the connection
identified by the handle.

delete takes the following attribute:

Example

> $A2A_conn1 delete -filename 854028294.63.2

> $A2A_conn1 delete -all

-file fileName Deletes the message specified by fileName, which can be obtained
by using the -file option on the receive method

-all Deletes all messages for a connection. The -all option is usually
used before disconnecting the connection.
 11–7

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.1.3 disconnect

Syntax

handle disconnect

Returns

No result

Description

The disconnect method destroys the logical connection to the given Application made
with the xmyAppApp connect class method and identified by the handle. Once the
disconnect call is made, the handle name associated with the connection is no longer
valid and will produce a Tcl “Invalid command name” error message if used.

Example

> $A2A_conn1 disconnect
11–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.1.4 receive

Syntax

handle receive ?-data? ?-file? ?-append? \
?-listen listenOption? ?-timeout timeout?

Returns

The received message if the -data attribute is specified, the filename containing the
received message if the -file attribute was specified, otherwise no result.

Description

The receive method receives a message from the SUT using the AppApp connection
established with the connect method and identified by handle. All messages received
from the given Application from the Interface Collector will be saved in the Message
Response Directory. Depending on the listen mode (see -listen), the receive operation
will look for messages present in the Message Response Directory and/or wait for a
message to arrive.

If a Tcl match procedure is defined (see -match), only messages that satisfy the match
procedure will be returned by the receive operation.

Attributes

The attributes are described in detail in subsequent sections.

Example

In this example, the script waits a maximum of 300 seconds to receive a message.

> set message [$A2A_conn1 receive -data -timeout 300]

Side Effects

If the receive method was successful, the internal receive time (see -recvTime) and
receive message variables (-data or -file) will be updated.

Exceptions

Unable to receive a message because:

• Timeout occurred while waiting for a message to arrive

• Invalid user defined Tcl match procedure

• No messages have been received, but the -append attribute was specified

• No messages have been received, but the MSG_LISTEN_NEXT mode was
specified

• Unable to save received message to disk.
 11–9

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
NOTE — The Message Response Directory must be
writeable by the local Interface Collector processes. It is
recommended that the person starting Interface Collector
own both the Message Response Directory and the
Interface Collector processes.

• Invalid or missing attribute values

• Both the -data and -file attributes were specified
11–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3

g
11.2.1.5 send

Syntax

handle send -data message -userData data

handle send -file filename -userData data

Returns

No result

Description

The send method sends a message to the SUT using the AppApp connection
established with the connect method and identified by handle. The message is sent to
the Interface Collector associated with the connection.

The message to be sent can be defined within the Tcl script or in a file. In the first case,
the -data attribute must be used and the message is provided as the attribute value.

NOTE — This message is treated like a string. If it
contains backslash (‘\‘) or other special characters
theymust be escaped with a backslash (‘\’).

In the second case, the -file option is used to specify the full path to a file containin
the message.

NOTE — Since this file name is passed to the Interface
Collector for transmitting, the Interface processes must be
able to open and read this file. When the Tcl script and
Interface Collector are running on different machines, the
file system containing the file to be sent must be
accessible (mounted) by both the machines.

UserData can be used to send Application SUT specific information to the Interface
Collector, which cannot be put in the message itself. For example, it could be priority
of the message to be sent to be sent to Application SUT. The Interface Collector should
interpret this information and act accordingly.

Example

In this example you send the string *sect{a=0;b=1;}% to the handle $A2A_conn1

> $A2A_conn1 send -data “*sect{a=0;b=1;}%”

In this example you send the string *tag=\1\2\3%

> $A2A_conn1 send -data “*tag=\\1\\2\\3%”
 11–11

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
In this example you send the file /mynah/scripts/AppApp/app_1.send.01

> $A2A_conn1 send -file “/mynah/scripts/AppApp/app_1.send.01”

Side Effects

If the send method was successful, the internal send time variable (see -sendTime)
will be updated.

Exceptions

Unable to send the message because

• Application send session is down. See -sendStatus attribute

• File is not accessible (if -file attribute was specified)

• Data message is too long, i.e., more than 2400 characters (if -data attribute was
specified).
11–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2 Attributes

The AppApp package contains the following attributes.

11.2.2.1 -append

Syntax

handle receive -append number

Returns

No result

Description

The -append attribute instructs the receive operation to append the next number of
successfully received messages to the current received message before returning. The
entire message will be accessible as the last received message.

The -append attribute is on a per receive basis and can only be specified with the
receive method.

Example

This gets the first piece of a message sent in multiple pieces.

> $A2A_conn1 receive

Assume the first piece containsa number of subsequent pieces

regexp {(FRAGNUM=)([0-9]+)} [$A2A_conn1 -data] a b num

Receive and append the next pieces together with first piece

> $A2A_conn1 receive -append $num -listen MSG_LISTEN_NEXT

This is the entire message made of 1 + $num pieces

> set myMsg [$A2A_conn1 -data]
 11–13

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

This gets the first piece of a message sent in multiple pieces. Assume that the last piece
contains the keyword LAST

> $A2A_conn1 receive

Receive and append the next pieces until the message contains the LAST keyword.

> while {[regexp {LAST} [$A2A_conn1 -data]] == 0} {
 $A2A_conn1 receive -append 1 -listen MSG_LISTEN_NEXT
}

This is the entire message.

> set myMsg [$A2A_conn1 -data]

Exceptions

Invalid -append attribute value.
11–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2.2 -broadcast

Syntax

xmyAppApp connect -broadcast

handle -broadcast

Returns

The boolean value associated with the broadcast option.

Description

The broadcast option permits all the waiting scripts to receive any messages received
by the Interface Collector, since the connection is made. This attribute can be set in the
connection command only.

The received message may or may not be for the given connection. It is up to the script
to filter out the message it receives.

Example

> $A2A_conn1 -broadcast

Exceptions

None
 11–15

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.2.3 -connections

Syntax

xmyAppApp -connections

Returns

A blank separated list of active connection handle names (e.g., .xmyAppApp_1,
.xmyAppApp_2, and .xmyAppApp_4), or the empty string if there are no active
connections.

Description

The -connections attribute lists the names (handle) of all active (open) connections to
AppApp. -connections can only be used through the xmyAppApp class command.

Example

> xmyAppApp -connections
.xmyAppApp_1 .xmyAppApp_2 .xmyAppApp_4
11–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2.4 -connId

Syntax

handle -connId

Returns

The connection id associated with the given handle.

Description

The -connId attribute returns the connection id, which is is a unique identifier
associated with the given connection. It is uniquely generated and maintained by the
MYNAH collector process.

Example

> $A2A_conn1 -connId

Exceptions

None
 11–17

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.2.5 -data

Syntax

handle -data

handle receive -data

Returns

The message associated with the most recent receive operation, or the empty string if
no messages has been received yet.

Description

The -data attribute is used to get the message associated with the last receive method.
If -data is used with the receive method, the received data will be returned. If the
receive method fails, an exception will occur and the previously received message will
remain unchanged.

Example

This checks if string “ORD=56700;” is in last received message.

> set msg [$A2A_conn1 -data]

> regexp {ORD=56700;} $msg
11–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2.6 -file

Syntax

handle -file

handle receive -file

Returns

The filename containing the message associated with the most recent receive
operation, or the empty string if no messages has been received yet.

Description

The -file attribute retrieves the name of the file, stored in the Message Response
Directory, containing the most recent received message. The filename should be saved
in the Tcl script in order to access this data if additional messages will be received.
Since the Message Response Directory is purged on a regular basis, the contents of this
file should be copied to a user area if the message need to be saved on a long term.

If -file is used with the receive method, the received filename will be returned. If the
receive method fails, an exception will occur and the previously received filename
will remain unchanged.

Example

Read the file containing the last received message.

> set fd [open [$A2A_conn1 -file] r]
> set data [read $fd]
> close $fd
 11–19

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.2.7 -IFhost

Syntax

handle -IFhost

Returns

The host on which the application specific Interface Collector is running.

Description

The application specific Interface Collector runs on a specific host. The host name is
defined in the xmyConfig file as “Host”. See the MYNAH System Administration Guide
for details on the xmyConfig file.

Example

> $A2A_conn1 -IFhost

Exceptions

None
11–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3

ored

set.
t have

nt
n
 be
ting

r this
11.2.2.8 -listen

Syntax

xmyAppApp -listen ?listenMode?

xmyAppApp connect -listen listenMode

handle -listen ?listenMode?

handle receive -listen listenMode

Returns

When no value is specified it returns the current listen mode, otherwise no result.

Description

The -listen attribute returns or sets the listen mode, which determines what messages
will considered by the receive method.

When no listenMode value is specified, -listen returns the current listen mode.

Only messages that have arrived after the listen time stamp will be considered by the
receive operation. The valid -listen values are:

• MSG_LISTEN_NOW will set the listen time stamp to the current time. Thus,
receive will return messages that have arrived after the time the receive operation
was executed. All messages arrived prior to the receive operation will be ign
(but not removed from the Message Response Directory).

• MSG_LISTEN_NEXT will instruct receive to return the next message that
arrived after the current received message. The listen time stamp will not be
This mode is very useful for retrieving messages in sequence or messages tha
arrived within the same second.

• MSG_LISTEN_SEND will set the listen time stamp to the time the most rece
send operation was successfully executed. From a client point of view, we ca
assume that a reply (received message) to a request (sent message) cannot
received before the request itself is sent. On the other hand, if you are emula
the server side, then the receive must be performed first, so the
MSG_LISTEN_NOW value should be used.

• An integer time value in UNIX format (i.e. seconds from 1/1/1970). The listen
time stamp will be set to this given time, and messages that have arrived afte
time will be considered.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is
MSG_LISTEN_NOW.

-listen can be set in the xmyConfig file using the ListenMode parameter.
 11–21

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

es
Example

Send a request and wait up to 30 seconds for the reply.

> $A2A_conn1 send -data $request_1

> set reply_1 [$A2A_conn1 receive -timeout 30 -listen \
MSG_LISTEN_SEND -data]

Send the second request.

> $A2A_conn1 send -data $request_2

> set reply_2 [$A2A_conn1 receive -timeout 30 -listen \
 MSG_LISTEN_SEND -data]

Example

In this example, three sends are done before performing any receives, so that a certain
degree of parallelism is achieved between the client and server. The
MSG_LISTEN_SEND wouldn’t work properly because the first and second repli
will be lost if they arrive before the third send operation is performed. The
MSG_LISTEN_NOW will also not work if the replies arrive before the receive
operation is executed.

Send three different requests expecting three replies.

> $A2A_conn1 send -data $request_1
> set saveTime [$A2A_conn1 -sendTime] # save 1st send time
> $A2A_conn1 send -data $request_2
> $A2A_conn1 send -data $request_3

Get the replies.

> set reply_1 [$A2A_conn1 receive -data -listen $saveTime]
> set reply_2 [$A2A_conn1 receive -data \

-listen MSG_LISTEN_NEXT]
> set reply_3 [$A2A_conn1 receive -data \

-listen MSG_LISTEN_NEXT]

Exceptions

Invalid listen mode was specified
11–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3

 the

cked
11.2.2.9 -match

Syntax

xmyAppApp -match ?matchTclProc?

xmyAppApp connect -match matchTclProc

handle -match

Returns

When no value is specified it returns the name of the Tcl procedure used by the receive
operation to match (filter) all incoming messages, otherwise no result.

Description

The -match attribute specifies a Tcl procedure name that will be invoked for each
incoming message processed by the receive method. Messages that do not satisfy the
Tcl match procedure will not be returned by the receive operation. By default a match
procedure is not defined and all messages can be returned by the receive method.

-match is set on a per connection basis and is set through the xmyAppApp class or
by the connect method.

The user defined Tcl match procedure must take the connection handle name as its
only argument and it returns a “1” when there is a match and “0” otherwise. Given
handle name, this match procedure can access the received data by using the -data
attribute. Since this user defined match procedure is invoked for each message
processed by the receive operation, it must be developed with performance
considerations.

The existence and validity of the user defined Tcl match procedure will not be che
until the receive operation is executed.

NOTE — Even though Tcl supports defining procedures
named “(”, “#”, and other punctuation and special
symbols, you should not define your Tcl match
procedures with these names. Instead, meaningful
procedure names should always be used.

-match can be set in the xmyConfig file using the MatchProcedure parameter.
 11–23

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

Receive only those messages containing “host=bluejays”.

> proc matchTclProc { $A2A_conn1 } {
return [regexp {host=bluejays} [$A2A_conn1 -data]]

}
set conn1 [xmyAppApp connect -match matchTclProc ...]

Exceptions

An attempt is made to change the match procedure using the instance handle
11–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2.10 -maxMsgs

Syntax

xmyAppApp -maxMsgs ?number?

xmyAppApp connect -maxMsgs number

handle -maxMsgs ?number?

Returns

When no value is specified it returns the current message limit, otherwise no result.

Description

The -maxMsgs attribute specifies the maximum number of messages that can be
appended together by the xmyMsgMatchUntil procedure. This parameter limits the
number of messages appended before the until match conditions are satisfied.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is 10.

-maxMsgs can be set in the xmyConfig file using the MaxMsgs parameter.

Exceptions

An invalid maxMsgs value is specified

Example

> $A2A_conn1 -maxMsgs 25
 11–25

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.2.11 -name

Syntax

xmyAppApp connect -name connectionName

handle -name

Returns

When no value is specified it returns the connection handle name set by the connect
operation.

Description

The -name attribute lets you choose the name of the connection rather than having a
name internally generated by the connect method.

The -name attribute is on a per connection basis and the value is set through the
connect method.

Example

Create a connection named “my_connection”.

> xmyAppApp connect -name my_connection ...

Exceptions

• A connection with the same name already exists

• An attempt is made to change the connection name using the instance handle
11–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2.12 -recvPort

Syntax

handle -recvPort

Returns

The port on which the application specific Interface Collector is communicating with
the MYNAH collector process.

Description

The port on which the application specific Interface Collector is communicating with
the MYNAH collector process. It is defined in the xmyConfig file as TcpPort. See the
MYNAH System Administration Guide for details on xmyConfig file.

The same port is used for both sending and receiving.

Example

> $A2A_conn1 -recvPort

Exceptions

None
 11–27

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

urns

H

ough
ve
11.2.2.13 -recvStatus

Syntax

handle -recvStatus

Returns

The value “UP” if the AppApp receive session is in TSOPEN state, otherwise ret
“DOWN”.

Description

The -recvStatus attribute checks the state of the receive session between MYNA
and the SUT AppApp managers. “UP” is returned only if MYNAH’s AppApp
manager is able to receive message from the SUT’s AppApp manager. Even th
the receive status is “DOWN”, a receive may still be successful if the messages ha
already arrived andare stored in the Message Response Directory.

NOTE — Defining and establishing (opening) the
AppApp sessions are performed outside of the MYNAH
System using AppApp commands.

Example

> $A2A_conn1 -recvStatus
11–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2.14 -recvTime

Syntax

handle -recvTime

Returns

The time stamp in UNIX format (i.e., seconds since 1/1/1970) associated with the most
recent received message, or 0 if no messages have been received.

Description

The -recvTime attribute returns the time stamp for the received message. All
messages received from the SUT are stamped with the time the message was received
by the MYNAH collector process.

Example

> $A2A_conn1 receive
> set rtime [$A2A_conn1 -recvTime]
 11–29

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.2.15 -sendPort

Syntax

handle -sendPort

Returns

The port on which the application specific Interface Collector is communicating with
the MYNAH collector process.

Description

The port on which the application specific Interface Collector is communicating with
the MYNAH collector process. It is defined in the xmyConfig file as “TcpPort”.

The same port is used for both sending and receiving.

Example

> $A2A_conn1 -sendPort

Exceptions

None
11–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3

ns

and
11.2.2.16 -sendStatus

Syntax

handle -sendStatus

Returns

The value “UP” if the AppApp send session is in TSOPEN state, otherwise retur
“DOWN”.

Description

The -sendStatus attribute returns the state of the send session between MYNAH
SUT AppApp managers. “UP” is returned only if the MYNAH System’s AppApp
manager is able to send message to the SUT’s AppApp manager. If the send status is
not “UP”, the send operation will fail.

NOTE — Defining and establishing (opening) the
AppApp sessions are performed outside of the MYNAH
System using AppApp commands.

Example

> $A2A_conn1 -sendStatus
 11–31

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.2.2.17 -sendTime

Syntax

handle -sendTime

Returns

The time stamp in UNIX format (i.e. seconds since 1/1/1970) associated to the most
recent sent message, or 0 if no messages have been sent.

Description

The -sendTime attribute returns the time the last message was successfully sent over
the connection.

Example

> $A2A_conn11 -sendTime
11–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 General Application-to-Application Tcl Language Extensions
Revision 1, February 1999 Release 5.3
11.2.2.18 -timeout

Syntax

xmyAppApp -timeout ?timeoutValue?

xmyAppApp connect -timeout timeoutValue

handle -timeout ?timeoutValue?

handle send -timeout timeoutValue

handle receive -timeout timeoutValue

Returns

When no value is specified it returns the current timeout value, otherwise no result.

Description

The -timeout attribute sets the timeout for the send and receive operations. For the
send operation, the timeout is the number of seconds to wait for acknowledgment of
the sent message. If the timeout expires, the send operation will fail. For the receive
operation, the timeout is the number of seconds to wait for a message to arrive. If the
timeout expires, the receive operation will fail.

If a timeout value was not specified at connect time, the value in the configuration file
for the particular protocol handler will be used. The timeout value can be changed for
the connection instance, or changed for each individual send or receive operation.

-timeout can be set in the xmyConfig file using the Timeout parameter.

Example

Create a connection setting the timeout to five minutes.

> set A2A_conn1 [xmyAppApp connect -timeout 300]

The following receive waits at most five minutes

> $A2A_conn1 receive

The following receive waits at most ten minutes

> $A2A_conn1 -timeout 600
> $A2A_conn1 receive

The following receive waits at most one minute

> $A2A_conn1 receive -timeout 60

The following receive waits at most ten minutes

> $A2A_conn1 receive
 11–33

MYNAH System Scripting Guide BR 007-252-004
General Application-to-Application Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
11.3 Example

This script sends and receives messages to and from IF
collector.
xmyLoadPkg AppApp
xmyAppApp connect -appName app_1 -name a1 -timeout 10

set c1 [a1 -connId]
set listenValue MSG_LISTEN_SEND
set i 1

while {$i <= 500} {
Send a message and receive. Since the test I/F collector
is a loopback, the received message will be the same as the
sent one.
 set msg “test message number $i to the I/F Collector”
 a1 send -data “$msg” -userData “Msg # $i”
 a1 receive -data -listen $listenValue
Delete the first 100 messages.
 if {$i <= 100} {
 a1 delete -file [a1 -file]
 }

 incr i
 set listenValue MSG_LISTEN_NEXT
}
Delete the rest of the messages for the connection.
a1 delete -all

a1 disconnect
11–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3

sion

area

e the

12. TOP Tcl Language Extension

The MYNAH TOP extension package provides functionality necessary for interactions
with the SUT using the TOP/X.25 or TOP/TCP/IP protocols.

12.1 Overview

The TOP extension package interfaces with the data communications system called
TOPCOM that handles the Transaction Oriented Protocols (TOP), as shown in Figure 12-1.

Users concerned with testing applications using TOP as the communications protocol may
use the MYHAH TOP Tcl extension package and Tcl language to develop test scripts. The
Tcl test scripts can be written to emulate an external application communicating with the
application in the SUT.

NOTE — To access the TOP Extension Package you
must first run xmyLoadPkg TOP.

The TOP extension package provides functionality to

• Make one or more logical connections to the SUT over an established TOP ses

• Send ASCII messages or files to the SUT

• Wait for and receive ASCII messages from the SUT, saving them as files in an
called the Message Response Directory

• Disconnect from a TOP session

• Filter unwanted incoming messages using user defined match procedures

• Perform TCIS or TCIS2 conversions on sent and received messages

• Analyze unformatted messages or messages in the Flexible Computer Interface
Format (FCIF). See The section on the FCIF Tcl Language Extensions section.

• Open and scan all received files saved in the Message Response Directory. Se
section on the Message Response Directory Tcl Language Extensions (Section15.1).

Figure 12-1. MYNAH TOPCOM Interactions

MYNAH TOP
Extension
Package

TOPCOM SUT

TOP

TOPCOM
 12–1

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Before using the TOP extension package, the TOPCOM and MYNAH Collector processes
must be configured and running. Please refer to the TOPCOM Guide for Administrators,
Operators, & User and the MYNAH System Administration Guide for more information.

The TOP Extension Package contains a process called a Collector, which stores all
incoming messages into a special area (the Message Response Directory) on disk. The
Collector is the interface between the MYNAH System and TOPCOM, sending and
receiving messages from TOPCOM or any other protocol handler. A handler is the logical
name of a TOPCOM entry defined in the xmyConfig file. All SEs performing a receive
operation access the disk in order to get the message they are interested in. Whether or not
you are concerned with checking received messages, the collector must be running.

The following is a list and description of the commands in the MYNAH TOP Extension
Package.

12.1.1 Methods Overview

Section 12.2.1 contains detailed descriptions of the TOP Method extensions. The
extensions are listed in alphabetical order (within each category). Table 12-1 lists the
extensions, organizing them in general functional categories. Table 12-1 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 12-1. TOP Method Extensions

Category Method Description Section

Connection connect Establishes a logical connection to
the MYNAH Collector and
TOPCOM processes from the
MYNAH Tcl script.

12.2.1.1,
Page 12–5

disconnect Destroys a connection made through
the connect method.

12.2.1.2,
Page 12–7

Data
Entry/Retrieval

send Sends a message to the SUT using the
TOPCOM connection established
with the connect method.

12.2.1.4,
Page 12–10

receive Returns a message from the SUT
using the TOPCOM connection
established using the connect
method.

12.2.1.3,
Page 12–8
12–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.1.2 Attributes Overview

Section 12.2.2 contains detailed descriptions of the TOP Attribute extensions. The
extensions are listed in alphabetical order (within each category). Table 12-2 lists the
extensions, organizing them in general functional categories. Table 12-2 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 12-2. TOP Attribute Extensions (Sheet 1 of 2)

Category Attribute Description Section

Connection -connections Lists the names of all active
connections.

12.2.2.2,
Page 12–14

-dtn Sets the TOPCOM Destination
Transaction Name (DTN)
parameter.

12.2.2.5,
Page 12–17

-name Lets you choose the name of the
connection.

12.2.2.11,
Page 12–25

-psn Sets the TOPCOM Presentation
Services Name (PSN) parameter.

12.2.2.12,
Page 12–26

-topcom Specifies what TOPCOM
handler to connect to.

12.2.2.20,
Page 12–34

Data
Entry/Retrieval

-append Instructs the receive operation to
append a specified number of
successfully received messages.

12.2.2.1,
Page 12–12

-conversion Tells the send/receive operation
how to manipulate an application
message.

12.2.2.3,
Page 12–15

-data Gets the message associated with
the last receive method.

12.2.2.4,
Page 12–16

-file Gets the name of the file
containing the message
associated with the last receive
method.

12.2.2.6,
Page 12–18

-maxMsgs Specifies the maximum number
of messages that can be appended
together by the
xmyMsgMatchUntil procedure.

12.2.2.9,
Page 12–23

-maxSegmentLen Defines the maximum value of
the two byte prefixes that is
inserted at the beginning of each
message segment during TCIS
conversion.

12.2.2.10,
Page 12–24
 12–3

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Comparisons -listen Returns or sets the listen mode
used when receiving messages.

12.2.2.7,
Page 12–19

-match Specifies a Tcl procedure name
that will be invoked for each
incoming message processed by
the receive method.

12.2.2.8,
Page 12–21

Waiting -timeout Sets the timeout for the send and
receive operations.

12.2.2.19,
Page 12–33

Attribute -recvSession Returns the receive session
number.

12.2.2.13,
Page 12–27

-recvStatus Returns the state of the receive
session.

12.2.2.14,
Page 12–28

-recvTime Returns the time stamp for the
received message.

12.2.2.15,
Page 12–29

-sendSession Returns the send session number.12.2.2.16,
Page 12–30

-sendStatus Returns the state of the send
session.

12.2.2.17,
Page 12–31

-sendTime Returns the time the last message
was successfully sent.

12.2.2.18,
Page 12–32

Table 12-2. TOP Attribute Extensions (Sheet 2 of 2)

Category Attribute Description Section
12–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.2 xmyTop class

xmyTop is the Tcl class command providing language extensions that are necessary for
automated interactions with the SUT using the TOP application-to-application interface.

12.2.1 Methods

The TOP package contains the following methods.

12.2.1.1 connect

Syntax

xmyTop connect -topcom “name” ?attribute list?

Returns

A handle name to the created xmyTop class instance.

Description

The connect method establishes a logical connection to the MYNAH Collector and
the local TOPCOM processes from the MYNAH Tcl script.

NOTE — Only 24 xmyTop connections can be open at a
given time from a single script execution, including all
connections in a parent script and any child scripts. If a
script opens more than 24 scripts at one time, scripts from
a standalone engine will hang and scripts running from a
background engine will fail.

Upon success, a handle to a connection is returned to the script. The attribute list
provides the xmyTop instance with initial values that will impact the configuration of
this connection only. Attribute values not supplied with the connect method will
obtain their values from the xmyTop class command. If the value is undefined in the
xmyTop class command or defined as the empty string, the configuration file value
will be used. All attribute values of xmyTop are configurable and can be changed by
the user at connect time.

NOTE — The name input to the -topcom attribute must
match with a TOP protocol handler name defined in the
xmyConfig file. (See the MYNAH System Administration
Guide for information on the xmyConfig file.)
 12–5

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Attributes

The -topcom attribute is required with connect.

On a per connection basis, the following attributes can only be set in the xmyTop class
or by the connect method: -conversion, -match, -maxSegmentLen, -name, -topcom.
In other words, the values of these attributes can not be changed using an instance
handle.

This is the complete list of connection class attributes that can be specified:
-conversion, -dtn, -listen, -match, -maxMsgs, -maxSegmentLen, -name, -psn,
-timeout, and -topcom.

Example

This example creates a connection to the TOPCOM handler handler_1.

> set TOP_conn [xmyTop connect -topcom “handler_1”]

In this example you try to connect to a TOPCOM handler that does not exist.

> set TOP_conn [xmyTop connect -topcom “foo”]
error: xmyTop connect: Protocol Handler (foo) not found in
configuration file

Exceptions

• Unable to establish the connection because

— xmyCollector process is not running or can not be contacted

— TOP handler name does not exist in configuration file

— TOP handler name is not known to the xmyCollector process

— TOP handler name is not defined to use the TOP protocol

— Timeout waiting for the connection back from the xmyCollector process.

• Invalid or missing attribute values
12–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.2.1.2 disconnect

Syntax

handle disconnect

Returns

No result

Description

The disconnect method destroys the logical connection to TOPCOM made with the
xmyTop connect class method and identified by handle. Once the disconnect call has
been made, the handle name associated with the connection is no longer valid and will
produce a Tcl “Invalid command name” error message if used.

Example

> $TOP_conn disconnect
 12–7

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.1.3 receive

Syntax

handle receive ?-data? ?-file? ?attribute list?

Returns

The received message if the -data attribute is specified, the filename containing the
received message if the -file attribute is specified, otherwise no result.

Description

The receive method receives a message from the SUT using the TOPCOM connection
established with the connect method and identified by handle. All messages received
from TOPCOM (over the receive session number specified in the configuration file)
will be saved in the Message Response Directory. Depending on the listen mode (see
-listen), the receive operation will look for messages present in the Message Response
Directory and/or wait for a message to arrive.

If a Tcl match procedure is defined (see -match), only messages that satisfy the
match procedure will be returned by the receive operation.

Attributes

This is the complete list of receive attributes that can be specified: -append, -data,
-file, -listen, -timeout. The values of these attributes will only impact the particular
receive operation.

Example

In this example you wait a maximum of 300 seconds to receive a message.

> set message [$TOP_conn receive -data -timeout 300]

Side Effects

If the receive method was successful, the internal receive time (see -recvTime) and
receive message variables (see -data or -file) will be updated.

Exceptions

• Unable to receive a message because

— timeout occurred while waiting for a message to arrive

— invalid user defined Tcl match procedure

• No messages have been received, but the -append attribute was specified

• No messages have been received, but the MSG_LISTEN_NEXT mode was specified

• Unable to save received message to disk
12–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
NOTE — The Message Response Directory must be
writable by the local TOPCOM processes. It is
recommended that the person starting TOPCOM own
both the Message Response Directory and the TOPCOM
processes.

• Invalid or missing attribute values

• Both the -data and -file attributes were specified
 12–9

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 the

g
12.2.1.4 send

Syntax

handle send -data message ?attribute list?

handle send -file filename ?attribute list?

Returns

No result

Description

The send method sends a message to the SUT using the TOPCOM connection
established with the connect method and identified by handle. The message is sent to
the TOPCOM processes using the send session number defined in the configuration
file.

The message to be sent can be defined within the Tcl script or in a file.

• In the first case, the -data attribute must be used and the message is provided as
attribute value.

NOTE — This message is treated like a string. If it
contains backslash (‘\’) or other special characters it must
be escaped with a backslash (‘\’).

NOTE — The message size cannot exceed 2400 bytes.

• In the second case, the -file option is used to specify the full path to a file containin
the message.

NOTE — Since this file name is passed to TOPCOM for
transmitting, the TOPCOM processes must be able to
open and read this file. When the Tcl script and TOPCOM
processes are running on different machines, the file
system containing the file to be sent must be accessible
(mounted) by both machines.

Attributes

This is the complete list of send attributes that can be specified: -dtn, -psn, -timeout.
The values of these attributes will only impact the particular send operation.
12–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
Example

This example sends the string *sect{a=0;b=1;agg{c=2;d=3;}}% to the handle
$TOP_conn.

> $TOP_conn send -data “*sect{a=0;b=1;agg{c=2;d=3;}}%”

In this example you send the string *tag=\1\2\3%.

> $TOP_conn send -data “*tag=\\1\\2\\3%”

This time you send the file /mynah/scripts/Topcom/soac.send.01 to the handle
$TOP_conn.

> $TOP_conn send -file “/mynah/scripts/Topcom/soac.send.01”

Side Effects

If the send method was successful, the internal send time variable (see -sendTime)
will be updated.

Exceptions

• Unable to send the message because

— TOPCOM send session is down (not in TSOPEN state). See -sendStatus attribute

— Timeout occurred while waiting for a send acknowledgment from the SUT

• File is not accessible (if -file attribute was specified)

• Data message is too long, i.e., more than 2400 characters (if -data attribute was
specified).

• The -psn and -dtn attribute values are too long (if specified).
 12–11

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2 Attributes

The TOP package contains the following attributes.

12.2.2.1 -append

Syntax

handle receive -append number

Returns

No result

Description

The -append attribute instructs the receive operation to append the next number of
successfully received messages to the current received message before returning. The
entire message will be accessible as the last received message.

The -append attribute is on a per receive basis and can only be specified with the
receive method.

Example

This gets the first piece of a message sent in multiple pieces.

> $TOP_conn receive

Assume the first piece contains a number of subsequent pieces

regexp {(FRAGNUM=)([0-9]+)} [$TOP_conn -data] a b num

Receive and append the next pieces together with first piece

> $TOP_conn receive -append $num -listen MSG_LISTEN_NEXT

This is the entire message made of 1 + $num pieces

> set myMsg [$TOP_conn -data]

Example

This gets the first piece of a message sent in multiple pieces. Assume that the last piece
contains the keyword LAST

> $TOP_conn receive

Receive and append the next pieces until the message contains the LAST keyword.

> while {[regexp {LAST} [$TOP_conn -data]] == 0} {
 $TOP_conn receive -append 1 -listen MSG_LISTEN_NEXT
}
12–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
This is the entire message.

> set myMsg [$TOP_conn -data]

Exceptions

Invalid -append attribute value.
 12–13

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2.2 -connections

Syntax

xmyTop -connections

Returns

A blank separated list of active connection handle names (e.g., .xmyTop_1,
.xmyTop_2, and .xmyTop_4), or the empty string if there are no active connections.

Description

The -connections attribute lists the names (handle) of all active (open) connections to
TOPCOM. -connections can only be used through the xmyTop class command.

Example

> xmyTop -connections
.xmyTop_1 .xmyTop_2 .xmyTop_4
12–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3

 a

 a
f FCIF

each
12.2.2.3 -conversion

Syntax

xmyTop -conversion ?conversionMode?

xmyTop connect -conversion conversionMode

handle -conversion

Returns

When no value is specified it returns the current conversion mode, otherwise no result.

Description

The -conversion attribute tells the send/receive operation how to manipulate the
application message before sending/returning it to the SUT/script. -conversion is set
on a per connection basis and is set throught the xmyTop class command or by the
connect method.

The valid -conversion values are

• MSG_TCIS instructs the send/receive operation to automatically insert/remove
the two bytes (non-ASCII) prefixes at/from the beginning of each segment of
message sent to/received from the SUT.

• MSG_TCIS2 instruct the send/receive operation to automatically insert/remove
the two bytes (non-ASCII) prefixes at/from the beginning of each segment of
message sent to/received from the SUT, where the message is composed o
segments (Section 14).

• MSG_EWNL instructs the receive operation to append a newline character to
message received from the SUT. No conversion is done on the send operation.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is no
conversion. The -maxSegmentLen attribute is used when converting a TCIS or
TCIS2 message for sending.

-conversion can be set in the xmyConfig file using the ConversionMode parameter.

Example

> set TOP_conn [xmyTop connect -conversion MSG_TCIS ...]

Example

> $TOP_conn -conversion

Exceptions

• An invalid conversion mode is specified

• An attempt is made to change the conversion mode using the instance handle
 12–15

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2.4 -data

Syntax

handle -data

handle receive -data

Returns

The message associated with the most recent receive operation, or the empty string if
no messages has been received yet.

Description

The -data attribute is used to get the message associated with the last receive method.
If -data is used with the receive method, the received data will be returned. If the
receive method fails, an exception will occur and the previously received message will
remain unchanged.

Example

This checks if string “ORD=56700;” is in last received message.

> set msg [$TOP_conn -data]

> regexp {ORD=56700;} $msg
12–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3

r can
12.2.2.5 -dtn

Syntax

xmyTop -dtn ?dtnValue?

xmyTop connect -dtn dtnValue

handle -dtn ?dtnValue?

handle send -dtn dtnValue

Returns

When no value is specified it returns the current DTN value, otherwise no result.

Description

The -dtn attribute defines the TOPCOM Destination Transaction Name (DTN)
parameter in the TOP message sent to the SUT. The SUT’s TOPCOM manage
use this value to determine the routing of the message.

-dtn can be set in the xmyConfig file using the TopDefaultDTN parameter.

Example

> $TOP_conn send -file “msg1.fcif” -dtn “APP1”

Exceptions

The DTN attribute value is too long.
 12–17

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2.6 -file

Syntax

handle -file

handle receive -file

Returns

The filename containing the message associated with the most recent receive
operation, or the empty string if no messages has been received yet.

Description

The -file attribute retrieves the name of the file, stored in the Message Response
Directory, containing the most recent received message. The filename should be saved
in the Tcl script in order to access this data if additional messages will be received.
Since the Message Response Directory is purged on a regular basis, the contents of this
file should be copied to a user area if the message need to be saved on a long term.

If -file is used with the receive method, the received filename will be returned. If the
receive method fails, an exception will occur and the previously received filename
will remain unchanged.

Example

Read the file containing the last received message.

> set fd [open [$TOP_conn -file] r]
> set data [read $fd]
> close $fd
12–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3

ored

set.
t have

nt
n
 be
ting

r this
12.2.2.7 -listen

Syntax

xmyTop -listen ?listenMode?

xmyTop connect -listen listenMode

handle -listen ?listenMode?

handle receive -listen listenMode

Returns

When no value is specified it returns the current listen mode, otherwise no result.

Description

The -listen attribute returns or sets the listen mode, which determines what messages
will considered by the receive method.

When no listenMode value is specified, -listen returns the current listen mode.

Only messages that have arrived after the listen time stamp will be considered by the
receive operation. The valid -listen values are

• MSG_LISTEN_NOW will set the listen time stamp to the current time. Thus,
receive will return messages that have arrived after the time the receive operation
was executed. All messages arrived prior to the receive operation will be ign
(but not removed from the Message Response Directory).

• MSG_LISTEN_NEXT will instruct receive to return the next message that
arrived after the current received message. The listen time stamp will not be
This mode is very useful for retrieving messages in sequence or messages tha
arrived within the same second.

• MSG_LISTEN_SEND will set the listen time stamp to the time the most rece
send operation was successfully executed. From a client point of view, we ca
assume that a reply (received message) to a request (sent message) cannot
received before the request itself is sent. On the other hand, if you are emula
the server side, then the receive must be performed first, so the
MSG_LISTEN_NOW value should be used.

• An integer time value in UNIX format (i.e. seconds from 1/1/1970). The listen
time stamp will be set to this given time, and messages that have arrived afte
time will be considered.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is
MSG_LISTEN_NOW.

-listen can be set in the xmyConfig file using the ListenMode parameter.
 12–19

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999

es
Example

Send a request and wait up to 30 seconds for the reply.

> $TOP_conn send -data $request_1

> set reply_1 [$TOP_conn receive -timeout 30 -listen \
MSG_LISTEN_SEND -data]

Send the second request.

> $TOP_conn send -data $request_2

> set reply_2 [$TOP_conn receive -timeout 30 -listen \
 MSG_LISTEN_SEND -data]

Example

In this example, three sends are done before performing any receives, so that a certain
degree of parallelism is achieved between the client and server. The
MSG_LISTEN_SEND wouldn’t work properly because the first and second repli
will be lost if they arrive before the third send operation is performed. The
MSG_LISTEN_NOW will also not work if the replies arrive before the receive
operation is executed.

Send three different requests expecting three replies.

> $TOP_conn send -data $request_1
> set saveTime [$TOP_conn -sendTime] # save 1st send time
> $TOP_conn send -data $request_2
> $TOP_conn send -data $request_3

Get the replies.

> set reply_1 [$TOP_conn receive -data -listen $saveTime]
> set reply_2 [$TOP_conn receive -data \

-listen MSG_LISTEN_NEXT]
> set reply_3 [$TOP_conn receive -data \

-listen MSG_LISTEN_NEXT]

Exceptions

Invalid listen mode was specified
12–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3

 the

cked
12.2.2.8 -match

Syntax

xmyTop -match ?matchTclProc?

xmyTop connect -match matchTclProc

handle -match

Returns

When no value is specified it returns the name of the Tcl procedure used by the receive
operation to match (filter) all incoming messages, otherwise no result.

Description

The -match attribute specifies a Tcl procedure name that will be invoked for each
incoming message processed by the receive method. Messages that do not satisfy the
Tcl match procedure will not be returned by the receive operation. By default a match
procedure is not defined and all messages can be returned by the receive method.

-match is set on a per connection basis and is set through the xmyTop class or by the
connect method.

The user defined Tcl match procedure must take the connection handle name as its
only argument and it returns a “1” when there is a match and “0” otherwise. Given
handle name, this match procedure can access the received data by using the -data
attribute. Since this user defined match procedure is invoked for each message
processed by the receive operation, it must be developed with performance
considerations.

The existence and validity of the user defined Tcl match procedure will not be che
until the receive operation is executed.

NOTE — Even though Tcl supports defining procedures
named “(”, “#”, and other punctuation and special
symbols, you should not define your Tcl match
procedures with these names. Instead, meaningful
procedure names should always be used.

-match can be set in the xmyConfig file using the MatchProcedure parameter.
 12–21

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

Receive only those messages containing “host=bluejays”.

> proc matchTclProc { $TOP_conn } {
return [regexp {host=bluejays} [$TOP_conn -data]]

}
set conn1 [xmyTop connect -match matchTclProc ...]

Exceptions

An attempt is made to change the match procedure using the instance handle
12–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.2.2.9 -maxMsgs

Syntax

xmyTop -maxMsgs ?number?

xmyTop connect -maxMsgs number

handle -maxMsgs ?number?

Returns

When no value is specified it returns the current message limit, otherwise no result.

Description

The -maxMsgs attribute specifies the maximum number of messages that can be
appended together by the xmyMsgMatchUntil procedure. This parameter limits the
number of messages appended before the until match conditions are satisfied.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is 10.

-maxMsgs can be set in the xmyConfig file using the MaxMsgs parameter.

Exceptions

An invalid maxMsgs value is specified

Example

> $TOP_conn -maxMsgs 25
 12–23

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2.10 -maxSegmentLen

Syntax

xmyTop -maxSegmentLen ?number?

xmyTop connect -maxSegmentLen number

handle -maxSegmentLen

Returns

When no value is specified it returns the value of the current maximum segment length
used during TCIS or TCIS2 conversion, otherwise no result.

Description

The -maxSegmentLen attribute defines the maximum value of the two byte prefix
that is inserted at the beginning of each message segment. The two byte prefix contains
the length of the segment it precedes, plus the length of the prefix (2 bytes). For
MSG_TCIS, the message to be sent is divided into segments that are no more than
maxSegmentLen - 2 bytes long. For MSG_TCIS2 conversion, each FCIF section is
considered a segment and will have a preceding two byte length prefix. FCIF sections
greater than maxSegmentLen bytes long will be segmented If this attribute is not set
by the Tcl script or configuration file, the default value is 65535 bytes.

The -maxSegmentLen attribute is set on a per connection basis and is set through the
xmyTop class or by the connect method. The value of -maxSegmentLen is only used
during the send operation when the conversion mode is set to MSG_TCIS or
MSG_TCIS2.

-maxSegmentLen can be set in the xmyConfig file using the MaxSegmentLen
parameter.

Example

> set conn1 [xmyTop connect -maxSegmentLen 65535 ...]

Exceptions

An attempt is made to change the maximum segment length value using the instance
handle.
12–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.2.2.11 -name

Syntax

xmyTop connect -name connectionName

handle -name

Returns

When no value is specified it returns the connection handle name set by the connect
operation.

Description

The -name attribute lets you choose the name of the connection rather than having a
name internally generated by the connect method.

The -name attribute is on a per connection basis and the value is set through the
connect method.

Example

Create a connection named “my_connection”.

> xmyTop connect -name my_connection ...

Exceptions

• A connection with the same name already exists

• An attempt is made to change the connection name using the instance handle
 12–25

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 value
12.2.2.12 -psn

Syntax

xmyTop -psn ?psnValue?

xmyTop connect -psn psnValue

handle -psn ?psnValue?

handle send -psn psnValue

Returns

When no value is specified it returns the current PSN value, otherwise no result.

Description

The -psn attribute sets the TOPCOM Presentation Services Name (PSN) parameter in
the message being sent to the SUT. The SUT’s TOPCOM manager can use this
to determine the routing of the message.

-psn can be set in the xmyConfig file using the TopDefaultPSN parameter.

Example

> $TOP_conn send -psn “APP2”

Exceptions

The -psn attribute value is too long.
12–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.2.2.13 -recvSession

Syntax

handle -recvSession

Returns

The TOPCOM receive session number for the connection associated with the handle.

Description

The -recvSession attribute returns the receive session number associated with the
handle’s connection. The TOPCOM receive session number is defined in the
configuration file for each protocol handler that connections can be made to.

-recvSession can be set in the xmyConfig file using the TopRecvSession parameter.

Example

> $TOP_conn -recvSession
 12–27

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999

urns

H

ough
ve
12.2.2.14 -recvStatus

Syntax

handle -recvStatus

Returns

The value “UP” if the TOPCOM receive session is in TSOPEN state, otherwise ret
“DOWN”.

Description

The -recvStatus attribute checks the state of the receive session between MYNA
and the SUT TOPCOM managers. “UP” is returned only if MYNAH’s TOPCOM
manager is able to receive message from the SUT’s TOPCOM manager. Even th
the receive status is “DOWN”, a receive may still be successful if the messages ha
already arrived and are stored in the Message Response Directory.

NOTE — Defining and establishing (opening) the TOP
sessions are performed outside of the MYNAH System
using TOPCOM commands.

Example

> $TOP_conn -recvStatus
12–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.2.2.15 -recvTime

Syntax

handle -recvTime

Returns

The time stamp in UNIX format (i.e., seconds since 1/1/1970) associated with the most
recent received message, or 0 if no messages have been received.

Description

The -recvTime attribute returns the time stamp for the received message. All
messages received from the SUT are stamped with the time the message was received
by the MYNAH collector process.

Example

> $TOP_conn receive
> set rtime [$TOP_conn -recvTime]
 12–29

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2.16 -sendSession

Syntax

handle -sendSession

Returns

The TOPCOM send session number for the connection associated with the handle.

Description

The -sendSession attribute returns the send session number associated with the
handle’s connection. The TOPCOM send session number is defined in the
configuration file for each protocol handler that connections can be made to.

-sendSession can be set in the xmyConfig file using the TopSendSession parameter.

Example

> $TOP_conn -sendSession
12–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3

urns

and
 is
12.2.2.17 -sendStatus

Syntax

handle -sendStatus

Returns

The value “UP” if the TOPCOM send session is in TSOPEN state, otherwise ret
“DOWN”.

Description

The -sendStatus attribute returns the state of the send session between MYNAH
SUT TOPCOM managers. “UP” is returned only if MYNAH’s TOPCOM manager
able to send message to the SUT’s TOPCOM manager. If the send status is not “UP”,
the send operation will fail.

NOTE — Defining and establishing (opening) the TOP
sessions are performed outside of the MYNAH System
using TOPCOM commands.

Example

> $TOP_conn -sendStatus
 12–31

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2.18 -sendTime

Syntax

handle -sendTime

Returns

The time stamp in UNIX format (i.e. seconds since 1/1/1970) associated to the most
recent sent message, or 0 if no messages have been sent.

Description

The -sendTime attribute returns the time the last message was successfully sent over
the connection.

Example

> $TOP_conn1 -sendTime
12–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.2.2.19 -timeout

Syntax

xmyTop -timeout ?timeoutValue?

xmyTop connect -timeout timeoutValue

handle -timeout ?timeoutValue?

handle send -timeout timeoutValue

handle receive -timeout timeoutValue

Returns

When no value is specified it returns the current timeout value, otherwise no result.

Description

The -timeout attribute sets the timeout for the send and receive operations. For the
send operation, the timeout is the number of seconds to wait for acknowledgment of
the sent message. If the timeout expires, the send operation will fail. For the receive
operation, the timeout is the number of seconds to wait for a message to arrive. If the
timeout expires, the receive operation will fail.

If a timeout value was not specified at connect time, the value in the configuration file
for the particular protocol handler will be used. The timeout value can be changed for
the connection instance, or changed for each individual send or receive operation.

-timeout can be set in the xmyConfig file using the Timeout parameter.

Example

Create a connection setting the timeout to five minutes.

> set TOP_conn [xmyTop connect -timeout 300]

The following receive waits at most five minutes

> $TOP_conn receive

The following receive waits at most ten minutes

> $TOP_conn -timeout 600
> $TOP_conn receive

The following receive waits at most one minute

> $TOP_conn receive -timeout 60

The following receive waits at most ten minutes

> $TOP_conn receive
 12–33

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.2.2.20 -topcom

Syntax

xmyTop connect -topcom topcomHandlerName

handle -topcom

Returns

When no value is specified it returns the name of the TOPCOM handler, defined in the
configuration file, the connection has been established to, otherwise no result.

Description

The -topcom attribute tells what TOPCOM handler to connect to among those defined
in the MYNAH configuration file. The -topcom attribute is on a per connection basis
and is set through the connect method.

This is a required connect attribute and no default is provided.

Example

Connect to the TOPCOM handler “handler_1”.

> set handler [xmyTop connect -topcom “handler_1” ...]

Exceptions

The TOPCOM handler doesn’t exist (see the connect method)
12–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TOP Tcl Language Extension
Revision 1, February 1999 Release 5.3
12.3 Examples

The following subsections contain example of using the TOP Tcl extensions.

12.3.1 Example 1

set dir_to_snd_from “/u/mynah/systp/TESTS/fnc/addam4/AOSt08”

set my_f_to_send “sacr”

xmyLoadPkg TOP

xmyTop connect -topcom sndsoac6 -name s6

puts "sendSession = [s6 -sendSession]"

puts "sendStatus = [s6 -sendStatus]"

puts "recvSession = [s6 -recvSession]"

puts "recvStatus = [s6 -recvStatus]"

s6 send -file "$dir_to_snd_from/$my_f_to_send"

set resp [s6 receive -listen MSG_LISTEN_SEND \
-data -timeout 10]

puts "response=$resp"

s6 disconnect
 12–35

MYNAH System Scripting Guide BR 007-252-004
TOP Tcl Language Extension Issue 4, December 1998
Release 5.3 Revision 1, February 1999
12.3.2 Example 2

Define the FCIF request message to be sent

set soacReq1 “*sect{a=1;b=2;aggr{a=3;b=4;}}%”

Define a Tcl procedure to match the response message
associated with the request message. Assume that the
response message contains the FCIF tag “ORD” whose value
starts with the digit 3 or 4 followed by at least one digit

proc procMatchResp1 { $TOP_conn } {

 return [regexp {ORD=(3|4)[0-9]+} [$TOP_conn -data]]

}

Connect to the SOAC application named “Soac1” setting the
timeout to 5 minutes and conversion mode to TCIS

set soacConn [xmyTop connect -topcom Soac1 \
-timeout 300 -conversion MSG_TCIS]

Send the request message

$soacConn send -data $soacReq1

Wait for the response message that will satisfy the desired
match procedure

if {[xmyMsgMatch -1 $soacConn procMatchResp1] == 0} {
< we have timed out and did not receive a msg>

xmyExit

}

The response message has arrived and is ready to be analyzed

set SoacResp1 [$soacConn -data]

<analyze the received message>

Close the connection and remove the handler

$soacConn disconnect
12–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3

d the

y.
13. PRT3270 Tcl Language Extensions

13.1 Overview

The MYNAH PRT3270 extension package provides functionality necessary for receiving
printer messages (print jobs). The PRT3270 extension package must interface with some
type of printer emulation software running in the UNIX environment. For example, there
exists IBM 3270 emulation software that emulates an IBM 3287 printer in the UNIX
environment. When the emulation software receives an IBM print job, it pipes the print job
to a special process that is part of the MYNAH PRT3270 extension package, as shown in.
Figure 13-1.

Users concerned with testing applications that send messages destined for printers may use
the MYHAH PRT3270 Tcl extension package and Tcl language to develop test scripts. The
Tcl test scripts can be written to mimic users looking for and verifying the contents of their
print jobs.

NOTE — To access the PRT3270 Extension Package you
must first run xmyLoadPkg PRT3270.

The PRT3270 extension package provides functionality to:

• Make one or more logical connections to the printer emulator

• Wait for and receive print jobs from the SUT, saving them as files in an area calle
Message Response Directory

• Disconnect from the printer emulator

• Filter unwanted print jobs using user defined match procedures

• Analyze the contents of the print job

• Open and scan all received print jobs saved in the Message Response Director

Figure 13-1. MYNAH PRT3270 Interactions

MYNAH PRT3270
Extension Package

IBM 3270
Emulator
(UNIX)

IBM
Mainframe
(MVS)

Print Job Print Job
 13–1

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

y
n

found.
Before using the PRT3270 extension package, the printer emulation software (daemon
process) must be configured and running. The IBM 3270 emulation products tested with
MYNAH are:

• Sun Microsystems, SunLink SNA 3270 release 8.0

• Sun Microsystems, SunLink BSC 3270 release 8.0

• IO Concepts, 3287 Printer Client release 8.4.

The Prt3270 Extension Package contains a process called a Collector, which stores all
incoming messages into a special area (the Message Response Directory) on disk. The
Collector is the only process that receives messages from PrintCom (3270 Printer
Emulator) or any other protocol handler, which is the logical name of of a PrintCom entr
defined in the xmyConfig file. All SEs performing a receive operation access the disk i
order to get the message they are interested in.

The following is a list and description of the commands in the MYNAH PRT3270
Extension Package.

13.1.1 Methods Overview

Section 13.2.1 contains detailed descriptions of the PRT3270 Method extensions. The
extensions are listed in alphabetical order (within each category). Table 13-1 lists the
extensions, organizing them in general functional categories. Table 13-1 also gives a brief
description of each extension and the section where the detailed description can be

Table 13-1. PRT3270 Method Extensions

Category Method Description Section

Connection connect Establishes a logical connection to the
MYNAH Collector and 3270 Printer
Emulator processes from the MYNAH
Tcl script.

13.2.1.1,
Page 13–5

disconnect Destroys a connection made through
the connect method.

13.2.1.2,
Page 13–7

Data
Entry/Retrieval

receive Returns a message from the SUT using
the 3270 Printer Emulator connection
established using the connect method.

13.2.1.3,
Page 13–8
13–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.1.2 Attributes Overview

Section 13.2.2 contains detailed descriptions of the PRT3270 Attribute extensions. The
extensions are listed in alphabetical order (within each category). Table 13-2 lists the
extensions, organizing them in general functional categories. Table 13-2 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 13-2. PRT3270 Attribute Extensions (Sheet 1 of 2)

Category Attribute Description Section

Connection -connections\ Lists the names of all active
connections.

13.2.2.2,
Page 13–12

-name Lets you choose the name of the
connection.

13.2.2.9,
Page 13–20

-printcom Specifies what PrintCom handler
to connect to.

13.2.2.10,
Page 13–21

Data
Entry/Retrieval

-append Instructs the receive operation to
append a specified number of
successfully received messages.

13.2.2.1,
Page 13–10

-conversion Tells the receive operation how
to manipulate an application
message.

13.2.2.3,
Page 13–13

-data Gets the message associated with
the last receive method.

13.2.2.4,
Page 13–14

-file Gets the name of the file
containing the message
associated with the last receive
method.

13.2.2.5,
Page 13–15

-maxMsgs Specifies the maximum number
of messages that can be appended
together by the
xmyMsgMatchUntil procedure.

13.2.2.8,
Page 13–19

Comparisons -listen Returns or sets the listen mode
used when receiving messages.

13.2.2.6,
Page 13–16

-match Specifies a Tcl procedure name
that will be invoked for each
incoming message processed by
the receive method.

13.2.2.7,
Page 13–17

Waiting -timeout Sets the timeout for the receive
operation.

13.2.2.14,
Page 13–24
 13–3

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Attributes -recvSession Returns the receive session
number.

This is always 0.

13.2.2.11,
Page 13–22

-recvStatus Checks the state of the receive
session.

This is always up.

13.2.2.12,
Page 13–22

-recvTime Returns the time stamp for the
last received message.

13.2.2.13,
Page 13–23

Table 13-2. PRT3270 Attribute Extensions (Sheet 2 of 2)

Category Attribute Description Section
13–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.2 xmyPrt3270 class

The methods for the xmyPrt3270 class provides emulation of a 3270 printer so that you
can capture messages that a SUT sends to a printer.

13.2.1 Methods

The PRT3270 package contains the following methods.

13.2.1.1 connect

Syntax

xmyPrt3270 connect -printcom name ?attribute list?

Returns

A handle name to the created xmyPrt3270 class instance.

Description

The connect method establishes a logical connection to the MYNAH Collector and
3270 Printer Emulator processes from the MYNAH Tcl script. Upon success, a handle
to a connection is returned to the script. The attribute list provides the xmyPrt3270
instance with initial values that will impact the configuration of this connection only.

Attribute values that are not supplied with connect will obtain their values from the
xmyPrt3270 class. If the value is undefined in the xmyPrt3270 class, or defined as
the empty string, the configuration file value will be used. All attribute values of the
xmyPrt3270 class are configurable and can be changed by the user at connect time.

NOTE — The name input to the -printcom attribute
match with a PRT3270 protocol handler name defined in
the xmyConfig file. (See the MYNAH System
Administration Guide, for information on the xmyConfig
file.)

Attributes

The -printcom attribute is required with connect .

On a per connection basis the following attributes can only be set in the xmyPrt3270
class or by connect : -conversion, -match, -name, -printcom. In other words, the
values of these attributes can not be changed using an instance handle (handle).

This is the complete list of connection class attributes that can be specified:
-conversion, -listen, -match, -maxMsgs, -name, -timeout, and -printcom.
 13–5

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

This connects to the printer handler named printer-13.

> set PRT_com [xmyPrt3270 connect -printcom “printer-13”]

Exceptions

• Unable to establish the connection because:

— xmyCollector process is not running or can not be contacted.

— PRT3270 handler name does not exist in configuration file.

— PRT3270 handler name is not known to the xmyCollector process.

— PRT3270 handler name is not defined to use the PRT3270 protocol.

— Timeout waiting for the connection back from the xmyCollector process.

• Invalid or missing attribute values.
13–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.2.1.2 disconnect

Syntax

handle disconnect

Returns

No result

Description

The disconnect method destroys the logical connection to the 3270 Printer Emulator
made with the connect method and identified by handle. Once the disconnect call has
been made, the handle name associated with the connection is no longer valid and will
produce a Tcl “Invalid command name” error message if used.

Example

> $PRT_conn disconnect
 13–7

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
13.2.1.3 receive

Syntax

handle receive ?attribute list?

Returns

The received message (print job) if the -data attribute is specified, the filename
containing the received message (print job) if the -file attribute is specified, otherwise
no result.

Description

The receive method receives a message (print job) from the SUT using the 3270
printer emulator connection established with the connect method and identified by
handle.

All messages received from the 3270 printer emulator will be saved in the Message
Response Directory. Depending on the listen mode (see -listen, Section 13.2.2.6), the
receive operation will look for messages present in the Message Response Directory
and/or wait for a message to arrive.

If a Tcl match procedure is defined (see -match, Section 13.2.2.7), only messages that
satisfy the match procedure will be returned by the receive operation.

Attributes

This is the complete list of receive attributes that can be specified: -file, -timeout,
-listen, -append, -data. The values of these attributes will only impact the particular
receive operation.

Example

This is an example of receiving a message with a timeout of 300 seconds

> set message [$PRT_conn receive -data -timeout 300]

Exceptions

• Unable to receive a message because:

— timeout occurred while waiting for a message to arrive.

— invalid user defined Tcl match procedure.

• No messages has been received, but the -append attribute was specified

• No messages has been received, but the MSG_LISTEN_NEXT mode was specified
13–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
• Unable to save received message to disk

NOTE — The Message Response Directory must be
writable by the printer emulation processes. It is
recommended that the MYNAH Adminitrator own both
the Message Response Directory and the printer
emulation processes.

• Invalid or missing attribute values

• Both the -data and -file attributes were specified
 13–9

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
13.2.2 Attributes

The PRT3270 package contains the following attributes.

13.2.2.1 -append

Syntax

handle receive -append number

Returns

No result

Description

The -append attribute instructs the receive operation to append the next number of
successfully received messages to the current received message before returning. The
entire message (print job) will be accessible as the last received message.

-append is set on a per receive basis and can only be specified with the receive
method.

Example

This sets the first piece of a message sent in multiple pieces.

> $PRT_conn receive

This assumes the first piece contains number of subsequent pieces.

> regexp {(FRAGNUM=)([0-9]+)} [$PRT_conn -data] a b num

Receive and append the next pieces together with first piece,

> $PRT_conn receive -append $num -listen MSG_LISTEN_NEXT

This is the entire message made of 1 + $num pieces

> set myMsg [$PRT_conn -data]

Example

This gets the first piece of a message sent in multiple pieces. Assume that the last piece
contains the keyword LAST.

> $PRT_conn receive

This receives and appends the next pieces until the message contains the LAST
keyword.

> while {[regexp {LAST} [$PRT_conn -data]] == 0} {
 $PRT_conn receive -append 1 -listen MSG_LISTEN_NEXT
}
13–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
This is the entire message

> set myMsg [$PRT_conn -data]

Exceptions

Invalid -append attribute value.
 13–11

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
13.2.2.2 -connections\

Syntax

xmyPrt3270 -connections

Returns

A blank separated list of active connection handle names (e.g., .xmyPrt3270_1
.xmyPrt3270_2, or .xmyPrt3270_4), or the empty string if there are no active
connections.

Description

The -connections attribute lists the names (handle) of all active connections to a 3270
printer emulator. -connections can only be used through the xmyPrt3270 class
command.

Example

Example

> xmyPrt3270 -connections

> xmyPrt3270 -connections

.xmyPrt3270_1 .xmyPrt3270_2 .xmyPrt3270_4
13–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.2.2.3 -conversion

Syntax

xmyPrt3270 -conversion ?conversionMode?

xmyPrt3270 connect -conversion conversionMode

handle -conversion

Returns

When no value is specified it returns the current conversion mode, otherwise no result.

Description

The -conversion attribute tells the receive operation how to manipulate the application
message before returning it to the script. The only mode available for the xmyPrt3270
class is MSG_EWNL, which instructs the receive operation to append a newline
character to each message (print job) received from the SUT.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is no
conversion.

The -conversion attribute is set on a per connection basis and is set through the
xmyPrt3270 class or by the connect method.

-conversion can be set in the xmyConfig file using the ConversionMode parameter.

Examples

> set PRT_conn [xmyPrt3270 connect -conversion MSG_EWNL...]

> $PRT_conn -conversion

Exceptions

• An invalid conversion mode is specified

• An attempt is made to change the conversion mode using the instance handle
 13–13

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
13.2.2.4 -data

Syntax

handle -data

handle receive -data

Returns

The message (print job) associated with the most recent receive operation or the empty
string if no messages have been received.

Description

The -data attribute returns the message associated with the most recent receive
operation. If -data is used with the receive method, the received data will be returned.
If receive fails, an exception occurs and the previously received message remains
unchanged.

Example

This checks if the string “ORD=56700;” is in last received message,

> set msg [$PRT_conn -data]

> regexp {ORD=56700;} $msg
13–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.2.2.5 -file

Syntax

handle -file

handle receive -file

Returns

The filename containing the message (print job) associated with the most recent
receive operation or the empty string if no messages has been received yet.

Description

The -file attribute returns the name of the file, stored in the Message Response
Directory, containing the most recent received message. The filename should be saved
in the Tcl script in order to access this data if additional messages will be received.
Since the Message Response Directory is purged on a regular basis, the contents of this
file should be copied to a user area if the message need to be saved on a long term.

If -file is used with the receive method, the received filename will be returned. If
receive fails, an exception will occur and the previously received filename will remain
unchanged.

Example

In this example you read the file containing the last received message.

> set fd [open [$PRT_conn -file] r]

> set data [read $fd]

> close $fd
 13–15

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ation

set.
t have

r this
13.2.2.6 -listen

Syntax

xmyPrt3270 -listen ?listenMode?

xmyPrt3270 connect -listen listenMode

handle -listen ?listenMode?

handle receive -listen listenMode

Returns

When no value is specified it returns the current listen mode, otherwise no result.

Description

The -listen attribute returns or sets the listen mode, which determines what messages
(print jobs) will be considered by the receive method.

When no listenMode value is specified, -listen returns the current listen mode.

Only messages that have arrived after the listen time stamp are considered by the
receive operation. The valid -listen values are

• MSG_LISTEN_NOW will set the listen time stamp to the current time. Thus,
receive will return messages that have arrived after, the time the receive oper
was executed. All messages arrived prior to the receive operation will be ignored
(but not removed from the Message Response Directory).

• MSG_LISTEN_NEXT will instruct receive to return the next message that
arrived after the current received message. The listen time stamp will not be
This mode is very useful for retrieving messages in sequence or messages tha
arrived within the same second.

• An integer time value in UNIX format (i.e. seconds from 1/1/1970). The listen
time stamp will be set to this given time, and messages that have arrived afte
time will be considered.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is
MSG_LISTEN_NOW.

-listen can be set in the xmyConfig file using the ListenMode parameter.

Example

> set job_1 [$PRT_conn receive -data -listen MSG_LISTEN_NOW]

Exceptions

Invalid listen mode was specified
13–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3

iven
13.2.2.7 -match

Syntax

xmyPrt3270 -match ?matchTclProc?

xmyPrt3270 connect -match matchTclProc

handle -match

Returns

When no value is specified it returns the name of the Tcl procedure used by the receive
operation to match (filter) all incoming messages, otherwise no result.

Description

The -match attribute specifies a Tcl procedure name that will be invoked for each
incoming message processed by the receive method. Messages that do not satisfy the
match procedure will not be returned by receive. By default a match procedure is not
defined and all messages can be returned by receive.

The -match attribute is set on a per connection basis and is set through the
xmyPrt3270 class or by the connect method.

The user defined Tcl match procedure must take the connection handle name as its
only argument and it must return a “1” when there is a match and “0” otherwise. G
the handle, this match procedure can access the received data by using the -data
attribute. Since this user defined match procedure is invoked for each message
processed by receive, it must be developed with performance considerations.

The existence and validity of the user defined Tcl match procedure will not be
checked until the receive operation is executed.

NOTE — Even though Tcl supports defining procedures
named “(”, “#”, and other punctuation and special
symbols, you should not define your Tcl match
procedures with these names. Instead, meaningful
procedure names should always be used.

-match can be set in the xmyConfig file using the MatchProcedure parameter.

Example

In this example you receive only those messages containing “host=bluejays”.

> proc matchTclProc { $PRT_conn } {
 return [regexp {host=bluejays} [$PRT_conn -data]]
}
> set conn1 [xmyPrt3270 connect -match matchTclProc ...]
 13–17

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Exceptions

An attempt is made to change the match procedure using the instance handle
13–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.2.2.8 -maxMsgs

Syntax

xmyPrt3270 -maxMsgs ?number?

xmyPrt3270 connect -maxMsgs number

handle -maxMsgs ?number?

Returns

When no value is specified it returns the current message limit, otherwise no result.

Description

The -maxMsgs attribute specifies the maximum number of messages that can be
appended together inside the xmyMsgMatchUntil procedure. This parameter will
limit the number of messages appended before the until match conditions are satisfied.
The default value is 10.

-maxMsgs can be set in the xmyConfig file using the MaxMsgs parameter.

Exceptions

An invalid MaxMsgs value is specified

Example

> $PRT_conn -maxMsgs 25
 13–19

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
13.2.2.9 -name

Syntax

xmyPrt3270 connect -name connectionName

handle -name

Returns

When no value is specified it returns the connection handle name set at connect time.

Description

The -name attribute lets you to choose the name of the connection rather than having
a name internally generated by connect .

The -name attribute is set on a per connection basis and the value is set through the
connect class.

Example

This is an example of creating a connection named printer1.

> xmyPrt3270 connect -name printer1...

Exceptions

• A connection with the same name already exists

• An attempt is made to change the connection name using the instance handle
13–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.2.2.10 -printcom

Syntax

xmyPrt3270 connect -printcom printcomHandlerName

handle -printcom

Returns

When no value is specified it returns the name of the 3270 printer emulation handler
the connection has been established to, otherwise no result.

Description

The -printcom attribute tells what PRT3270 handler to connect to among those
defined in the MYNAH configuration file. This is a required connect attribute and no
default is provided.

The -printcom attribute is set on a per connection basis and is set through the connect
method.

Example

This is an example of connecting to the print handler handler_1.

> set handler [xmyPrt3270 connect -printcom “handler_1” ...]

Exceptions

The print handler doesn’t exist (see the connect method)
 13–21

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

kage.

13.2.2.11 -recvSession

Syntax

handle -recvSession

Returns

Always returns the value “0”.

Description

Unlike TOPCOM, session numbers are not used in the PRT3270 Extension Pac
The -recvSession attribute was added to the xmyPrt3270 class for consistency with
the xmyTop class.

Example

> $PRT_conn -recvSession

13.2.2.12 -recvStatus

Syntax

handle -recvStatus

Returns

Always returns the value “UP”.

Description

If the MYNAH collector process is running, it will always be ready to receive
messages from the printer emulation processes. Unlike TOPCOM, there are no
sessions that can change status. The -recvStatus attribute was added to the
xmyPrt3270 class for consistency with the xmyTop class.

Example

> $PRT_conn -recvStatus
13–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.2.2.13 -recvTime

Syntax

handle -recvTime

Returns

The time stamp in UNIX format (i.e. seconds since 1/1/1970) associated with the most
recent received message, or 0 if no messages (print jobs) have been received.

Description

The -recvTime attribute returns the time stamp for the received message. All
messages (print jobs) received from the SUT are stamped with its arrival time by the
MYNAH xmyCollector process.

Example

> $PRT_conn receive

> set rtime [$PRT_conn -recvTime]
 13–23

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
13.2.2.14 -timeout

Syntax

xmyPrt3270 -timeout ?timeoutValue?

xmyPrt3270 connect -timeout timeoutValue

handle -timeout ?timeoutValue?

handle receive -timeout timeoutValue

Returns

When no value is specified it returns the current timeout value, otherwise no result.

Description

The -timeout attribute sets the timeout for the receive operation. For a receive, the
timeout is the number of seconds to wait for a message to arrive. If the timeout expires,
the receive operation fails.

If a timeout value was not specified at connect time, the value in the configuration file
for the particular protocol handler will be used. The timeout value can be changed for
the instance after the connection or changed for each individual receive operation.

-timeout can be set in the xmyConfig file using the Timeout parameter.

Example

Create a connection setting the receive timeout to five minutes.

> set handle [xmyPrt3270 connect -timeout 300 ...]

The following receive waits at most five minutes.

> $PRT_conn receive

The following receive waits at most ten minutes

> $PRT_conn -timeout 600

> $PRT_conn receive

The following receive waits at most one minute

> $PRT_conn receive -timeout 60

The following receive waits at most ten minutes

> $PRT_conn receive
13–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 PRT3270 Tcl Language Extensions
Revision 1, February 1999 Release 5.3
13.3 Example

Establish a connection for the printer named “printer_10”.

> set handle [xmyPrt3270 connect -printer “printer_10”]

Wait up to 10 minutes to receive a message.

> xmyMsgMatch 600 $PRT_conn procMatchMsg1

> set msg1 [$PRT_conn -data]

<analyze the message>

Close the connection and remove the handler.

> $PRT_conn disconnect
 13–25

MYNAH System Scripting Guide BR 007-252-004
PRT3270 Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
13–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 FCIF Tcl Language Extensions
Revision 1, February 1999 Release 5.3
14. FCIF Tcl Language Extensions

14.1 Overview

This chapter describes the class command and methods available in the MYNAH System
to process and analyze Flexible Computer Interface Format (FCIF) messages.

NOTE — To access the FCIF Extension Package you
must first run xmyLoadPkg TOP.

14.1.1 Methods Overview

Section 14.2.1 contains detailed descriptions of the FCIF Method extensions. The
extensions are listed in alphabetical order (within each category). Table 14-1 lists the
methods, organizing them in the general functional categories. Table 14-1 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 14-1. FCIF Method Extensions

Category Method Description Section

Connection create Establishes a handle to an xmyFcif
instance.

14.2.1.1,
Page 14–3

destroy Removes a handle to an xmyFcif
instance.

14.2.1.4,
Page 14–10

Comparisons compare Compares the value of each tag in the
master FCIF message to the
corresponding value in the current
FCIF message.

14.2.1.2,
Page 14–5

compareTags Compares FCIF tags pulled out of the
current message.

14.2.1.3,
Page 14–7

extraTags Makes sure the current FCIF has no
tags that are not present in the master
FCIF.

14.2.1.5,
Page 14–11

getTag Copies a substring of an FCIF value
from the current FCIF.

14.2.1.6,
Page 14–13

reorder Changes the order of like named
sections or aggregates of both the
current and master FCIF.

14.2.1.7,
Page 14–14
 14–1

MYNAH System Scripting Guide BR 007-252-004
FCIF Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ence
14.2 xmyFcif Class

xmyFcif is the Tcl class command providing methods for manipulating and validating data
that is in FCIF format. These methods support the following:

• Determining the differences between two FCIF strings. Output includes the pres
of extra tags or missing tags.

• Creating a TVO (Tag Value Object) from an FCIF.

• Providing reorder of FCIF capability.
14–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 FCIF Tcl Language Extensions
Revision 1, February 1999 Release 5.3

t

o

at
has
14.2.1 Methods

The FCIF package contains the following methods.

14.2.1.1 create

Syntax

xmyFcif create ?-file fileName? ?-fileMaster fileMasterName? \
?-data fcif? ?-dataMaster fcifMaster?
?-name handleName?

Returns

Handle to an xmyFcif instance.

Description

The create method creates a handle for processing FCIF messages. It takes either one
or two FCIF messages and returns a handle that is then used with a method to perform
the desired operation.

The FCIF messages can be provided by either specifying the filename containing the
message or giving the message itself as a string. Any combination of filename and
string arguments with the current and master messages is allowed.

At least one FCIF message is always required and is considered to be the current
message; this is the message to be processed or analyzed. A second message is
optional and is considered to be the master message. The master message acts as the
base of comparison against the current message for certain methods, so it’s no
required unless one of these operations is performed.

NOTE — The scope of xmyFcif’s handles is the script.
Thus, handles cannot be passed to other scripts.

create takes the following options:

-file fileName Specifies the file containing the “current” message t
be processed or analyzed.

Either this option or -data fcif is required.

-fileMaster fileMasterName Specifies the file containing the “master” message th
is to be compared against the current message that
been specified using either the -file or -data option.
 14–3

MYNAH System Scripting Guide BR 007-252-004
FCIF Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

t

ed
d
Example

In this example. the current message is in the file /tmp/MsgDir/file001, and the master
file is in /u/tom/file001.master.

> set connFCIF [xmyFcif create -file /tmp/MsgDir/file001 \
-fileMaster /u/tom/file001.master]

In this example. the current message, *sect{a=3;b=2;c=4;}%, has been assigned to a
variable. Instead of comparing this message against another string, it is compared
against a master string saved in the file /u/tom/file.master.

> set message “*sect{a=3;b=2;c=4;}%”

> set connFCIF [xmyFcif create -data $message \
-fileMaster /u/tom/file.master]

Exceptions

• file(s) not found

• invalid FCIF message(s)

-data fcif Specifies the “current” message to be processed or
analyzed. fcif can be an actual string or a variable se
to the string.

Either this option or -file fileName is required.

-name handleName Specifies name of the handle. If not specified, a
default name is generated.

-dataMaster fcifMaster Specifies the “master” message that is to be compar
against the current message that has been specifie
using either the -file or -data option. fcifMaster can be
an actual string or a variable set to the string.
14–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 FCIF Tcl Language Extensions
Revision 1, February 1999 Release 5.3

 file.

ted

nd
e

le,
ns,
the
14.2.1.2 compare

Syntax

handle compare ?-excludedTags tagList? ?-warning?

Returns

The list of tags whose comparison failed

Description

This compare method verifies an FCIF message by comparing the value of each tag
in the master FCIF message to the corresponding value in the current FCIF message.
If a tag does not exist or the value does not match, this is considered a failed compare.

compare takes the following options:

The tagList format is

{tag1 tag2 ... tagN}

where each tag has the following format

sectionName(occurence):aggregateName(occurence).tagName(occurence)

occurrence is the number of the section, aggregate, or tag occurrence. If omitted then
the appropriate occurrence value will default to 1. If sectionName is omitted but its
occurrence is specified then the occurrence-th unnamed section of the FCIF message
will be taken into consideration.

Side Effects

compare increments the goodcompare and failedcompare counters. The warning
counter will be incremented only if the -warning option was specified.

compare also produces “expected and actual data” in the script output compare

In the MYNAH version prior to 5.0 the functionality of this method was implemen
by the directive checktags. This directive was affected by the autoprt flag. When the
flag was ON checktags produced output into the log file for each failed compare a
incremented the Error Count variable for each failed compare or incremented th
Good Count variable if there was no failed compare.

-excludedTags tagList Exclude some tags from the comparison. tagList is a list of
tags that will not be searched and compared. For examp
if the tester knows of a tag that varies between executio
such as a date, the tester can provide the tag name to
compare method using the -excludedTags options. The
tagList format is defined below.

-warning Increment xmyVar(WarningCompares).
 14–5

MYNAH System Scripting Guide BR 007-252-004
FCIF Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

In this example we compare the current FCIF message against the master FCIF
message. This example excludes from the comparison all tags containing a date
value.We know that there are as many date tags as request aggregate plus a date tag
for the FCIF message itself. These tags are in the first section only.

> set tagList [$connFCIF compare {sect:date \
sect:request(*).date}]

Exceptions

The master FCIF message was not specified at handle creation time.
14–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 FCIF Tcl Language Extensions
Revision 1, February 1999 Release 5.3
14.2.1.3 compareTags

Syntax

handle compareTags -tag tagName -value value ?-offset int? \
?-length int? ?-operator operatorName?

Returns

A list of one or more element. The first element is the number of tags specified by the
-tag option. Following elements, if any, are the name of the tags that failed the
comparison.

Description

The compareTags method compares FCIF tags pulled out of the current message with
the values provided by the user and returns the results of the comparison.

compareTags takes the following options:

-tag tagName Specifies the FCIF tags to be checked. More than one tag
can be checked by compareTags if more than one tag in
the message satisfies the criteria given in the tagName
argument. The tagName format is defined below.

-value value Specifies the value provided to be compared with the
FCIF tags.

-offset int Defines the offset into the FCIF value. Used with -length
to define the substring of the FCIF value. An offset of 0
is the beginning of the value. The default value is 0.

-length int Defines the length of the FCIF value to be compared.
Used with -offset to define the substring of the FCIF
value. A length of 0 is the entire value. The default value
is 0.
 14–7

MYNAH System Scripting Guide BR 007-252-004
FCIF Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

sed
ation

d

nd
e
The tagName format is

sectionName(occurence):aggregateName(occurence).tagName(occurence)

occurrence is the number of the section, aggregate, or tag occurrence. If omitted then
the appropriate occurrence value will default to 1. The occurrence can also be the
character star (*). In such a case all existing occurrence will be taken into
consideration. sectionName and its occurrence are optional and if omitted then all
sections will be taken into consideration. If sectionName is omitted but its occurrence
is specified then the occurrence-th unnamed section of the FCIF message will be taken
into consideration.

Each of the compareTags’ arguments can be a list of more than one value. This is u
to perform more than one comparison with the same command. One of this applic
is the directive fcifmatch of the LMA language in the version of MYNAH prior to 5.0
(see the example).

Side Effects

• compareTags also produces “expected and actual data” in the script output
compare file.

• Increments xmyVar(GoodCompares) and xmyVar(FailedCompares.

Example

> $connFCIF compareTags -tag sect:session.host -value bluejays

-operator operatorName Specifies the name of the relational operator to be use
to compare the FCIF tag with the -value option. The
following operator are defined:

• EQ (equal to)

• NE (not equal to)

• LT (less than)

• LE (less than or equal to)

• GT (greater than)

• GE (greater than or equal to)

• IN (substring of)

• NI (not substring of)

where the left operand is assumed to be the FCIF tag a
the right operand is the value provided by the user. Th
default relational operator is EQ.
14–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 FCIF Tcl Language Extensions
Revision 1, February 1999 Release 5.3
> $connFCIF compareTags -tag sect:session.host -length 8 \
-value bluejays

> $connFCIF compareTags -tag size -operator LT -value 512

This is an example of an implementation of the fcifmatch directive.

> $connFCIF compareTags -tag {C1 C1 C1 C1} \
-offset {1 7 8 19} \
-length {3 1 6 1} \
-value {PRE N 123R34 A}

This is an example of an implementation of the soprespc directive.

> $connFCIF compareTags -tag (*):SN -value $responseCode
 14–9

MYNAH System Scripting Guide BR 007-252-004
FCIF Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
14.2.1.4 destroy

Syntax

handle destroy

Returns

No result.

Description

The destroy method destroys a handle created by the xmyFcif create class method.

Example

> $connFCIF destroy
14–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 FCIF Tcl Language Extensions
Revision 1, February 1999 Release 5.3
14.2.1.5 extraTags

Syntax

handle extraTags ?-excludedTags tagList? ?-warning?

Returns

The list of extra tags found in the current FCIF message.

Description

The extratags method verifies an FCIF message by making sure the current FCIF has
no tags that are not present in the master FCIF.

extratags takes the following options:

The tagList format is

{tag1 tag2 ... tagN}

where each tag has the following format

sectionName(occurence):aggregateName(occurence).tagName(occurence)

occurrence is the number of the section, aggregate, or tag occurrence. If omitted then
the appropriate occurrence value will default to 1. The occurrence can also be the
character star (*). In such a case all existing occurrence will be taken into
consideration. sectionName and its occurrence are optional and if omitted then all
sections will be taken into consideration. If sectionName is omitted but its occurrence
is specified then the occurrence-th unnamed section of the FCIF message will be taken
into consideration.

Side Effects

extratags increments xmyVar(GoodCompares) and xmyVar(FailedCompares).
The warning counter will be incremented only if the option -warning was specified.

Example

> set tagList [$connFCIF extratags {sect:agg(*).date \
sect:fragment}]

-excludedTags tagList Exclude some tags from analysis. tagList is a list of tags
that will not be searched and compared. For example, if
the tester knows of a tag that may appear but is not in the
master FCIF, the tester can provide the tag name to the
compare method using the -excludedTags options. The
tagList format is defined below.

-warning Increment xmyVar(WarningCompares).
 14–11

MYNAH System Scripting Guide BR 007-252-004
FCIF Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Exceptions

The master FCIF message was not specified at handle creation time.
14–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 FCIF Tcl Language Extensions
Revision 1, February 1999 Release 5.3
14.2.1.6 getTag

Syntax

handle getTag -tag tagName ?-offset int? ?-length int?

Returns

The specified substring of the FCIF tag.

Description

The getTag method copies a substring of an FCIF value from the current FCIF and
returns it as the return value of the method. A substring of the FCIF can be specified
with the last two parameters.

getTag takes the following options:

The tagName has the following format:

sectionName(occurence):aggregateName(occurence).tagName(occurence)

occurrence is the number of the section, aggregate, or tag occurrence. If omitted then
the appropriate occurrence value will default to 1. If sectionName is omitted but its
occurrence is specified then the occurrence-th unnamed section of the FCIF message
will be taken into consideration.

Example

This example gets the host tag in the session aggregate in the section sect.

> $connFCIF getTag -tag sect:session.host -length 8

This example gets the C1 tag in the first unnamed section

> $connFCIF getTag -tag (1):C1

-tag tagName Specifies the substring with the name tagName. The tagName
format is defined below.

-offset int Define the offset of a substring into the FCIF value. The default is
0.

-length int Specifies the length of a substring. The default is 0.
 14–13

MYNAH System Scripting Guide BR 007-252-004
FCIF Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
14.2.1.7 reorder

Syntax

handle reorder -aggregate aggregateName ?-key tagList?

Returns

No return.

Description

The reorder method changes the order of like named sections or aggregates of both
the current and master FCIF, using values of tags inside the aggregate to determine the
new ordering. This is useful when you have an application that sends like named
aggregates in a random order. By using this directive, the tester can put the aggregate
into a predictable order which makes the FCIF methods return accurate results.

reorder method takes the following options:

The aggregateName format is the following:

sectionName(occurence):aggregateName(occurence)

where the occurrence is the number of the section or aggregate occurrence. If omitted
then it will be defaulted to 1. If the sectionName is omitted but its occurrence is
specified then the occurrence-th unnamed section of the FCIF message will be taken.

The tagList format is the following:

aggregateName(occurence):tag(occurence)

More than one key tag can be used if a single tag is not sufficient to uniquely identify
the ordering of the aggregate. This is needed when the value of the first key tag is the
same in multiple aggregates.

Example

> $connFCIF reorder -aggregate sect(2).agg \
-key {ordnum(1) ntu(1)}

-aggregate aggregateName Specifies the name of the section or aggregate that
needs to be reordered. The aggregateName format is
defined below.

-key tagList Specifies a list of one or more tag names to be used as
a key in reordering the aggregate. It can be any tag that
is inside the aggregate to be reordered. The tagList
format is defined below.
14–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3

s.

15. Message Response Directory Tcl Language Extensions

The Message Response Directory extensions provide a mechanism to easily scan all
messages that have arrived on a particular communications channel and have been saved to
disk.

NOTE — For more information on Application to
Application related extensions,

• See Section 11 for information on the General
App-to-App extension package

• See Section 12 for information on the TOP extension
package

• See Section 13 for information on the PRT3270
extension package

• See Section 14 for information on the Flexible
Computer Interface Format (FCIF) extension
package.

There are three categories of Message Response Directory Tcl Language Extension
Table15-1 lists these categories, including providing a description of each catergory.

NOTE — In incoming message, all null characters are
changed to blanks.

Table 15-1. Message Response Directory Tcl Language Extension Categories

Section Title Description Section
Number

xmyMsgDir class Provides a mechanism to easily scan all messages
that have arrived saved to disk.

15.1,
Page 15–2

Match Tcl
Extensions

Determine whether received messages match
specified criteria.

15.2,
Page 15–23

xmyMsgMarkFile Mark/unmark a message in the Message Response
Directory.

15.3,
Page 15–28
 15–1

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

d
15.1 xmyMsgDir class

The xmyMsgDir class provides a mechanism to easily scan all messages that have arrived
on a particular communications channel and have been saved to disk into an area named the
Message Response Directory. Since the space of the Message Response Directory is
limited, a Garbage Collector needs to be developed by the user to remove the oldest
messages when space is needed for new messages. Each message has an arrival time stamp
associated to it. This time stamp, along with the time stamp (time position) set by the
xmyMsgDir instance handle, is used to access the desired message. Users modify the time
position of the handle in order to navigate into the Message Response Directory.

Attributes modifying the time position always take precedence over other attributes or
commands specified on the same command line.

15.1.1 Methods

The Message Response Directory package contains the following methods.

15.1.1.1 close

Syntax

handleName close

Returns

No result

Description

The close method destroys the handle created through the xmyMsgDir open class
method. Once the close call has been made, the handle name can no longer be used to
scan the Message Response Directory, and will produce a Tcl “Invalid comman
name” error if used.

NOTE — The message directory will be deleted if it is
empty, i.e. if there are no more message.

Example

> $MSG_conn close
15–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.1.1.2 delete

Syntax

handle delete -file fileName

handle delete -all

Returns

No result

Description

The delete method deletes the specified message file within a given sub directory or
delete all the messages within a given sub directory. The sub directory is specified in
the open method.

delete takes the following attribute:

Example

$MSG_conn delete -filename 854028294.63.2

$MSG_conn delete -all

NOTE — If the sub directory is not specified while
opening the message directory and -all option is used for
deleting, all the messages for the given application will be
deleted. The -all option should be used with caution.

-file fileName Deletes the message specified by fileName, which can be obtained
by using the -file option on the receive method

-all Deletes all messages for a connection. The -all option is usually
used before disconnecting the connection.
 15–3

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

andler
15.1.1.3 open

Syntax

xmyMsgDir open -topcom “handlerName” ?attribute list?

xmyMsgDir open -printcom “handlerName” ?attribute list?

xmyMsgDir open -handler “handleName” ?attribute list?

Returns

A handle (handleName) to the created xmyMsgDir class instance.

Description

The open method loads into memory the name of the files in the Message Response
Directory received by the specified topcom or printcom protocol handler name. Each
protocol handler name has a separate Message Response subDirectory for storing its
received messages. Upon success, a handle is returned to the script.

The attributes that can be specified are -marked, -subDir, -maxMsgs, -printcom, and
-topcom.

Remarks

Messages of all mark types (see -marked, Section 15.1.2.6) are loaded. Messages are
loaded in order from newest to oldest.

Either the -topcom or -printcom or -handler attribute is required with the open
method. The attribute value (handler name) is the same value used in the xmyTop
connect and xmyPrt3270 connect methods and must match with a protocol handler
entry in the configuration file.

On a per handle basis the following optional attribute can only be set through this
initial open call: -maxMsgs.

The attributes thatcan be specified are -marked, -maxMsgs, -printcom, and
-topcom.

Example

This creates a handle to scan messages received by the TOPCPM handler named
handler_1.

> set MSG_conn [xmyMsgDir open -topcom handler_1]

Exceptions

• Unable to access the Message Response Directory

• Unable to open and load files from the Message Response Directory because h
name does not exist in the configuration file.
15–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3

he

he

15.1.2 Attributes

The Message Response Directory package contains the following attributes.

15.1.2.1 -data

Syntax

handleName -data

Returns

The data associated with the message at the handle’s current time position, or t
empty string if the current position has not been set.

Description

The -data attribute is used to return the message at the current time position in t
Message Response Directory. The -first, -last, and -position attributes can be used to
initially set the handle’s time position.

Example

This retrieves the first (newest) message in the Message Response Directory.

> $MSG_conn -first

> set message [$MSG_conn -data]
 15–5

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e

e
15.1.2.2 -file

Syntax

handleName -file

Returns

The file name containing the message at the handle’s current time position or th
empty string if the current position has not been set.

Description

The -file attribute returns the file name containing the message at the current tim
position in the Message Response Directory. The -first, -last, and -position attributes
can be used to initially set the handle’s time position.

Example

This gets the current Message Response Directory file name.

> set fileName [$MSG_conn -file]
15–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3

sage

onse
15.1.2.3 -first

Syntax

handleName -first

Returns

No result

Description

The -first attribute sets the handle’s current time position to the first (newest) mes
in the Message Response Directory based on the -marked attribute value.

Example

This positions the handle to the newest received message in the Message Resp
Directory.

> $MSG_conn -first

Exceptions

A first message does not exist because the message table is empty.
 15–7

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
15.1.2.4 -handler

Syntax

xmyMsgDir open -handler generalPurposeHandlerName

Returns

No result.

Description

The -handler attribute is set on a per handle basis and is set only through the
xmyMsgDir open class method. Given the generalPurposeHandlerName, a search
is performed in the configuration file to determine the location (Message Response
Directory) of the received messages to load. Since the General App-to-App protocol
does not use session numbers, the default value is 0. The
generalPurposeHandlerName is the same value that is required for the xmyAppApp
connect class method

Example

create a handle to get messages from the printcom handler
named “printer_1”

> set MSG_conn [xmyMsgDir open -handler app_1]

Exceptions

The specified handler does not exist in the configuration file.
15–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3

d
15.1.2.5 -last

Syntax

handleName -last

Returns

No result

Description

The -last attribute sets the handle’s current time position to the last (oldest) loade
message in the Message Response Directory based on the -marked attribute value

Example

This gets the file name containing the oldest message received.

> $MSG_conn -last

> set fileName [$MSG_conn -file]

Exceptions

A last message does not exist because the message table is empty.
 15–9

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
15.1.2.6 -marked

Syntax

xmyMsgDir open -marked markType

handleName -marked ?markType?

Returns

When no value is specified it returns the current mark type, otherwise no result

Description

The -marked attribute tells the handle to take in consideration only messages that are
marked with the markType postfix. The valid values for markType are
MSG_CLAIMED, MSG_TCIS, MSG_TCIS2, and MSG_EWNL. If this attribute is
not specified, then all messages will be considered.

NOTE — The open operation will always load messages
of all/any mark types.

Example

This positions the handle to the first TCIS2 converted messages.

> $MSG_conn -marked MSG_TCIS2 -first

Exceptions

Invalid attribute value.
15–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.1.2.7 -maxMsgs

Syntax

xmyMsgDir open -maxMsgs number

Returns

No result.

Description

The -maxMsgs attribute is used to control the number of messages (file names) in the
Message Response Directory which are loaded into memory when the handle is
created. The messages are loaded starting with the newest messages. If this attribute is
not specified or if the value of 0 is specified, all messages in the directory will be
loaded. The -numMsgs attribute can be used to return the actual number of messages
loaded.

Example

This loads the first (newest) 200 messages received by the SOAC1 TOPCOM handler.

> xmyMsgDir open -topcom SOAC1 -maxMsgs 200

Exceptions

Invalid attribute value
 15–11

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

o

te
e
ion is
15.1.2.8 -move

Syntax

handleName -move ?time?

Returns

When no value is specified it returns the current “move time value”, otherwise n
result

Description

The -move attribute computes the “move time value” by adding a positive attribu
value or subtracting a negative value from the handle’s current time position. Th
move attribute value is a time expressed in seconds. The handle’s current posit
set to the first message in the Message Response Directory which arrived after the
computed “move time value”.

Example

This gets the next message that arrived five minutes after the current message.

> $MSG_conn -move 300 -data

Exceptions

• The current time position in the Message Response Directory has not be set.

• No message can be found after the computed “move time value”

• Invalid attribute value
15–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.1.2.9 -msgDir

Syntax

handleName -msgDir

Returns

The path to the Message Response Directory associated with the handle

Description

The -msgDir attribute returns the Message Response Directory that was opened and
loaded when the xmyMsgDir handle was created.

Example

> $MSG_conn -msgDir
 15–13

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

nse
15.1.2.10 -next

Syntax

handleName -next

Returns

No result

Description

Based on the -marked attribute value, the -next attribute sets the handle’s current time
position to the next received (newer) message loaded from the Message Respo
Directory.

Example

This gets the file name of the next received EWNL converted message.

> $MSG_conn -marked MSG_EWNL

> $MSG_conn -next

> set MSG_file [$MSG_conn -file]

Exceptions

• No next message is found

• The current time position in the Message Response Directory has not be set.
15–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.1.2.11 -numMsgs

Syntax

handleName -numMsgs

Returns

The number of messages loaded from the Message Response Directory

Description

The -numMsgs attribute returns the number of messages (file names) loaded into
memory from the Message Response Directory when the xmyMsgDir instance handle
was created using the open attribute. The -maxMsgs attribute can be used to control
the number of messages loaded.

Example

> $MSG_conn -numMsgs
 15–15

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

value

e in

15.1.2.12 -position

Syntax

handleName -position ?time?

Returns

The handle’s current time position in the Message Response Directory when no
is specified, otherwise no result.

Description

The -position attribute sets the handle’s current time position to the first messag
the Message Response Directory which arrived after the given position attribute
value. The position value is the time in UNIX format (i.e. seconds elapsed since
1/1/1970). When no value is specified the current time position is returned.

Example

This returns the TCIS converted message that arrived after time 89234234.

> $MSG_conn -marked MSG_TCIS

> $MSG_conn -position 89234234 -data

This returns the time position of the current message.

> $MSG_conn -position

Exceptions

• No message can be found after the given time position

• Invalid time position value
15–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3

d
15.1.2.13 -prev

Syntax

handleName -prev

Returns

No result

Description

The -prev attribute sets the handle’s current time position to the previous receive
(older) message in the Message Response Directory.

Example

This returns get the time stamp of the previous message.

> $MSG_conn -prev

> $MSG_conn -position

Exceptions

• No previous message is found

• The current time position in the Message Response Directory has not be set.
 15–17

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
15.1.2.14 -printcom

Syntax

xmyMsgDir open -printcom printcomHandlerName

Returns

No result. This attribute can only be specified with the open method

Description

The -printcom attribute is set on a per handle basis and is set only through the
xmyMsgDir open class method. Given the printcomHandlerName, a search is
performed in the configuration file to determine the location (Message Response
Directory) of the received messages to load. Since the PRINTCOM protocol does not
use session numbers, the default value is 0. The printcomHandlerName is the same
value that is required for the xmyPrt3270 connect class method

Example

This creates a handle to get messages from the PRT3270 handle named printer_1.

> set handle [xmyMsgDir open -printcom printer_1]

Exceptions

The specified PrintCom handler does not exist in the configuration file.
15–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.1.2.15 -recvSession

Syntax

handleName -recvSession

Returns

The receive session number associated with the messages in the Message Response
Directory

Description

The -recvSession attribute returns the session number which the messages were
received on. The xmyMsgDir instance handle was created with a given protocol
handler name and each protocol handler entry in the configuration file has a receive
session number.

Example

> $MSG_conn -recvSession
 15–19

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
15.1.2.16 -subDir

Syntax

xmyMsgDir connect -subDir subDir

Returns

The connection handle.

Description

The -subDir attribute lets you specify a subdirectory. The messages are stored in a
separate directory for each configured AppApp protocol handler, for example,
$XMYHOME/data/messages/AppApp/app_1. The given sub directory is appended to
this path.

NOTE — This option is not valid for TOPCOM or
PrintCom handlers.

-subDir is useful for cases where connection oriented protocol is used for sending and
receiving messages. Connection oriented means not using the -broadcast attribute. In
such cases, the messages are stored in a sub directory identified by the connection id.

Example

> xmyMsgDir connect -subDir conn_1 -handler app_1
15–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.1.2.17 -topcom

Syntax

xmyMsgDir open -topcom topcomHandlerName

Returns

No result. This attribute can only be specified with the open method

Description

The -topcom attribute is set on a per handle basis and is set only through the
xmyMsgDir open class method. Given the topcomHandlerName, a search is
performed in the configuration file to determine the location (Message Response
Directory) and session number of the received messages to load. The
topcomHandlerName is the same value that is required for the xmyTop connect class
method

Example

This create a handle to scan messages received by the TOPCOM handle named
handler_1.

> set MSG_conn [xmyMsgDir open -topcom handler_1]

Exceptions

The specified topcom handler does not exist in the configuration file
 15–21

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e
15.1.3 Example

This example scans the first 250 messages received by TOPCOM handler LFACS_1
looking for the newest TCIS2 converted message that contains the tag “SEQ” with th
value of “4579” (i.e., SEQ=4579).

Load the newest 250 LFACS_1 messages
set dirHandle [xmyMsgDir open -topcom “LFACS_1” -maxMsgs 250]

Interested in only the TCIS messages
$dirHandle -marked MSG_TCIS2

Set the handle to the newest (first) TCIS2 message
$dirHandle -first

Loop through the TCIS2 messages from newest to oldest
looking for “SEQ=4579
while { [regexp “SEQ=4579” [$dirHandle -data]] != 1} {

Get the next newest TCIS message. If none are left
catch the exception
if { [catch {$dirHandle -prev} result] == 1 } {

No messages left
puts “Didn’t find the TCIS messgae containing SEQ=4579”
$dirHandle close
xmyExit

}
}

Found the message
puts “Found the mesage : [$dirHandle -data]”

$dirHandle close

The lines

set dirHandle [xmyMsgDir open -topcom “LFACS_1” -maxMsgs 250]
$dirHandle -marked MSG_TCIS2

can be combined into one line, as in

set dirHandle [xmyMsgDir open -topcom “LFACS_1” -maxMsgs 250\
-marked MSG_TCIS2]
15–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.2 Match Tcl Extensions

The Application to Application Match extensions are used to determine whether received
messages match specified criteria.

15.2.1 xmyMsgMatch

Syntax

xmyMsgMatch ?timeout? ?handle matchTclProc?

Returns

1 if a message was received and matched, 0 otherwise

Description

The xmyMsgMatch procedure is used to receive those messages from a connection
that satisfy the user defined match criteria(s). The match criteria is defined within a
Tcl procedure. The xmyMsgMatch procedure takes three arguments and will return 1
only if the given matchTclProc matches a message received over the given
connection handle within the given timeout period.

The matchTclProc is the name of a user defined Tcl procedure which must return 1
if the message satisfies the match criteria and 0 otherwise. This user defined Tcl
procedure must take the handle name as its only argument. The handle name is used
to access the current received message to determine if that message matches the user
criteria(s). Since the matchTclProc is called with each received message, it should be
developed with performance considerations.

If -1 is specified as the xmyMsgMatch timeout value, then the $handle -timeout
value will be used.

timeout is and integer specifying the number of seconds to wait for the desired
message.

Example

> # Receive the printer message that
> # Contains the text “Page 1”
> # Define the User Tcl procedure to match this message
> proc matchMyPrtResp { msgHandle } {
 return [regexp “Page 1” [$msgHandle -data]]
}

 15–23

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
> # Create the connection to get the handle
> set msgHandle [xmyPrt3270 connect -printcom “myPrinter”]
> # Wait up to 60 seconds for the desired message
> if {[xmyMsgMatch 60 $msgHandle matchMyPrtResp] == 1} {

This is the file containing the desired message
set myMsg [$msgHandle -file]

}
> $msgHandle disconnect

Exceptions

• Missing or invalid arguments

• The user defined matchTclProc contains an error

• Exceptions associated to the handle’s receive method
15–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.2.2 xmyMsgMatchUntil

Syntax

xmyMsgMatchUntil timeout maxMsgs handle firstMatchTclProc \
untilMatchTclProc1 [untilMatchTclProc2 ...]

Returns

1 if a message was received and matched, 0 otherwise

Description

The xmyMsgMatchUntil procedure is used to receive a message that is sent in
multiple pieces with known starting and ending pieces. The first (starting) piece of the
message begins with the first received message which satisfies the match criteria in
firstMatchTclProc. All subsequent received message are appended to the starting
piece until all the untilMatchTclProcs are satisfied in the listed order. At least one
untilMatchProc must be specified to match on the ending piece.

The maxMsgs argument value limits the number of messages appended together in the
event untilMatchTclProcs never matches on an ending message. If the maxMsgs
and timeout values are -1, then the $handle -maxMsgs and $handle -timeout values
are used, respectively.

The firstMatchTclProc and untilMatchTclProcs are Tcl procedures provided by the
user and they must return 1 if the message matches and 0 otherwise. These procedures
must take the handle name as the only argument. The handle name is used to access
the received message to determine if that message meets the match criteria. Since
firstMatchTclProc is called with each initial message and the untilMatchTclProcs
are called with subsequent messages, they should be developed with performance
considerations.

Example

Match Pages 2 through 7 of a printer message assuming
each page arrives as a separate printer message

Define the Tcl procedure to match on the starting piece
which contains the text “Page 2”

> proc matchFirst { handle } {
return [regexp ”Page 2” [$handle -data]]

}

Define the Tcl procedure to match on the ending piece
which contains the text “Page 7”

> proc matchUntil { handle } {
return [regexp ”Page 7” [$handle -data]]

}

 15–25

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Create printer connection and get the handle

> set handle [xmyPrt3270 connect -printcom “myPrinter”]

wait up to 60 seconds to receive the message consisting of
multiple received pieces (pages 2 through 7)

> if {[xmyMsgMatchUntil 60 10 $handle matchFirst \
matchUntil] == 1} {

This is the file containing the messages (pages) I want
set myMsg [$handle -file]

}

$handle disconnect

Exceptions

• Missing or invalid arguments

• The user defined Tcl procedures contains an error

• Exceptions associated to the handle’s receive method
15–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Message Response Directory Tcl Language Extensions
Revision 1, February 1999 Release 5.3
15.2.3 xmyMsgMatchNext

Syntax

xmyMsgMatchNext timeout handle matchTclProc number

Returns

1 if a message was received and matched, 0 otherwise

Description

The xmyMsgMatchNext procedure is used to receive a message that is sent in
multiple pieces with a known starting piece and number of subsequent pieces. The first
piece of the message is the first received message that satisfies the match criteria
defined in the MatchTclProc. The next number of received messages will be
appended to the first piece.

The matchTclProc is the name of a user defined Tcl procedure which must return 1
if the message satisfies the match criteria and 0 otherwise. This user defined Tcl
procedure must take the handle name as its only argument. The handle name is used
to access the current received message to determine if that message matches the user
criteria(s). Since the matchTclProc is called with each received message, it should be
developed with performance considerations.

If -1 is specified as the xmyMsgMatch timeout value, then the $handle -timeout
value will be used.

Example

Receive the first 5 pages of a printer job assuming each
page arrives as a separate message
Define the User Tcl procedure to match page 1
> proc matchMyPrtResp { handle } {
 return [regexp “Page 1” [$handle -data]]
}
Create the connection to get the handle
set handle [xmyPrt3270 connect -printcom “myPrinter”]
Wait up to 60 seconds for the desired message
> if {[xmyMsgMatchNext 60 $handle matchMyPrtResp 4] == 1} {

This is the file containing pages 1 to 5
set myMsg [$handle -file]

}
$handle disconnect

Exceptions

• Missing or invalid arguments

• The user defined Tcl procedures contains an error

• Exceptions associated with the handle’s receive method
 15–27

MYNAH System Scripting Guide BR 007-252-004
Message Response Directory Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
15.3 Marking/Unmarking Messages - xmyMsgMarkFile

Syntax

xmyMsgMarkFile fileName markType ?flag?

Returns

No result when flag is specified otherwise 1 if the message is marked and 0 if the
message is not marked.

Description

The xmyMsgMarkFile command is used to mark/unmark a message in the Message
Response Directory. The message is identified by the name of the file containing it.
The markType argument specifies the type of mark and the only valid value is
currently MSG_CLAIMED. To mark the message the flag has to be 1, to unmark the
message the flag has to be 0. If no flag is provided the command returns the current
status of the file: 1 for marked and 0 for not marked.

Example

Mark as claimed the last message that was received.

> set mark_file[$MSG_conn -file]

> xmyMsgMarkFile $mark_file APP_MSG_CLAIMED 1

Exceptions

• Filename doesn’t exist

• Filename is invalid
15–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3

ge
16. TCP App-to-App Tcl Language Extensions

The MYNAH TCP extension package provides functionality necessary for interactions
with the SUT using the TCP/IP protocol.

16.1 Overview

The TCP extension package provides functionality to open connections to a SUT listening
on a TCP socket. It can also listen on a TCP socket for accepting connections from a SUT.
Thereafter messages can be sent and received until the connection is closed.

NOTE — The TCP extension package requires the
presence of TCP/IP software on the MYNAH host.

Users can use the TCP Tcl extension package and Tcl language to develop test scripts to
emulate an external application communicating with the application in the SUT.

NOTE — To access the TCP extension package you must
first run xmyLoadPkg TCP.

The TCP extension package provides functionality to

• Make one or more logical connections to the SUT using a TCP/IP protocol.

• Accept a logical connection from a SUT using a TCP/IP protocol.

• Send and receive ASCII message or files to the SUT.

• Wait for and receive messages from the SUT, saving them as files in the Messa
Response Directory. Messages meant for this connection only or all messages
(broadcast mode) can be received.

• Open and scan all received files saved in the Message Response Directory.

• Filter unwanted incoming messages using user-defined match procedures.

• Delete received messages.

• Disconnect from a TCP connection.

NOTE — See Section 15 for information on the Message
Response Directory extensions.
 16–1

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.1.1 Methods Overview

Section 16.2.1 contains detailed descriptions of the TCP Method extensions. The
extensions are in alphabetical order (within each category). Table 16-1 lists the extensions,
organizing them in general functional categories. Table 16-1 also gives a brief description
of each extension and the section where the detailed description can be found.

Table 16-1. TCP Method Extensions

Category Method Description Section

Connection accept Establishes a logical connection to
the MYNAH collector and then waits
to accept a connection from a client
over TCP/IP network.

16.2.1.1,
Page 16–5

connect Establishes a logical connection to
the MYNAH collector and then a
TCP connection to the destination
host and port.

16.2.1.2,
Page 16–7

disconnect Destroys a connection made through
the connect method.

16.2.1.4,
Page 16–10

Data
Entry/Retrieval

 delete Deletes the specified message or all
messages for the connection.

16.2.1.3,
Page 16–9

 receive Receives a message from the SUT
using the TCP connection.

16.2.1.5,
Page 16–11

 send Sends a message to the SUT. 16.2.1.6,
Page 16–13
16–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.1.2 Attributes Overview

Section 16.2.2 contains a detailed descriptions of the TCP Attribute extensions. The
extensions are listed in alphabetical order (within each category). Table 16-2 lists the
extensions, organizing them in general functional categories. Table 16-2 also gives a brief
description of each extension and the section where the detailed description can be found.

Table 16-2. TCP Attribute Extensions (Sheet 1 of 2)

Category Attribute Description Section

Connection -connections Lists the names of all active
connections.

16.2.2.4,
Page 16–19

-connId Returns a unique connection
identifier.

16.2.2.5,
Page 16–20

-host lets you create a connection to
the given IP address

16.2.2.8,
Page 16–23

-name Lets you choose the name of the
connection.

16.2.2.12,
Page 16–29

-port Allows a connection to the
given port on the destination
host

16.2.2.13,
Page 16–30

Data
Entry/Retrieval

-append Instructs the receive operation
to append a specified number of
successfully received messages.

16.2.2.1,
Page 16–15

-appName Specifies the name of the
application.

16.2.2.2,
Page 16–17

-broadcast Permits all the waiting scripts to
receive any messages received
by the Application SUT.

16.2.2.3,
Page 16–18

-data Gets the message associated
with the last receive method.

16.2.2.6,
Page 16–21

-file Gets the name of the file
containing the message
associated with the last receive
method.

16.2.2.7,
Page 16–22

-maxMsgs Specifies the maximum number
of messages that can be
appended together by the
xmyMsgMatchUntil
procedure.

16.2.2.11,
Page 16–28
 16–3

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Comparisons -listen Returns or sets the listen mode
used when receiving messages.

16.2.2.9,
Page 16–24

-match Specifies a Tcl procedure name
that will be invoked for each
incoming message processed by
the receive method.

16.2.2.10,
Page 16–26

Waiting -timeout Sets the timeout for the send
and receive operations.

16.2.2.20,
Page 16–37

Attribute -recvStatus Returns the state of the receive
session.

16.2.2.14,
Page 16–31

-recvTime Returns the time stamp for the
received message.

16.2.2.15,
Page 16–32

-sendStatus Returns the state of the send
session.

16.2.2.16,
Page 16–33

-sendTime Returns the time the last
message was successfully sent.

16.2.2.17,
Page 16–34

-srcHost Returns the IP address of the
source host whose connection
request was accepted.

16.2.2.18,
Page 16–35

-srcPort Returns the port on the source
host whose connection request
was accepted.

16.2.2.19,
Page 16–36

Table 16-2. TCP Attribute Extensions (Sheet 2 of 2)

Category Attribute Description Section
16–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2 xmyTcp Class

xmyTcp is the Tcl class command providing language extensions that are necessary for
automated interactions with the SUT using the TCP application-to-application interface.

16.2.1 Methods

16.2.1.1 accept

Syntax

xmyTcp accept -appName name ?-port port?
?-broadcast? ?-listen listenOption?
?-match matchProc? ?-maxMsgs maxMsgs? ?-name name?
?-timeout timeout?

Returns

A handle name to the created TCP class instance.

Description

The accept method establishes a logical connection to the MYNAH collector and then
waits to accept a connection from a client over TCP/IP network. It listens on the given
port. Upon success, a handle to a connection is returned to the script. The attribute list
provides the instance of xmyTcp class with initial values that will impact the
configuration of this connection. Attribute values not supplied with the accept method
will obtain their values from the xmyTcp class command. If the value is undefined in
the xmyTcp class command or defined as the empty string, the corresponding value
from the configuration file will be used.

This method waits until the timeout period. If no connections are received within the
period, it will timeout.

accept takes the following attributes. These attributes are described in detail in
subsequent sections.

-appName name Specifies the name of the application as defined in the
MYNAH configuration file.

-port port Specifies the port on which the script should be listening.
(See Section 16.2.2.13.)

-broadcast Specifies that each received message is sent to all the
waiting scripts connected to the same application. (See
Section 16.2.2.3.)
 16–5

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e

ed

ut
Example

set TCP_conn [xmyTcp accept -appName tcp_1 -port 7555]

Exceptions

Unable to accept connection because

• xmyCollector process is not running or cannot be contacted

• appName is not defined in the xmyConfig file

• appName is not known to the xmyCollector process

• appName is not defined to use the TCP protocol

• timeout

• TCP error; a specific error message returned by TCP is also appended.

-listen listenOption Specifies the -listen attribute that sets the time for the
receive method. (See Section 16.2.2.9.)

-match matchProc Specifies the name of the Tcl procedure to be used for
matching. (See Section 16.2.2.10.)

-maxMsgs maxMsgs Specifies the maximum number of messages that can b
appended. (See Section 16.2.2.11.)

-name name Specifies the name of the handle which will be referenc
later in the script. (See Section 16.2.2.12.)

-timeout timeout Specifies the number of seconds to wait before timing o
(See Section 16.2.2.20.)
16–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.1.2 connect

Syntax

xmyTcp connect -appName name
?-broadcast? ?-listen listenOption?
?-match matchProc? ?-maxMsgs maxMsgs? ?-name name?
?-host hostName? ?-port Port?
?-timeout timeout?

Returns

 A handle name to the created TCP class instance.

Description

The connect method establishes a logical connection to the MYNAH collector and
then a TCP connection to the destination host and port from the MYNAH Tcl script.
Upon success, a handle to a connection is returned to the script. The attribute list
provides the instance of xmyTcp class with initial values that will impact the
configuration of this connection. Attribute values not supplied with the connect
method will obtain their values from the xmyTcp class command. If the value is
undefined in the xmyTcp class command or defined as the empty string, the
corresponding value from the configuration file will be used.

connect takes the following attributes. These attributes are described in detail in
subsequent sections.

-appName name Specifies the name of the application as defined in the
MYNAH configuration file.

-broadcast Indicates that each received message is sent to all of the
waiting scripts connected to the same application. (See
Section 16.2.2.3.)

-listen listenOption Specifies the -listen attribute that sets the time for receive
method. (See Section 16.2.2.9.)

-match matchProc Specifies the name of the Tcl procedure to be used for
matching. (See Section 16.2.2.10.)

-maxMsgs maxMsgs Specifies the maximum number of messages that can be
appended. (See Section 16.2.2.11.)

-name name Specifies the name of the handle which will be referenced
later in the script. (See Section 16.2.2.12.)

-host hostName Specifies the IP address of the destination host. (See
Section 16.2.2.8.)

-port Port Specifies the port number on the destination host. (See
Section 16.2.2.13.)
 16–7

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

Example

> set TCP_conn [xmyTcp connect -appName tcp_1 \
-host 128.96.133.40 -port 25]

Exceptions

Unable to establish the connection because

• xmyCollector process is not running or cannot be contacted

• appName is not defined in the xmyConfig file

• appName is not known to the xmyCollector process

• appName is not defined to use the TCP protocol

• timeout waiting for the connection back from the xmyCollector process

• TCP error; a specific error message returned by TCP is also appended.

-timeout timeout Specifies the time in seconds before script times out on
receiving messages. (See Section 16.2.2.20.)
16–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.1.3 delete

Syntax

handle delete -file fileName

handle delete -file [handle -file]

handle delete -all

Returns

No result

Description

The delete method deletes the specified message or all messages for the connection
identified by the handle. The -all attribute is usually used before disconnecting the
connection. The -file attribute uses a filename, which can be obtained by using the
receive method’s -file attribute.

Examples

$TCP_conn delete -file 854028294.63.2

$TCP_conn delete -file [$TCP_conn -file]

$TCP_conn delete -all

Exceptions

Unable to delete because the file does not exist.
 16–9

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

s
16.2.1.4 disconnect

Syntax

handle disconnect

Returns

No result

Description

The disconnect method destroys the logical connection to the given Application SUT
made with the xmyTcp connect class method and identified by the handle. Once the
disconnect call is made, the handle name associated with the connection is no longer
valid and will produce a Tcl “Invalid command name” error message if used.

The message sub directory associated with the connection will be deleted if it i
empty, i.e., if all the received messages have been deleted.

Example

$TCP_conn disconnect

Exceptions

Unable to disconnect because

• TCP error; a specific error message returned by TCP is also appended
16–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.1.5 receive

Syntax

handle receive ?-data? ?-file? ?-append? \
?-listen listenOption? ?-timeout timeout?

Returns

The received message if the -data attribute is specified, the filename containing the
received message if the -file attribute was specified, otherwise no result.

Description

The receive method receives a message from the SUT using the TCP connection
established with the connect method and identified by handle. All messages received
from the given Application SUT will be saved in the Message Response Directory.
Depending on the listen mode (see -listen), the receive operation looks for messages
present in the Message Response Directory and/or waits for a message to arrive.

If a Tcl match procedure is defined (see -match), only messages that satisfy the match
procedure will be returned by the receive operation.

NOTE — A maximum of 4000 bytes can be received.

Attributes

The attributes such as -append are described in detail in subsequent sections.

Example

In this example, the script waits a maximum of 300 seconds to receive a message.

set message [$TCP_conn receive -data -timeout 300]

Side Effects

If the receive method was successful, the internal receive time (see -recvTime) and
receive message variables (-data or -file) will be updated.

Exceptions

Unable to receive a message because

• timeout occurred while waiting for a message to arrive

• invalid user-defined Tcl match procedure

• No messages have been received, but the -append attribute was specified

• No messages have been received, but the MSG_LISTEN_NEXT mode was
specified

• Unable to save received message to disk
 16–11

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
NOTE — The Message Response Directory must be
writable by the MYNAH Message Collector process. It is
recommended that the person starting Message Collector
own both the Message Response Directory and the
Message Collector processes.

• Invalid or missing attribute values

• Both the -data and -file attributes were specified
16–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3

g
16.2.1.6 send

Syntax

handle send -data message

handle send -file filename

Returns

No result

Description

The send method sends a message to the SUT using the TCP connection established
with the connect method and identified by handle.

The message to be sent can be defined within the Tcl script or in a file. In the first case,
the -data attribute must be used and the message is provided as the attribute value.

NOTE — This message is treated like a string. If it
contains backslash (‘\‘) or other special characters they
must be escaped with a backslash (‘\’).

In the second case, the -file attribute is used to specify the full path to a file containin
the message.

NOTE — Since this file name is passed to the MYNAH
Message Collector for transmitting, the Message
Collector process must be able to open and read this file.
When the Tcl script and Message Collector are running on
different machines, the file system containing the file to
be sent must be accessible (mounted) by both the
machines.

Example

In this example, the script sends the string *sect{a=0;b=1;}% to the handle
$TCP_conn.

$TCP_conn send -data "*sect{a=0;b=1;}%"

In this example, send the string *tag=\1\2\3%

$TCP_conn send -data "*tag=\\1\\2\\3%"

In this example, send the file /mynah/scripts/Tcp/app_1.send.01

$TCP_conn send -file "/mynah/scripts/Tcp/app_1.send.01"
 16–13

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Side Effects

If the send method is successful, the internal send time variable (see -sendTime) is
updated.

Exceptions

Unable to send the message because

• Application send session is down. See -sendStatus attribute.

• File is not accessible (if -file attribute was specified)

• Data message is too long, i.e., more than 2400 characters (if -data attribute was
specified)

• TCP error. The specific TCP error message will be appended.
16–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2 Attributes

Some of attributes are same as the ones defined for TOPCOM protocol. Instead of repeating
the definition, a reference is made to TOPCOM. All the TOPCOM attributes are defined in
Section 12.

16.2.2.1 -append

Syntax

handle receive -append number

Returns

No result

Description

The -append attribute instructs the receive operation to append the next number of
successfully received messages to the current received message before returning. The
entire message will be accessible as the last received message.

The -append attribute is on a per receive basis and can only be specified with the
receive method.

Example

This gets the first piece of a message sent in multiple pieces.

> $TCP_conn receive

Assume the first piece contains a number of subsequent pieces

regexp {(FRAGNUM=)([0-9]+)} [$TCP_conn -data] a b num

Receive and append the next pieces together with first piece

> $TCP_conn receive -append $num -listen MSG_LISTEN_NEXT

This is the entire message made of 1 + $num pieces

> set myMsg [$TCP_conn -data]

Example

This gets the first piece of a message sent in multiple pieces. Assume that the last piece
contains the keyword LAST

> $TCP_conn receive
 16–15

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Receive and append the next pieces until the message contains the LAST keyword.

> while {[regexp {LAST} [$TCP_conn -data]] == 0} {
 $TCP_conn receive -append 1 -listen MSG_LISTEN_NEXT
}

This is the entire message.

> set myMsg [$TCP_conn -data]

Exceptions

Invalid -append attribute value.
16–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.2 -appName

Syntax

xmyTcp connect -appName

xmyTcp accept -appName

Return

No return

Description

Specifies the name of the application as defined in the xmyConfig file.

Example

set TCP_conn [xmyTcp accept -appName tcp_1]
 16–17

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.3 -broadcast

Syntax

xmyTcp connect -broadcast

handle -broadcast

Returns

The boolean value associated with the -broadcast attribute.

Description

The -broadcast attribute permits all the waiting scripts to receive any messages
received by the Application SUT. It can be set at the time of connection. At other
times, the value of this attribute can be retrieved, but not set.

Example

> $TCP_conn -broadcast

Exceptions

None
16–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.4 -connections

Syntax

xmyTcp -connections

Returns

A blank separated list of active connection handle names (e.g., .xmyTcp_1,
.xmyTcp_2, and .xmyTcp_4), or the empty string if there are no active connections.

Description

The -connections attribute lists the names (handle) of all active (open) TCP
connections. -connections can only be used through the xmyTcp class command.

Example

> xmyTcp -connections
.xmyTcp_1 .xmyTcp_2 .xmyTcp_4
 16–19

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.5 -connId

Syntax

handle -connId

Returns

The connection ID associated with the given handle.

Description

The -connID attribute returns the connection ID, which is a unique identifier
associated with the given connection. It is uniquely generated and maintained by the
MYNAH Collector process.

Example

> $TCP_conn -connId

Exceptions

None
16–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.6 -data

Syntax

handle -data

handle receive -data

Returns

The message associated with the most recent receive operation, or the empty string if
no messages has been received yet.

Description

The -data attribute is used to get the message associated with the last receive method.
If -data is used with the receive method, the received data will be returned. If the
receive method fails, an exception will occur and the previously received message will
remain unchanged.

Example

This checks if string “ORD=56700;” is in last received message.

> set msg [$TCP_conn -data]

> regexp {ORD=56700;} $msg
 16–21

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.7 -file

Syntax

handle -file

handle receive -file

Returns

The filename containing the message associated with the most recent receive
operation, or the empty string if no messages have been received yet.

Description

The -file attribute retrieves the name of the file, stored in the Message Response
Directory, containing the most recent received message. The filename should be saved
in the Tcl script in order to access this data if additional messages will be received.
Since the Message Response Directory is purged on a regular basis, the contents of this
file should be copied to a user area if the message need to be saved.

If -file is used with the receive method, the received filename will be returned. If the
receive method fails, an exception will occur and the previously received filename
will remain unchanged.

Example

Read the file containing the last received message.

> set fd [open [$TCP_conn -file] r]
> set data [read $fd]
> close $fd
16–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.8 -host

Syntax

xmyTcp connect -host

handle -host

Returns

The IP address of the destination host.

Description

The -host attribute lets you create a connection to the given IP address. It can be set at
the time of connection. At other times, the value of this attribute can be retrieved, but
not set.

Example

> $TCP_conn -host

Exceptions

None
 16–23

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

set.
t have

nt
n
 be
ting

r this
16.2.2.9 -listen

Syntax

xmyTcp -listen ?listenMode?

xmyTcp connect -listen listenMode

handle -listen ?listenMode?

handle receive -listen listenMode

Returns

When no value is specified it returns the current listen mode, otherwise no result.

Description

The -listen attribute returns or sets the listen mode, which determines what messages
will be considered by the receive method.

When no listenMode value is specified, -listen returns the current listen mode.

Only messages that have arrived after the listen time stamp will be considered by the
receive operation. The valid -listen values are

• MSG_LISTEN_NOW will set the listen time stamp to the current time. Thus,
receive will return messages that have arrived after the time the receive operation
was executed. All messages that arrived prior to the receive operation will be
ignored (but not removed from the Message Response Directory).

• MSG_LISTEN_NEXT will instruct receive to return the next message that
arrived after the current received message. The listen time stamp will not be
This mode is very useful for retrieving messages in sequence or messages tha
arrived within the same second.

• MSG_LISTEN_SEND will set the listen time stamp to the time the most rece
send operation was successfully executed. From a client point of view, we ca
assume that a reply (received message) to a request (sent message) cannot
received before the request itself is sent. On the other hand, if you are emula
the server side, then the receive must be performed first, so the
MSG_LISTEN_NOW value should be used.

• An integer time value in UNIX format (i.e., seconds from 1/1/1970). The listen
time stamp will be set to this given time, and messages that have arrived afte
time will be considered.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is
MSG_LISTEN_NOW.

-listen can be set in the xmyConfig file using the ListenMode parameter.
16–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3

es
Example

Send a request and wait up to 30 seconds for the reply.

> $TCP_conn send -data $request_1

> set reply_1 [$TCP_conn receive -timeout 30 -listen \
MSG_LISTEN_SEND -data]

Send the second request.

> $TCP_conn send -data $request_2

> set reply_2 [$TCP_conn receive -timeout 30 -listen \
 MSG_LISTEN_SEND -data]

Example

In this example, three sends are done before performing any receives, so that a certain
degree of parallelism is achieved between the client and server. The
MSG_LISTEN_SEND wouldn’t work properly because the first and second repli
will be lost if they arrive before the third send operation is performed. The
MSG_LISTEN_NOW will also not work if the replies arrive before the receive
operation is executed.

Send three different requests expecting three replies.

> $TCP_conn send -data $request_1
> set saveTime [$TCP_conn -sendTime] # save 1st send time
> $TCP_conn send -data $request_2
> $TCP_conn send -data $request_3

Get the replies.

> set reply_1 [$TCP_conn receive -data -listen $saveTime]
> set reply_2 [$TCP_conn receive -data \

-listen MSG_LISTEN_NEXT]
> set reply_3 [$TCP_conn receive -data \

-listen MSG_LISTEN_NEXT]

Exceptions

Invalid listen mode was specified
 16–25

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 the

16.2.2.10 -match

Syntax

xmyTcp -match ?matchTclProc?

xmyTcp connect -match matchTclProc

handle -match

Returns

When no value is specified, returns the name of the Tcl procedure used by the receive
operation to match (filter) all incoming messages, otherwise no result.

Description

The -match attribute specifies a Tcl procedure name that will be invoked for each
incoming message processed by the receive method. Messages that do not satisfy the
Tcl match procedure will not be returned by the receive operation. By default a match
procedure is not defined and all messages can be returned by the receive method.

-match is set on a per connection basis and is set through the xmyTcp class or by the
connect method.

The user-defined Tcl match procedure must take the connection handle name as its
only argument, and it returns a “1” when there is a match and “0” otherwise. Given
handle name, this match procedure can access the received data by using the -data
attribute. Since this user-defined match procedure is invoked for each message
processed by the receive operation, it must be developed with performance
considerations.

The existence and validity of the user-defined Tcl match procedure will not be
checked until the receive operation is executed.

NOTE — Even though Tcl supports defining procedures
named “(”, “#”, and other punctuation and special
symbols, you should not define your Tcl match
procedures with these names. Instead, meaningful
procedure names should always be used.

-match can be set in the xmyConfig file using the MatchProcedure parameter.
16–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
Example

Receive only those messages containing “host=bluejays”.

> proc matchTclProc { $TCP_conn } {
return [regexp {host=bluejays} [$TCP_conn -data]]

}
set TCP_conn [xmyTcp connect -match matchTclProc ...]

Exceptions

An attempt is made to change the match procedure using the instance handle
 16–27

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.11 -maxMsgs

Syntax

xmyTcp -maxMsgs ?number?

xmyTcp connect -maxMsgs number

handle -maxMsgs ?number?

Returns

When no value is specified, returns the current message limit, otherwise no result.

Description

The -maxMsgs attribute specifies the maximum number of messages that can be
appended together by the xmyMsgMatchUntil procedure. This parameter limits the
number of messages appended before the until match conditions are satisfied.

If this attribute is not set by the Tcl script or xmyConfig file, the default value is 10.

-maxMsgs can be set in the xmyConfig file using the MaxMsgs parameter.

Exceptions

An invalid maxMsgs value is specified.

Example

> $TCP_conn -maxMsgs 25
16–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.12 -name

Syntax

xmyTcp connect -name connectionName

handle -name

Returns

When no value is specified, returns the connection handle name set by the connect
operation.

Description

The -name attribute lets you choose the name of the connection rather than having a
name internally generated by the connect method.

The -name attribute is on a per connection basis and the value is set through the
connect method.

Example

Create a connection named my_connection.

> xmyTcp connect -name my_connection ...

Exceptions

• A connection with the same name already exists

• An attempt is made to change the connection name using the instance handle
 16–29

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.13 -port

Syntax

xmyTcp connect -port

handle -port

Returns

The port on the destination host.

Description

The port attribute allows a connection to the given port on the destination host. It can
be set at the time of connection. At other times, the value of this attribute can be
retrieved, but not set.

Example

> $TCP_conn -port

Exceptions

None
16–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.14 -recvStatus

Syntax

handleName -recvStatus

Returns

The value UP if the connection is open, DOWN if the connection is closed.

Description

The state of the receive connection between the MYNAH System and the TCP SUT
application. UP is returned only if the MYNAH System is able to receive messages
from the TCP SUT application. Even though the receive status is DOWN, the receive
method may still be successful if the messages have already arrived and has stored in
the Message Response Directory.

Example

> $handle -recvStatus
 16–31

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.15 -recvTime

Syntax

handle -recvTime

Returns

The time stamp in UNIX format (i.e., seconds since 1/1/1970) associated with the most
recent received message, or 0 if no messages have been received.

Description

The -recvTime attribute returns the time stamp for the received message. All
messages received from the SUT are stamped with the time the message was received
by the MYNAH Collector process.

Example

> $TCP_conn receive
> set rtime [$TCP_conn -recvTime]
16–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.16 -sendStatus

Syntax

handleName -sendStatus

Returns

The value UP if the connection is open, DOWN if the connection is closed.

Description

The state of the send connection between the MYNAH System and the TCP SUT
application. UP is returned only if the MYNAH System is able to send messages to
the TCP SUT application.

Example

$handle -sendStatus
 16–33

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.17 -sendTime

Syntax

handle -sendTime

Returns

The time stamp in UNIX format (i.e., seconds since 1/1/1970) associated with the most
recent sent message, or 0.000000 if no messages have been sent.

Description

The -sendTime attribute returns the time the last message was successfully sent over
the connection.

Example

> $TCP_conn1 -sendTime
16–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.18 -srcHost

Syntax

handle -srcHost

Returns

The IP address of the source host whose connection request was accepted.

Description

The -srcHost attribute returns the IP address of the source host whose connection
request was accepted by an accept method in the script. This can be retrieved only
after an accept method has been executed successfully.

Example

> $TCP_conn -srcHost

Exceptions

None
 16–35

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.2.2.19 -srcPort

Syntax

handle -srcPort

Returns

The port on the source host whose connection request was accepted.

Description

The -srcPort attribute returns the port on the source host whose connection request
was accepted by an accept method in the script. This can be retrieved only after an
accept method has been executed successfully.

Example

> $TCP_conn -srcPort

Exceptions

None
16–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
16.2.2.20 -timeout

Syntax

xmyTcp -timeout ?timeoutValue?

xmyTcp connect -timeout timeoutValue

handle -timeout ?timeoutValue?

handle send -timeout timeoutValue

handle receive -timeout timeoutValue

Returns

When no value is specified it returns the current timeout value, otherwise no result.

Description

The -timeout attribute sets the timeout for the send and receive operations. For the
send operation, the timeout is the number of seconds to wait for acknowledgment of
the sent message. If the timeout expires, the send operation will fail. For the receive
operation, the timeout is the number of seconds to wait for a message to arrive. If the
timeout expires, the receive operation will fail.

If a timeout value was not specified at connect time, the value in the configuration file
for the particular protocol handler will be used. The timeout value can be changed for
the connection instance, or changed for each individual send or receive operation.

-timeout can be set in the xmyConfig file using the Timeout parameter.

Example

Create a connection setting the timeout to five minutes.

> set TCP_conn [xmyTcp connect -timeout 300]

The following receive waits at most five minutes

> $TCP_conn receive

The following receive waits at most ten minutes

> $TCP_conn -timeout 600
> $TCP_conn receive

The following receive waits at most one minute

> $TCP_conn receive -timeout 60

The following receive waits at most ten minutes

> $TCP_conn receive
 16–37

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
16.3 Example

This script communicates with the web server which runs
as a TCP/IP based application on port 80.

set st1 [xmyDate]

xmyLoadPkg Tcp

xmyTcp -match ""
xmyTcp connect -appName tcp_1 -host "www.bellcore.com" -port 80 \

-name a1 -timeout 10

set c1 [a1 -connId]
set listenValue MSG_LISTEN_SEND
set i 1

a1 send -data "HEAD / HTTP/1.0\n\n"
set m1 [a1 receive -data -listen $listenValue]
set t1 [regexp {^HTTP/1.0 200 OK} $m1]
xmyCompare -expr {$t1=="1"}

a1 delete -all
a1 disconnect

puts "good comp = $xmyVar(GoodCompares)"
puts "fail comp = $xmyVar(FailedCompares)"

This script communicates with the mail server that runs
as a TCP/IP based application on port 25.

xmyTcp connect -appName tcp_1 -host broccoli.bae -port 25 \
-name a1 -timeout 10

a1 -listen 0

set m1 [a1 receive -data]

set t1 [regexp {^220} $m1]
xmyCompare -expr {$t1=="1"}

Sometimes, the mail server sends back more than one line of
message. In such cases, this loop will flush out the entire
message.

set t1 0
while {$t1 == 0} {
16–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 TCP App-to-App Tcl Language Extensions
Revision 1, February 1999 Release 5.3
 set t1 [catch {a1 receive -data -listen MSG_LISTEN_NEXT\
-timeout 5} err]

}

set listenValue MSG_LISTEN_NEXT

a1 send -data "HELO selene.base.bellcore.com\r\n"
set m1 [a1 receive -data -listen $listenValue]
set t1 [regexp {pleased to meet you} $m1]
xmyCompare -expr {$t1=="1"}

a1 send -data "NOOP This is a harmless test service.\r\n"
set m1 [a1 receive -data -listen $listenValue]
set t1 [regexp {200 OK} $m1]
xmyCompare -expr {$t1=="1"}

a1 send -data "WIZ\r\n"
set m1 [a1 receive -data -listen $listenValue]
set t1 [regexp {500 Command unrecognized} $m1]
xmyCompare -expr {$t1=="1"}

a1 send -data "DEBUG\r\n"
set m1 [a1 receive -data -listen $listenValue]
set t1 [regexp {500 Command unrecognized} $m1]
xmyCompare -expr {$t1=="1"}

a1 send -data "vrfy decode\r\n"
set m1 [a1 receive -data -listen $listenValue]
set t1 [regexp {250 } $m1]
xmyCompare -expr {$t1=="1"}

a1 send -data "QUIT\r\n"
set m1 [a1 receive -data -listen $listenValue]
set t1 [regexp {^221} $m1]
xmyCompare -expr {$t1=="1"}

a1 delete -all
a1 disconnect

puts "good comp = $xmyVar(GoodCompares)"
puts "fail comp = $xmyVar(FailedCompares)"

if {$xmyVar(FailedCompares) == 0} {
 puts "Test passed"
} else {
 puts "Test failed"
}

 16–39

MYNAH System Scripting Guide BR 007-252-004
TCP App-to-App Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
set st2 [expr [xmyDate] - $st1]
puts "execution time = $st2 secs"
16–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Batch Tcl Language Extensions
Revision 1, February 1999 Release 5.3
17. Batch Tcl Language Extensions

This system design describes MYNAH tools that permit the user to

1. Submit JCL, stored in a UNIX file, to a user-selected MVS host machine for batch
execution

2. Optionally edit the JCL to dynamically change JCL parameters

3. Query the host system to determine the status of that batch job

4. Retrieve the JES output of batch jobs

5. Retrieve batch job condition codes

6. Delete batch jobs from the output queue and any temporary files that were created by
these tools on Unix.

The designed solution provides batch submission via Tcl.

NOTE — The MYNAH Batch Tcl extensions are
implemented as Tcl procedures.

17.1 Accessing The Batch Procedures

Access to the batch procedure will be provided via the SE. You do not need to use the Tcl
source statement to access the batch procedure.

17.2 Submitting a Batch Job - batch_submit

Syntax

batch_submit -file jclfile -host hostname \
-starting_string string -ending_string string \
?-edit {from_string to_string}? ?-timeout seconds?

Returns

A Tcl keyed list. This keyed list must be saved to a variable for subsequent batch
procedures.

On failure an exception is thrown.

Description

The batch_submit procedure is used to submit a single batch job for processing.
batch_submit attempts to submit the JCL contained in the user-specified file to the
user-specified host after optionally editing the JCL if the user provided edits.
 17–1

MYNAH System Scripting Guide BR 007-252-004
Batch Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

batch_submit returns a Tcl keyed list that subsequent MYNAH automated batch job
procedures require to perform processing on the batch job. The keyed list returned
from each successful batch job submitted via batch_submit must be stored into its
own variable. The keyed list is used later to determine if the job was submitted
successfully, to determine the status of the batch job (i.e., the job is in the input queue,
the job is active, or the job is in the JES output queue), to retrieve the JES output of
the batch job, and to retrieve individual batch job step results.

More than one batch job may be submitted from a single Tcl script such that batch jobs
can execute in parallel on the MVS machine, provided system resources are available
and the batch job names are different. Note that a job name is an MVS user id plus an
optional suffix. The suffix may be changed to submit multiple jobs to run in parallel.

batch_submit takes the following options:

-file jclfile The name of the required file that contains the JCL to
be processed be passed on the command line. The full
path to the file must be specified.

-host hostname The name of the host machine where the JCL will be
processed. The host machine name must be in the
.netrc file of the UNIX machine submitting the batch
job.

-starting_string string The starting string is a unique string that is found on
the line immediately proceeding the job STEP
information.

batch_submit requires a starting string and ending
string to locate STEP results in the JES output. The
starting and ending strings must not contain a hyphen.

-ending_string string The ending string is a unique string that is found on
the line immediately after the job STEP information.

batch_submit requires a starting string and ending
string to locate STEP results in the JES output. The
starting and ending strings must not contain a hyphen.

-edit {from_string to_string} This identifies a two element Tcl list containing from
and to strings. The from string will be searched for in
the JCL and, if found, replaced by the to string in a
copy of the user’s JCL. The -edit attribute and its
associated from and to strings are optional. Edits are
in the form -edit { from to}. If more than one edit is
necessary, the -edit attribute and associated two
element list may be repeated.
17–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Batch Tcl Language Extensions
Revision 1, February 1999 Release 5.3
Example

The following Tcl script statement demonstrates submitting a JCL stored in a UNIX
file called /u/jcl to a host machine called pyibm2, the editing of a copy of the JCL to
change the programmer name from <PGRM> to LP, the job name from <JOB> to
TKTEE66, and the job class from <CLASS> to X, and storing of the keyed list into a
variable called job_list:

> set job_list [batch_submit -file /u/jcl \
-host pyibm2 \
-starting_string {BELLCORE JOB SUMM} \
-ending_string -edit
{“<JOB>”} “TKTEEGG”{ENDED} \
-edit {"<NAME>" "LP"} -edit {"<CLASS>" "X"}]

The JCL stored in the file called /u/jcl for the above example Tcl script statement could
have appeared as follows:

//<JOB>X JOB (5,T531),’<PGRM>’,CLASS=<CLASS>,MSGCLASS=F
/*ROUTE PRINT RRCDP1
//STEP01 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1DD *
HI WORLD
//SYSUT2 DD SYSOUT=(*)
//SYSIN DD DUMMY

NOTE — In the above, MSGCLASS must be set to F to
route output to the buffer.

The preceding batch_submit edits the user-provided JCL and places the edited output
into a temporary file under /tmp. The original JCL file is not changed.

The host name must be a name that exists in the .netrc file of the UNIX machine
submitting the batch job. (See Section 17.4 for information on the .netrc file. A suffix
may be added.

The editing performed by the preceding batch_submit in the example Tcl script
statement would change the programmer name from <PGRM> to LP, the job name
from <JOB> to TKTEE66, and the job class from <CLASS> to X for previously
shown sample JCL.

-timeout seconds This identifies the time limit that a job will be waited
for when the batch_wait procedure is executed. The
-timeout attribute and its associated value in seconds
are optional. If a timeout value is not specified a
default value of 600 seconds is used.
 17–3

MYNAH System Scripting Guide BR 007-252-004
Batch Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
batch_submit submits the edited JCL by logging onto the user-specified MVS host
machine via the ftp command and submitting the JCL.

Exceptions

This method will fail (throw an exception) for the following conditions:

• Problem with -file

— -file must have a value

— -file file_name does not exist

— -file file_name is not readable

— -file file_name is empty

• Problem with -host

— -host must have a value

— environment variable HOME not defined

— file $HOME/.netrc does not exist

— file $HOME/.netrc is not readable

— file $HOME/.netrc is empty

— host hostname not in $HOME/.netrc

• Problem with -edit

Edit must be of the form -edit { from_string to_string}

• Problem with -starting_string

-starting_string must have a non-null value

• Problem with -ending_string

-ending_string must have a non-null value

• Problem with -timeout

-timeout must have positive integer value

• The ftp command failed.

ftp command failed

• Incorrect usage

Usage = batch_submit -file jclfile\
-host hostname -starting_string string \
-ending_string string ?-timeout seconds? \
?-edit {from to}?
17–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Batch Tcl Language Extensions
Revision 1, February 1999 Release 5.3
17.3 Methods

Just as the other MYNAH extension packages use methods (sub-commands to class
commands that perform actions on handles you create) the Batch package has procedures
that perform actions on the Tcl keyed lists you create using batch_submit. For the sake of
continuity, we will also refer to these procedures as methods as well as procedures.

The general syntax of these methods/procedures is

procedure job_list arguments

17.3.1 batch_delete

Syntax

batch_delete job_list

Description

The batch_delete procedure/method lets you free spooled files associated with a batch
job. Its important to remove the spooled files to save space and to improve the
performance of the MYNAH batch processing since the ftp command that
batch_submit and batch_wait use are affected by the number of spooled files.

Example

> set job_list [batch_submit -file "/home/my_jcl" \
-host "pyibm2" -starting_string {BELLCORE JOB SUMM} \
-ending_string {ENDED} -timeout 600]

This waits up to ten minutes for the batch job to complete.

> set job_status [batch_wait job_list]

Delete the batch job’s JES output.

> if { $job_status == "OUTPUT" } {
batch_delete job_list

}

Exceptions

batch_delete will handle errors by generating a Tcl exception.

• Missing job_list

No value given for parameter job_list to batch_delete

• The ftp command failed.

ftp command failed
 17–5

MYNAH System Scripting Guide BR 007-252-004
Batch Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
• The JOB was not found

JOB NOT FOUND

• The JOB was already deleted

JOB ‘ job_name’ already deleted
17–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Batch Tcl Language Extensions
Revision 1, February 1999 Release 5.3
17.3.2 batch_host

Syntax

batch_host job_list

Returns

hostname

Description

The batch_host procedure/method lets you query for the name of the host machine.
batch_host requires the keyed list generated by batch_submit.

Example

> set job_list [batch_submit -file "/home/my_jcl" \
-host "pyibm2" -starting_string {BELLCORE JOB SUMM} \
-ending_string {ENDED} -timeout 600]

Determine the host name of the batch job.

> set host_name [batch_host job_list]
> puts "host name is $host_name"

Exceptions

batch_host will generate a Tcl exception if there is a missing job_list (i.e., no value
given for parameter job_list to batch_host.)
 17–7

MYNAH System Scripting Guide BR 007-252-004
Batch Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
17.3.3 batch_jobid

Syntax

batch_jobid job_list

Returns

JOB##### if successful and where ##### is the job id assigned by the host

Description

The batch_jobid procedure/method lets you query for the job id assigned to a batch
job by the IBM mainframe. batch_jobid requires the keyed list generated by
batch_submit.

Example

> set job_list [batch_submit -file "/home/my_jcl" \
-host "pyibm2" -starting_string {BELLCORE JOB SUMM} \
-ending_string {ENDED} -timeout 600]

Determine the name of the batch job.

> set job_id [batch_jobid job_list]
> puts "the job id is $job_id"

Exceptions

batch_jobid will generate a Tcl exception if there is a missing job_list (i.e., no value
given for parameter job_list to batch_jobid.)
17–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Batch Tcl Language Extensions
Revision 1, February 1999 Release 5.3
17.3.4 batch_status

Syntax

batch_status job_list

Returns

INPUT, ACTIVE, or OUTPUT

Description

The batch_status procedure/method lets you query the IBM mainframe to determine
the status of a batch job. batch_status requires the keyed list generated by
batch_submit.

If a batch job has completed, batch_status will retrieve a copy of the JES listing
segment of the job and extract the condition code lines from the listing for subsequent
batch job analysis.

Example

> set job_list [batch_submit -file "/home/my_jcl" \
-host "pyibm2" -starting_string {BELLCORE JOB SUMM} \
-ending_string {ENDED} -timeout 600]

Determine the status of the batch job.

> set job_status [batch_status job_list]

> if { $job_status == "INPUT" } {
puts "Job is queued for execution"

} elseif { $job_status == "ACTIVE" } {
puts "Job is active"

} else { $job_status == "OUTPUT" } {
puts "Job is complete"

}

Exceptions

batch_status will generate a Tcl exception under the following conditions:

• Missing job_list

No value given for parameter job_list to batch_status

• The ftp command failed.

ftp command failed
 17–9

MYNAH System Scripting Guide BR 007-252-004
Batch Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
17.3.5 batch_step_count

Syntax

batch_step_count job_list

Returns

Number of steps in batch job

Description

The batch_step_count procedure/method lets you query for the number of steps
reported in a batch job. batch_step_count requires the keyed list generated by
batch_submit.

Example

> set job_list [batch_submit -file "/home/my_jcl" \
-host "pyibm2" -starting_string {BELLCORE JOB SUMM} \
-ending_string {ENDED} -timeout 600]

Wait up to ten minutes for the batch job to complete

> set job_status [batch_wait job_list]

Get the results if the job complete and determine the number of steps reported in this
batch job.

> if { $job_status == "OUTPUT" } {
set steps = batch_step_count job_list
puts "this job had $steps reported

}

Exceptions

batch_step_count will generate a Tcl exception if there is a missing job_list (i.e., no
value given for parameter job_list to batch_step_count.)
17–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Batch Tcl Language Extensions
Revision 1, February 1999 Release 5.3
17.3.6 batch_step_result

Syntax

batch_step_result job_list step_number

Returns

Result string from JES if step exists

Null string if step does not exist

Description

The batch_step_result procedure/method lets you query for the condition code
associated with a user-specified step number of a completed batch job.
batch_step_result requires the keyed list generated by batch_submit.

batch_step_result can only obtain step results after a batch_status or batch_wait has
indicated that the batch job has completed. The following are examples of step results
that might be returned:

CONDITION CODE: 0000 IEBGENER
SYSTEM ABEND: 0806 IEBGENER
 17–11

MYNAH System Scripting Guide BR 007-252-004
Batch Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

set job_list [batch_submit -file "/home/my_jcl" \
-host "pyibm2" -starting_string {BELLCORE JOB SUMM} \
-ending_string {ENDED} -timeout 600]

#
wait up to 10 minutes for the batch job to complete
set job_status [batch_status job_list]
#
get the results if the job completed
#
if { $job_status == "OUTPUT" } {
#
determine the number of steps in the batch job
#

set step_count [batch_step_result job_list]
#
get the step result of each step of the job
#

for { set step 1 } { $step <= step_count} \
{ incr step +1 } {

set step_result [batch_step_result job_list $step]

if { $step_result == "" } {
puts "$step, No results"

} else {
puts "$step, $step_result"

}

}

}

Exceptions

batch_step_result will generate a Tcl exception under the following conditions:

• Missing job_list

No value given for parameter job_list to batch_step_result

• The batch job has not completed.

batch job ‘ job’ status is ‘ status’

• The step number is not found

Key “<step#>” is not found in the keyed list
17–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Batch Tcl Language Extensions
Revision 1, February 1999 Release 5.3
17.3.7 batch_wait

Syntax

batch_wait job_list

Returns

INPUT, ACTIVE, or OUTPUT

Description

The batch_wait procedure/method lets you wait up to a user-defined time in seconds
for a batch job to reach a job status of OUTPUT. If the batch job completes prior to
the user-defined wait time, batch_wait will return with a result of OUTPUT prior to
the wait time elapsing. If the batch job does not complete prior to the user-defined wait
time, the method will return the current status of the job after the user-defined time has
elapsed. If the user does not supply a time to wait, a default of 0 seconds will be used.

If a batch job has completed, batch_wait will retrieve a copy of the JES listing
segment of the job and extract the condition code lines from the listing for subsequent
batch job analysis. batch_wait uses the starting string and ending string defined by
batch_submit to locate the condition codes.

Example

set job_list [batch_submit -file "/home/my_jcl" \
-host "pyibm2" -starting_string {BELLCORE JOB SUMM} \
-ending_string {ENDED} -timeout 600]

#
wait up to 10 minutes for the batch job to complete
#
set job_status [batch_wait job_list]
#
what was the status
#
if { $job_status == "INPUT" } {

puts "Job is queued for execution"
} elseif { $job_status == "ACTIVE" } {

puts "Job is active"
} elseif { $job_status == "OUTPUT" } {

puts "Job is complete"
}

 17–13

MYNAH System Scripting Guide BR 007-252-004
Batch Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Exceptions

batch_wait will generate a Tcl exception under the following conditions:

• Missing job_list

No value given for parameter job_list to batch_step_count

• The ftp command failed.

ftp command failed

17.4 The .netrc file

The SE used to process batch jobs must have a .netrc file in its $HOME directory. The
.netrc file must have permissions of 0600 (read and write by owner) for the user-id
executing the SE.

The .netrc file must contain the following for each machine and login to be used:

machine <machine_name> login <login> password <password>
17–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18. DCE Extension Package

This DCE Extension Package provides the functions necessary for interactions with a
Distributed Computing Environment (DCE) client or server. Unlike the other MYNAH
packages, the DCE scripting language is not available directly from MYNAH. Instead,
DCE scripting is available from an external application-specific emulated client or server
executable, which the MYNAH Administrator must build, as described in Section 11 of the
MYNAH System Administration Guide.

Users may use the emulated client or server independently of MYNAH, or they may
automate their use from MYNAH with the ASYNC package. The MYNAH installation
includes several Tcl routines that use the ASYNC package to automate the execution of
DCE scripts and verify their outputs (e.g., xmyDceStartClient, xmyDceStartServer. See
Section 18.4.).

The documentation in this chapter describes the DCE scripting language available in the
emulated client and server executables.

Table 18-1 contains brief descriptions of the contents of each subsection in this section.

Table 18-1. MYNAH DCE Extension Sections

Section Name Description
Section
Number

DCE Overview This section contains a basic
discussion on DCE.

18.1,
Page 18–2

Overview of Scripting This section provides basics on
creating DCE scripts.

18.3,
Page 18–4

Using the Emulated Client and
Emulated Server in MYNAH
System

This section describes how to use the
emulated client and emulated server
executables to test DCE applications.

18.4,
Page 18–5

Interface Object This section contains the Tcl
extensions for working with an
interface object.

18.5,
Page 18–11

IDL Types This section contains the Tcl
extensions for working with Interface
Description Language (IDL) files.

18.6,
Page 18–14

RPC Calls in the Emulated Client This section contains scripting
information on working with RPC
Calls in the Emulated Client.

18.7,
Page 18–69

RPC Calls in the Emulated Server This section contains scripting
information on working with RPC
Calls in the Emulated Server.

18.10,
Page 18–72
 18–1

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.1 DCE Overview

This section provides you with a high-level understanding of DCE. It is not meant to be a
complete tutorial on DCE.

18.1.1 DCE Architecture

DCE provides distributed application programming in the form of the client-server
model. In this model, a server is an application that provides a service. A client, on the
other hand, is an application that requests a server to perform some service on its behalf.

Specifically, DCE uses the Remote Procedure Call (RPC) mechanism to accomplish
client-server processing. Using RPCs, the client calls a procedure that appears to be a local
procedure. In reality, the procedure that is really invoked is one that is defined in a server
application.

The RPCs that a client can call (and that a server must provide) are defined in the interface.

18.1.2 Interface Definition

The interface provides the cohesion between client and server, defining the operations that
a client may call and that a server must provide. Since an operation may take data as input
and may produce data as output, the interface must also define the what this data looks like.

The interface itself is defined by a set of Interface Description Language (IDL) files.
Collectively, the IDL files define the operations the client may call and all data types into
and out of the operations.

Constants This section contains information on
the Tcl created constant for the
interface.

18.11,
Page 18–73

Destroying Objects This section contains information on
destroying interface objects.

18.12,
Page 18–74

Deleting Handles and Objects This section contains information on
deleting DCE handles.

18.13,
Page 18–75

Table 18-1. MYNAH DCE Extension Sections

Section Name Description
Section
Number
18–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3

e
as C

E

tubs in
t as a

tails
18.1.3 IDL File

An IDL file resembles a C header file. In fact, the syntax of the IDL file is based on the
syntax for C declarations.

Within the IDL file you will find type definitions and operation declarations. Type
definitions resemble the C typedef syntax. Operation declarations resemble ANSI C
procedure declarations with the addition of annotations on each procedure parameter.
These annotations determine the data flow (client to server, server to client, or both) for
each parameter.

18.2 Developing a DCE Application

The steps in developing an application depend on whether the application will be a client
or a server. Both routes start the same: the interface must be defined.

18.2.1 DCE Client Development

Once the interface is defined, the interface must be compiled (using the idl tool) to produce
client stubs and an interface header file. These stubs define local procedures that resemble
the operations defined in the interface. When the client application calls one of these local
procedures, the DCE library forwards the request to the server for execution of the actual
procedure.

The interface header file is #include’d by other source files in the client application. Th
header file provides C prototypes for the operations defined in the interface, as well
versions of the type definitions.

The client application must be linked with the generated client stubs and with the DC
runtime libraries.

18.2.2 DCE Server Development

In the server side, the interface must also be compiled. This time it produces server s
addition to the interface header file. These stubs provide the necessary hooks so tha
request comes in, DCE can invoke the correct server procedure.

The developer must implement the RPC operations defined in the interface. This en
writing C procedures for each operation.

Analogous to the client application, the server application must be linked with the
generated server stubs and the DCE runtime library.
 18–3

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.3 Overview of Scripting

Before you begin, the MYNAH administrator must build emulated clients and servers.

The emulated client is essentially an interactive Tcl interpreter with additional commands
in support of the DCE domain.

The emulated server is also an interactive Tcl interpreter, but it is more complex than the
emulated client due to the fact that DCE is in control instead of the Tcl interpreter. DCE
only turns control over to Tcl temporarily when a DCE request comes in.

Once the emulated clients and servers have been built, you can then use them to test DCE
applications. Section 18.4 describe the commands used to start the emulated clients and
servers.

In the following language overview, the following conventions will be used:

hData Handle to any data item

hStruct Handle to a structure

hUnion Handle to a union

hEnum Handle to an enum

hInterface Handle to an interface

hPointer Handle to a pointer.

18.3.1 Emulated Client

Using an emulated client, you interact with a real DCE server by

1. Connecting to a server

2. Creating input data

3. Creating holders for output data

4. Calling the rpc

5. Verifying output values.

18.3.2 Emulated Server

Using an emulated server, you interact with a real DCE client by

1. Starting the emulated server, providing a script containing definitions for all RPCs

2. Exercising client application (using other domain extensions)
18–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.4 Using the Emulated Client and Emulated Server in MYNAH
System

This section describes how to use the emulated client and emulated server executables to
test DCE applications within in the MYNAH System framework.

18.4.1 Overview

Using the methods presented below, you may write MYNAH scripts that start an emulated
client or emulated server process, and capture all output from each operation that is
executed. This captured output is compared against a baselined image, which updates the
compares for the MYNAH script.

18.4.2 Using the Emulated Client

The following methods are used to start an emulated client.

18.4.2.1 xmyDceStartClient

xmyDceStartClient \
-user dce-user \
-password dce-password \
-dir directory \
-entry CDS-entry \
-script client-script

Returns

The asynchronous connection handle on which the DCE emulated client is run

Description

The xmyDceStartClient method first logs into DCE using dce-user and
dce-password. It then starts the emulated client executable found in directory/client.
The client uses the CDS entry CDS-entry for communicating with the server. The
client runs the DCE script directory/client-script.

The name of each output file is dce.client.opname.sequence-number, where opname
is the name of the operation and sequence-number is incremented for each operation
that is executed. The baseline images used for comparison are found in the directory
directory/baselined.images.

xmyDceStartClient should be followed by the xmyDceWaitForClient command.
 18–5

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Exceptions

Asynchronous connection exceptions

Example

> set clientConn [xmyDceStartClient \
-user "ksb" \
-password "mm_dce" \
-dir "/u/dce-stuff/tcl-dce/unit-tests/testing"\
-entry "/.:/test/locnet/empty-g" \
-script "empty-client-stubs.tcl" \
]

18–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.4.2.2 xmyDceWaitForClient

xmyDceWaitForClient connectionHandle

Returns

An empty string

Description

The xmyDceWaitForClient method waits for output from the emulated client
running on connectionHandle. As it receives output, it compares the new output
against the baselined output in directory/baselined.images. The comparison is made
using the xmyDiff command, which updates the compares for the running MYNAH
script.

Exceptions

Asynchronous connection exceptions

Example

> xmyDceWaitForClient $clientConn
 18–7

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.4.3 Using the Emulated Server

The following methods are used to start an emulated server.

18.4.3.1 xmyDceStartServer

xmyDceStartServer \
-user dce-user \
-password dce-password \
-dir directory \
-entry CDS-entry \
-script server-script \
?-timeout timeout?

Returns

The asynchronous connection handle on which the DCE emulated server is run

Description

The xmyDceStartServer method first logs into DCE using dce-user and
dce-password. Then it starts the emulated server executable found in directory/server.
The server creates an entry in the group entry at CDS-entry for communicating with
the client; it also creates an entry for the server using CDS-entry.host.pid. The server
runs the DCE script directory/server-script. If the timeout parameter is provided, and
is non-zero, it represents the amount of time (in minutes) that the server should be
allowed to run.

The name of each output file is dce.server.opname.sequence-number, where opname
is the name of the operation and sequence-number is incremented for each operation
that is executed. The baseline images used for comparison are found in the directory
directory/baselined.images.

xmyDceStartServer should be followed by the xmyDceWaitForServer command.

Exceptions

Asynchronous connection exceptions

Example

> set serverConn [xmyDceStartServer \
-user "ksb" \
-password "mm_dce" \
-dir "/u/dce-stuff/tcl-dce/unit-tests/testing" \
-entry "/.:/test/locnet/empty-g" \
-script "empty-server-stubs.tcl" \
-timeout 5 \
]

18–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.4.3.2 xmyDceWaitForServer

xmyDceWaitForServer connectionHandle

Returns

An empty string

Description

The xmyDceWaitForServer method waits for output from the emulated server
running on connectionHandle. As it receives output, it compares the new output
against the baselined output in directory/baselined.images. The comparison is made
using the xmyDiff command, which updates the compares for the running MYNAH
script.

Exceptions

Asynchronous connection exceptions

Example

> xmyDceWaitForServer $serverConn
 18–9

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.4.4 Using the Emulated Server for Starting a Long-Running Server

Test scripts may use the xmyDceStartIndependentServer method to bring up a
long-running emulated server process. This method does not perform any comparisons on
the outputs.

18.4.4.1 xmyDceStartIndependentServer

xmyDceStartIndependentServer \
-user dce-user \
-password dce-password \
-dir directory \
-entry CDS-entry \
-script server-script \
-log logFile

Returns

The process id of the emulated server process

Description

The xmyDceStartIndependentServer method behaves like xmyDceStartServer,
however, it creates a long-running server that runs in the background. Therefore, no
comparisons are made against baselined outputs. Instead, all output from the server
executable is dumped into the log file given by logFile.

Exceptions

Asynchronous connection exceptions

Example

> xmyDceStartIndependentServer \
-user "ksb" \
-password "mm_dce" \
-dir "/u/dce-stuff/tcl-dce/unit-tests/testing" \
-entry "/.:/test/locnet/empty-g" \
-script "empty-server-stubs.tcl" \
-log "iserver.log"
18–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.5 Interface Object

The interface is available at runtime through a handle. The name of the handle is based on
the name of the interface: interface-name. This handle may be used to determine
information about the interface at script execution time.

There is only one method, info, which takes an argument noting the information that is
being queried.

18.5.1 name

hInterface info name

Returns

The name of the interface

Description

The name argument returns the name of the interface from the interface definition.

18.5.2 uuid

hInterface info uuid

Returns

The UUID of the interface

Description

The uuid argument returns the unique identifier of the interface from the interface
definition.

18.5.3 major-version

hInterface info major-version

Returns

The major version number of the interface

Description

The major-version argument returns the major version of the interface from the
interface definition.
 18–11

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.5.4 minor-version

hInterface info minor-version

Returns

the minor version number of the interface

Description

The minor-version argument returns the minor version of the interface from the
interface definition.

18.5.5 isClient

hInterface info isClient

Returns

1 if the interface is in an emulated client, 0 otherwise

Description

The isClient argument determines at runtime if the interface is running in an emulated
client or emulated server.

18.5.6 isServer

hInterface info isServer

Returns

1 if the interface is in an emulated server, 0 otherwise

Description

The isServer argument determines at runtime if the interface is running in an emulated
client or emulated server.
18–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.5.7 constants

hInterface info constants

Returns

The list of all constants defined in the interface

Description

The constants argument returns a list of all constants defined in the interface.

18.5.8 types

hInterface info types

Returns

The list of all types defined in the interface

Description

The constants argument returns a list of all types defined in the interface.

18.5.9 rpcs

hInterface info rpcs

Returns

The list of all operations defined in the interface

Description

The rpcs argument returns a list of all operations defined in the interface.
 18–13

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6 IDL Types

There are three categories of IDL types methods in the DCE Package:

Intrinsic These are data instances that are the basic building blocks, the foundation
pieces on which the IDLs are created.

Aggregates These are data instances that contain other data instances. Their bindings
mimic their underlying data layout; the binding contains other bindings.
These are all are user-defined types. They can be implemented by using
array and pointer types. Since these constructs are used frequently and
would require more Tcl-level manipulations, the fake types were created
to mask some of the hassle involved in accessing the types.

DCE Types These are data instances that do not exist as independent types in the DCE
specification. The generic interface for these types are presented later. The
specific interface depends on the definition of the user-defined type.

Table 18-2 lists the DCE IDL type extensions, organizing them into the categories listed
above.

Table 18-2. DCE IDL Type Extensions (Sheet 1 of 3)

Category Method Description Section

Intrinsic bool Creates a boolean object. 18.6.2,
Page 18–19

byte Creates a byte object. 18.6.4,
Page 18–23

char Creates a character (ASCII) object.18.6.5,
Page 18–25

double Creates a double (64-bit floating
point number) object.

18.6.6,
Page 18–27

enumerations Creates an enumeration object,
which contains a set of symbolic
constants

18.6.7,
Page 18–29

error_status_t Creates an error_status_t object,
which is an enumerated type used
to contain DCE error codes.

18.6.8,
Page 18–31

float Creates a float object, which is an
32-bit floating point number.

18.6.9,
Page 18–33

handle_t Creates a handle_t object, which
represents a connection to a server.

18.6.10,
Page 18–35
18–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
hyper Creates a hyper object, which is an
64-bit signed integer from -263 to
263-1.

18.6.11,
Page 18–40

long Creates a long object, which is a
32-bit signed integer from -231 to
231-1.

18.6.12,
Page 18–42

pointer Creates a pointer object, which is
an indirect reference to another
object.

18.6.14,
Page 18–47

short Creates a short object, which is a
16-bit signed integer from -32768
to 32767.

18.6.15,
Page 18–50

small Creates a small object, which is an
8-bit signed integer from -128 to
127

18.6.16,
Page 18–52

uhyper Creates an unsigned hyper object,
which is an 64-bit unsigned integer
from 0 to 264-1.

18.6.19,
Page 18–58

ulong Creates an unsigned long object,
which is an 32-bit unsigned integer
from 0 to 232-1.

18.6.20,
Page 18–60

ushort Creates an unsigned short object,
which is an 16-bit unsigned integer
from 0 to 65535.

18.6.22,
Page 18–65

usmall Creates an unsigned small object,
which is an 8-bit unsigned integer
from 0 to 255.

18.6.23,
Page 18–67

Aggregates array Creates an array object, which is an
ordered series of objects.

18.6.1,
Page 18–17

pipe Creates a pipe object. 18.6.13,
Page 18–44

structure Creates a structure object, which is
a group of related objects.

18.6.18,
Page 18–56

union Creates a character object.
discriminating unions

18.6.21,
Page 18–62

Table 18-2. DCE IDL Type Extensions (Sheet 2 of 3)

Category Method Description Section
 18–15

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

he

All IDL extensions have a “contstructor” method that creates the handle to the IDL. T
constructor takes the form make-idltype, where idltype is the name of the IDL type.

In addition, the Intrinsic and DCE Types have set and get methods, which, respectively, let
you set and return the values of the handle to the IDL.

Special Types buffer Creates a buffer object. 18.6.3,
Page 18–21

string Creates a string object. 18.6.17,
Page 18–54

Table 18-2. DCE IDL Type Extensions (Sheet 3 of 3)

Category Method Description Section
18–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.1 array

An array is an ordered sequence of objects. This describes the interface to a generic
enumerated type.

There is no method for creating a generic array object. However, if a typedef exists
defining a new type name for an array (with a fixed size), you can create an instance of that
particular array.

18.6.1.1 make-array Constructor

Syntax

make-array

Returns

A handle to the newly created array object.

Description

Creates an array object and returns a handle to the object.

Exceptions

Out of memory

18.6.1.2 elements Method

Syntax

hArray elements

Returns

Handles to all the array elements.

Description

Returns the handles of all the elements in the array.
 18–17

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.1.3 index Method

Syntax

hArray index ?method args?

Returns

The result of applying method to the object at index in the array.

Description

Invokes method and args on the object at the index position in the array. If method is
not given, returns the handle of the object at that position.

Example

> set a [make-xbbMsgOutput_t]
> $a elements
.xmyDceBinding0 .xmyDceBinding1 .xmyDceBinding2
> $e 0 type get
the-type

Exceptions

• Index is out of range

• Can’t apply method and/or args to element object
18–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.2 bool

A bool is an boolean value. It has two values: TRUE and FALSE.

18.6.2.1 make-bool Constructor

Syntax

make-bool ?initial-value?

Returns

A handle to the newly created bool object.

Description

Creates a bool object and returns a handle to the bool.

Exceptions

• Out of memory

• Illegal initial value

18.6.2.2 get Method

Syntax

hBool get

Returns

TRUE or FALSE

Description

Returns the state of the boolean value as either TRUE or FALSE.
 18–19

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.2.3 set Method

Syntax

hBool set newValue

Returns

Empty string

Description

Sets the value of the bool based on newValue, which can be 1, TRUE, ON, or YES
for TRUE values or 0, FALSE, OFF, or NO for FALSE values.

Example

> set b [make-bool]
> $b set TRUE
> $b get
TRUE

Exceptions

Illegal value for newValue
18–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.3 buffer

A buffer is an null-terminated ASCII character sequence, which has a fixed-size array of
characters reserved for it.

18.6.3.1 make-buffer Constructor

Syntax

make-buffer length ?initial-value?

Returns

A handle to the newly created buffer object.

Description

Creates a buffer object and returns a handle to the buffer. The size of the buffer is given
by the length parameter.

Exceptions

Out of memory

18.6.3.2 get Method

Syntax

hBuffer get

Returns

A string.

Description

Returns the string stored in the buffer.
 18–21

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.3.3 set Method

Syntax

hBuffer set newValue

Returns

Empty string

Description

Stores newValue into the buffer object represented by hBuffer. If newValue is longer
than the buffer allows, the string is truncated.

Example

> set s [make-buffer 10]
> $s set {abcdefghijklmnop}
> $s get
abcdefgki

18.6.3.4 length Method

hBuffer length

Returns

the length of the buffer

Description

Returns the size of the largest string that can be stored in the buffer.

Example

> set s [make-buffer 10]
> $s set {abcdefghijklmnop}
> $s length
10
18–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.4 byte

A byte is an 8-bit unsigned integer. It can contain the values from 0 to 255.

18.6.4.1 make-byte Constructor

Syntax

make-byte ?initial-value?

Returns

A handle to the newly created byte object.

Description

Creates a byte object and returns a handle to the byte.

Exceptions

• Out of memory

• Illegal initial value

18.6.4.2 get Method

Syntax

hByte get

Returns

A number between 0 and 255.

Description

Returns the stored number.
 18–23

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.4.3 set Method

Syntax

hByte set newValue

Returns

Empty string

Description

Stores newValue into the byte object represented by hByte.

Example

> set b [make-byte]
> $b set 255
> $b get
255

Exceptions

Illegal value for number
18–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.5 char

A char is an 8-bit unsigned integer, like the byte type. It can contain the values from 0 to
255. It is treated as an ASCII character.

18.6.5.1 make-char Constructor

Syntax

make-char ?initial-value?

Returns

A handle to the newly created char object.

Description

Creates a char object and returns a handle to the char.

Exceptions

• Out of memory

• Illegal initial value

18.6.5.2 get Method

Syntax

hChar get

Returns

The ASCII character stored in the char.

Description

Returns the character stored.
 18–25

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.5.3 set Method

Syntax

hChar set newValue

Returns

Empty string

Description

Stores newValue into the char object represented by hChar.

Example

> set ch [make-char]
> $ch set c
> $ch get
c

Exceptions

Illegal character
18–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.6 double

A double is an 64-bit floating point number.

18.6.6.1 make-double Constructor

Syntax

make-double ?initial-value?

Returns

A handle to the newly created double object.

Description

Creates a double object and returns a handle to the double.

Exceptions

• Out of memory

• Illegal initial value

18.6.6.2 get Method

Syntax

hDouble get

Returns

A floating point number.

Description

Returns the stored number.
 18–27

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.6.3 set Method

Syntax

hDouble set newValue

Returns

Empty string

Description

Stores newValue into the double object represented by hDouble.

Example

> set f [make-double]
> $f set 3.14159265
> $f get
3.14159265

Exceptions

Illegal value for number
18–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.7 enumeration

An enumeration is a type that contains a set of symbolic constants, each associated with a
distinct value. This describes the interface to a generic enumerated type.

18.6.7.1 make-enum Constructor

Syntax

make-enum ?initial-value?

Returns

A handle to the newly created enumeration object.

Description

Creates an enumerated type object and returns a handle to the object.

Exceptions

• Out of memory

• Illegal initial value

18.6.7.2 get Method

Syntax

hEnum get

Returns

The symbolic representation of the value.

Description

Returns the value of the enumerated type in symbolic representation.
 18–29

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.7.3 set Method

Syntax

hEnum set newValue

Returns

Empty string

Description

Stores newValue into the enumerated type object represented by hEnum.

Example

> set e [make-xbbTraceLevel_e]
> $e set idl_TRACE_O
> $e get
idl_TRACE_O

Exceptions

Illegal value

18.6.7.4 values Method

Syntax

hEnum values

Returns

The list of all allowed values.

Description

Returns the list of all legal values of the enumerated type in symbolic representation.
18–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.8 error_status_t

An error_status_t is an enumerated type used to contain DCE error codes. Refer to the DCE
references for the allowed values. It is implemented as an enumerated type, and supports
the standard enumeration methods (see Section 18.6.7).

There are currently 273 valid values for error_status_t. The most important one is
rpc_s_okay, which is used to represent a successful RPC call.

18.6.8.1 make-error_status_t Constructor

Syntax

make-error_status_t ?initial-value?

Returns

A handle to the newly created error_status_t object.

Description

Creates an error_status_t object and returns a handle to the object.

Exceptions

• Out of memory

• Illegal initial value

18.6.8.2 get Method

Syntax

hErrorStatusT get

Returns

The symbolic representation of the value.

Description

Returns the value of the error_status_t in symbolic representation.
 18–31

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.8.3 set Method

hErrorStatusT set newValue

Returns

Syntax

Empty string

Description

Stores newValue into the error_status_t object represented by hErrorStatusT.

Example

> set e [make-error_status_t]
> $e set rpc_s_not_listening
> $e get
rpc_s_not_listening

Exceptions

Illegal value

18.6.8.4 values Method

Syntax

hErrorStatusT values

Returns

The list of all allowed values.

Description

Returns the list of all legal values of the error_status_t in symbolic representation.
18–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.9 float

A float is an 32-bit floating point number.

18.6.9.1 make-float Constructor

Syntax

make-float ?initial-value?

Returns

A handle to the newly created float object.

Description

Creates a float object and returns a handle to the float.

Exceptions

• Out of memory

• Illegal initial value

18.6.9.2 get Method

Syntax

hFloat get

Returns

A floating point number.

Description

Returns the stored number.
 18–33

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.9.3 set Method

Syntax

hFloat set newValue

Returns

Empty string

Description

Stores newValue into the float object represented by hFloat.

Example

> set f [make-float]
> $f set 3.14159265
> $f get
3.14159265

Exceptions

Illegal value for number
18–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.10 handle_t

A handle_t represents a connection to a server. In DCE, this is also known as an
rpc_binding_handle_t.

18.6.10.1 make-handle_t Constructor

Syntax

make-handle_t

Returns

A handle to the newly created handle_t object.

Description

Creates a handle_t object and returns a handle to the handle_t object.

Exceptions

Out of memory

18.6.10.2 make uuid_t Constructor

Syntax

make-uuid_t ?initialValue?

Returns

A handle to the newly created uuid_t object.

Description

Creates a uuid_t object and returns a handle to it. If specified, initialValue is used as
the value of the object; otherwise a new UUID value is created.

Exceptions

If initialValue is ““ or “NULL”, the value of the object is the NULL UUID.
 18–35

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.10.3 get Method

Syntax

hHandle_t get

Returns

The id of the handle.

Description

Returns the id of the handle_t object.

18.6.10.4 get Method

Syntax

hUuid get

Returns

Returns the value of the UUID object.
18–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3

ts
18.6.10.5 set Method

Syntax

hHandle_t set newValue

Returns

Empty string

Description

Stores newValue into the handle_t object represented by hHandle_t.

18.6.10.6 set Method

Syntax

hUuid_t set newValue

Returns

Empty string

Description

Sets the value of the ZUUID object to newValue. If new Value is ““ or “NULL”, se
the value of the object to the NULL UUID value.

Example

> set u [make- uuid]
> u get
=> 8a781e06-f3d6-11d0-83e6-80606abaaa77
> u set NULL
> u get

18.6.10.7 bind Method

Syntax

hHandle_t bind CDSentry

Returns

Empty string

Description

Binds the handle_t object to the server represented by CDSentry. CDSentry is either
a server or a group entry in the Cell Directory Service (CDS).
 18–37

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Example

> set handle [make-handle_t]
> $handle bind /.:/test/locnet/adv-group

Exceptions

CDS entry does not exist
18–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.10.8 setAuthentication Method

Syntax

hHandle_t setAuthentication protection authenticationService \
authorizationService

Returns

Empty string

Description

Sets the authentication of the handle_t object.

The bind member function must be called prior to calling this method.

protection is the protection level, which can be one of default, none, connect, call,
pkt, pkt_integ, or pkt_privacy. The default value is default.

authenticationService is the authentication service code, which can be one of none,
dce_secret, dce_public, and default. The default value is default.

authorizationService is the authorization service code, which can be one of none,
name, or dce. The default value is none.

Example

> set handle [make-handle_t]
> $handle bind /.:/test/locnet/adv-group
> $handle setAuthentication pkt_privacy dce_public dce

Exceptions

Bind has not been called
 18–39

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.11 hyper

A hyper is an 64-bit signed integer. It can contain the values from -263 to 263-1. Since Tcl
does not support 64-bit integers, the Tcl interface uses two 32-bit hexadecimal integers to
represent the hyper value. The pair of integers is in high-word, low-word format.

18.6.11.1 make-hyper Constructor

Syntax

make-hyper ?initial-value?

Returns

A handle to the newly created hyper object.

Description

Creates a hyper object and returns a handle to the hyper.

Exceptions

• Out of memory

• Illegal initial value

18.6.11.2 get Method

Syntax

hHyper get

Returns

The pair of hexadecimal numbers representing the hyper integer.

Description

Returns the stored number.
18–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.11.3 set Method

Syntax

hHyper set newValue

Returns

Empty string

Description

Stores newValue into the hyper object represented by hHyper. newValue must be a
pair of hexadecimal integers.

Example

> set i [make-hyper]
> $i set {0000 0005}
> $i get
0000 0005

Exceptions

Illegal value for number
 18–41

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.12 long

A long is an 32-bit signed integer. It can contain the values from -231 to 231-1.

18.6.12.1 make-long Constructor

Syntax

make-long ?initial-value?

Returns

A handle to the newly created long.

Description

Creates a long object and returns a handle to the long.

Exceptions

• Out of memory

• Illegal initial value

18.6.12.2 get Method

Syntax

hLong get

Returns

A number between -231 to 231-1.

Description

Returns thestored number.
18–42

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.12.3 set Method

Syntax

hLong set newValue

Returns

Empty string

Description

Stores newValue into the long object represented by hLong.

Example

> set i [make-long]
> $i set 5
> $i get
5

Exceptions

Illegal value for number
 18–43

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.13 pipe

A pipe is type that allows a large volume of data to be transferred from the client to the
server or vice versa. This describes the interface to a generic enumerated type.

This implementation of pipes uses files as the source and sink for the transfer of pipe data.
There are two different sets of operations based on whether the pipe is used in an emulated
client or an emulated server. Note also that there are two methods for each side of the
transfer: one for an input pipe and another for an output pipe. If a pipe is bidirectional (ie,
transfers both input and output data), both methods are available.

18.6.13.1 make-pipe Constructor

Syntax

make-pipe

Returns

A handle to the newly created pipe object.

Description

Creates a pipe object and returns a handle to the object.

Exceptions

Out of memory

18.6.13.2 setInputFilename Method

Syntax

hPipe setInputFilename filename

Returns

Empty string

Description

The setInputFilename method sets the source for an input pipe. It is only available to
the client emulator. This method is a setup step. The file is not opened until an RPC
that uses the pipe is called.

If the file can not be created, a DCE runtime exception will be thrown.
18–44

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.13.3 setOutputFilename Method

Syntax

hPipe setOutputFilename filename

Returns

Empty string

Description

The setOutputFilename method sets the sink for an output pipe. It is only available
to the client emulator. This method is a setup step. The file is not opened until an RPC
that uses the pipe is called.

If the file can not be opened, a DCE runtime exception will be thrown.

18.6.13.4 dumpFile Method

Syntax

hPipe dumpFile filename

Returns

Empty string

Description

The dumpFile method reads the data from the input pipe and dumps it to the file. It is
used by the emulated server.

Unlike the client methods, this method reads the data from the pipe and stores it in the
file immediately.

Exceptions

Output file, filename, can not be created
 18–45

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.13.5 readFile Method

Syntax

hPipe readFile filename

Returns

Empty string

Description

The readFile method reads the data from the file and sends it to the output pipe. It is
used by the emulated server.

Unlike the client methods, this method opens the file immediately.

Exceptions

Input file, filename, does not exist
18–46

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.14 pointer

A pointer is an indirect reference to another object. Whereas in C, a pointer has a specific
type, these pointers are generic. There is no type checking performed on the values being
stored in a pointer. The string NULL is used to denote a NULL pointer.

18.6.14.1 make-pointer Constructor

Syntax

make-pointer ?initial-value?

Returns

A handle to the newly created pointer object.

Description

Creates a pointer object and returns a handle to the pointer. If initialValue is specified,
it is the handle to another object — the object towhich the pointer is pointing.

Exceptions

• Out of memory

• Illegal initial value

18.6.14.2 get Method

Syntax

hPointer get

Returns

The handle of the object to which the pointer is pointing.

Description

Returns the target object or NULL if the object is not pointing to another object.
 18–47

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.14.3 set Method

Syntax

hPointer set newValue

Returns

Empty string

Description

Makes the pointer point to the object associated with newValue.

Exceptions

• Pointer points to NULL

• Illegal value

18.6.14.4 -> (dereference) Method

Syntax

hPointer -> method args

Returns

The result of invoking method on the object being pointed to.

Description

Dereferences the pointer object and invokes the specified method (method) on the
dereferenced object with the associated arguments (args).

Example

> set p [make-pointer]
> set f [make-float 3.14159265]
> $p set $f
> $p -> get
3.14159265
> $p -> set 0.0
> $f get
0.0

Exceptions

• Pointer points to NULL

• method and/or args does not apply to dereferenced object
18–48

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.14.5 get-pointer-contents Method

Syntax

hPointer get-pointer-contents

Returns

The address stored in the real pointer.

Description

Returns the address that is stored in the real pointer, not the name of the handle
associated with that object. This method is provided for debugging purposes.
 18–49

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.15 short

A short is an 16-bit signed integer. It can contain the values from -32768 to 32767.

18.6.15.1 make-short Constructor

Syntax

make-short ?initial-value?

Returns

A handle to the newly created short object.

Description

Creates a short object and returns a handle to the short.

Exceptions

• Out of memory

• Illegal initial value

18.6.15.2 get Method

Syntax

hShort get

Returns

A number between -32768 and 32767.

Description

Returns the stored number.
18–50

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.15.3 set Method

Syntax

hShort set newValue

Returns

Empty string

Description

Stores newValue into the short object represented by hShort.

Example

> set i [make-short]
> $i set 5
> $i get
5

Exceptions

Illegal value for number
 18–51

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.16 small

A small is an 8-bit signed integer. It can contain the values from -128 to 127.

18.6.16.1 make-small Constructor

Syntax

make-small ?initial-value?

Returns

A handle to the newly created small object.

Description

Creates a small object and returns a handle to the small.

Exceptions

• Out of memory

• Illegal initial value

18.6.16.2 get Method

Syntax

hSmall get

Returns

A number between -128 and 127.

Description

Returns the stored number.
18–52

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.16.3 set Method

Syntax

hSmall set newValue

Returns

Empty string

Description

Stores newValue into the small object represented by hSmall.

Example

> set i [make-small]
> $i set 5
> $i get
5

Exceptions

Illegal value for number
 18–53

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.17 string

A string is an null-terminated ASCII character sequence.

18.6.17.1 make-string Constructor

Syntax

make-string ?initial-value?

Returns

A handle to the newly created string object.

Description

Creates a string object and returns a handle to the string.

Exceptions

Out of memory

18.6.17.2 get Method

Syntax

hString get

Returns

A string.

Description

Returns the stored string.
18–54

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.17.3 set Method

Syntax

hString set newValue

Returns

Empty string

Description

Stores newValue into the string object represented by hString.

Example

> set s [make-string]
> $s set {abcdefg hijklmnop}
> $s get
abcdefg kijklmnop
 18–55

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.18 structure

A structure is a user-defined type that is a group of related data objects. This describes the
interface to a generic structure.

There are two constructors available: one for structures that contain a conformant array and
one for structures without a conformant array. A conformant array is an array with a size
determined at runtime. The second constructor is provided to set this runtime size.

WARNING — A structure object defines a method called
members, which is used to return the names of all the
structure’s members. This method overrides an actual
member named members. Therefore, do not use a
structure member named members.

18.6.18.1 make-struct Constructor

Syntax

make-struct

Returns

A handle to the newly created structure object.

Description

Creates an structure object and returns a handle to the object.

Exceptions

Out of memory

18.6.18.2 make-struct Constructor Containing a Conformant Array

Syntax

make-struct size

Returns

A handle to the newly created structure.

Description

Creates an structure object and returns a handle to the object. This is used for structures
that contain a conformant array. The size parameter determines the number of
elements in the conformant array.
18–56

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
Exceptions

Out of memory

18.6.18.3 members Method

Syntax

hStruct members

Returns

The names of all members of the structure.

Description

Returns a list of the names of the members of the structure.

18.6.18.4 memberName Method

Syntax

hStruct memberName ?method args?

Returns

The result of applying method to the member given by memberName.

Description

Retrieves the member of the structure using memberName. Invokes method and args
on this member. If method is not given, this returns the name of the member object.

Example

> set envTrace [make-xbbHdr_t]
> $envTrace trace set idl_TRACE_A
> $envTrace log set idl_LOG_LVL2
> $envTrace trace get
idl_TRACE_A
> $envTrace log get
idl_LOG_LVL2

Exceptions

• No member with name memberName

• Can’t apply method and/or args to member object
 18–57

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.19 uhyper

A uhyper is an 64-bit unsigned integer. It can contain the values from 0 to 264-1. Like its
signed counterpart, access to the integer is achieved through a pair of high and low words.

18.6.19.1 make-uhyper Constructor

Syntax

make-uhyper ?initial-value?

Returns

A handle to the newly created uhyper object.

Description

Creates au hyper object and returns a handle to the uhyper.

Exceptions

• Out of memory

• Illegal initial value

18.6.19.2 get Method

Syntax

hUhyper get

Returns

The pair of hexadecimal numbers representing the uhyper integer.

Description

Returns the stored number.
18–58

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.19.3 set Method

Syntax

hUhyper set newValue

Returns

Empty string

Description

Stores newValue into the uhyper object represented by hUhyper. newValue must be
a pair of hexadecimal integers.

Example

> set i [make-uhyper]
> $i set {0000 0005}
> $i get
0000 0005

Exceptions

Illegal value for number
 18–59

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.20 ulong

A ulong is an 32-bit unsigned integer. It can contain the values from 0 to 232-1.

18.6.20.1 make-ulong Constructor

Syntax

make-ulong ?initial-value?

Returns

A handle to the newly created ulong object.

Description

Creates a long object and returns a handle to the ulong.

Exceptions

• Out of memory

• Illegal initial value

18.6.20.2 get Method

Syntax

hUlong get

Returns

A number between 0 and 232-1.

Description

Returns the stored number.
18–60

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.20.3 set Method

Syntax

hUlong set newValue

Returns

Empty string

Description

Stores newValue into the ulong object represented by hUlong.

Example

> set i [make-ulong]
> $i set 5
> $i get
5

Exceptions

Illegal value for number
 18–61

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.21 union

A union is a user-defined type, much like a structure. However, all members shared the
same memory, so only one member is valid at any given time. A union has an additional
member, known as the discriminant, which is valid at all times. The discriminant is the key
that determines which of the other members is valid. In order to access a member, that
member must first be valid.

This describes the interface to a generic union.

WARNING — A union object defines a method called
members, which is used to return the names of all the
union’s members. This method overrides an actual
member named members. Therefore, do not use a union
member named members.

18.6.21.1 make-union Constructor

Syntax

make-union

Returns

A handle to the newly created union object.

Description

Creates a union object and returns a handle to the object.

Exceptions

Out of memory

18.6.21.2 members Method

Syntax

hUnion members

Returns

The names of all members of the union.

Description

Returns a list of the names of the members of the union. This list does not include the
discriminant.
18–62

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.21.3 memberName Method

Syntax

hUnion memberName ?method args?

Returns

The result of applying method to the member given by memberName.

Description

Retrieves the member of the union using memberName. Invokes method and args on
this member. If method is not given, returns the name of the member object.

If the member is not currently valid, an exception is thrown.

Exceptions

• No member with name memberName

• Can’t apply method and/or args to member object

• Member is not valid

18.6.21.4 tagName Method

Syntax

hUnion tagName

Returns

The name of the tag containing the discriminant of the union.

Description

Returns the name of the discriminant of the union.
 18–63

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

the
18.6.21.5 tagName Method to Retrieve Discriminant

Syntax

hUnion tagName ?method args?

Returns

The result of applying method to the discriminant given by tagName.

Description

Retrieves the discriminant of the union using tagName. Invokes method and args on
this member. If method is not given, returns the name of the discriminant object.

Exceptions

• No member with name memberName

• Can’t apply method and/or args to discriminant object

18.6.21.6 currentTag Method

Syntax

hUnion currentTag

Returns

The name of the union member that is currently valid (based on discriminant).

Description

Returns the name of the union member that is currently valid. This depends on
value of the discriminant of the union.

Example

> set u [make-myUnion]
> $u tagName
theTag
> $u currentTag
alpha
> $u alpha get
a
> $u beta get
error: beta is not active; alpha is currently active

Exceptions

Discriminant value out of domain
18–64

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.22 ushort

A ushort is an 16-bit unsigned integer. It can contain the values from 0 to 65535.

18.6.22.1 make-ushort Constructor

Syntax

make-ushort ?initial-value?

Returns

A handle to the newly created ushort object.

Description

Creates a short object and returns a handle to the ushort.

Exceptions

• Out of memory

• Illegal initial value

18.6.22.2 get

Syntax

hUshort get

Returns

A number between 0 and 65535.

Description

Returns the stored number.
 18–65

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.22.3 set

Syntax

hUshort set newValue

Returns

Empty string

Description

Stores newValue into the ushort object represented by hUshort.

Example

> set i [make-ushort]
> $i set 5
> $i get
5

Exceptions

Illegal value for number
18–66

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.6.23 usmall

A usmall is an 8-bit unsigned integer. It can contain the values from 0 to 255.

18.6.23.1 make-usmall Constructor

Syntax

make-usmall ?initial-value?

Returns

A handle to the newly created usmall object.

Description

Creates a small object and returns a handle to the usmall.

Exceptions

• Out of memory

• Illegal initial value

18.6.23.2 get Method

Syntax

hUsmall get

Returns

A number between 0 and 255.

Description

Returns the stored number.
 18–67

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.6.23.3 set Method

Syntax

hUsmall set newValue

Returns

Empty string

Description

Stores newValue into the usmall object represented by hUsmall.

Example

> set i [make-usmall]
> $i set 5
> $i get
5

Exceptions

Illegal value for number
18–68

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3

’s
18.7 RPC Calls in the Emulated Client

ATcl command is created for each operation defined in the interface. The command name
is the name of the operation. The parameters to the command are the handles to the actual
data objects to be used for the transfer. All handles must point to valid data objects. Input
parameters must be initialized; output parameters do not have to be initialized.

Syntax

RPC ?arg ...?

Returns

Handle to the return value of the RPC call, as defined in the interface definition.

Description

This is how to call an RPC. Each parameter in the interface definition (including
output parameters) must be provided via handles to the real data.

Example

In this example, result is an error_status_t object which contains the DCE status of
the RPC call. The value rpc_s_okay means that the call was successful from DCE
point of view.

> set result [xbdValidateAddr $handle $streetAddr \
$status $msg $output]

> $result get
rpc_s_okay

Exceptions

• Call timed out

• RPC is not defined in the interface

• Wrong number of arguments
 18–69

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.8 Printing Objects

18.8.1 print

The following print routine is valid for all types defined in the IDL.

Syntax

$handle print label ?fileId?

Returns

Printout of the specified object or an empty string.

Description

The print method dumps the contents of a data handle in text format. If the object
contains nested objects (e.g., arrays, structures, unions, pointers), the contained
objects are also displayed.

If fileId is provided, the output goes to the file handle. fileId must be created using
Tcl’s open command. If fileId is not provided, the output goes to standard output.

label is used as the label of the main object.

Example

> set x [make-mystruct1_t]
> $x print x

x (struct) = ‘mystruct1_t’ {
a_char (char) = ‘c’
a_short (short) = 0

}

Exceptions

fileId was not opened for writing
18–70

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.9 Getting the Type of an Object - typeOfHandle

All objects may retrieve their type using the typeOfHandle method.

Syntax

handle typeOfHandle

Returns

A string representing the type of the object

Description

The typeOfHandle method returns the type of the object. The current types returned
are BYTE, CHAR, SMALL, USMALL, SHORT, USHORT, LONG, ULONG,
HYPER, UHYPER, FLOAT, DOUBLE, BUFFER, STRING, ENUM, STRUCT,
UNION, ARRAY, POINTER, HANDLE_T, ERROR_STATUS_T, BOOLEAN,
PIPE.

Example

> set x [make-mystruct1_t]

> $x typeOfHandle
STRUCT
 18–71

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.10 RPC Calls in the Emulated Server

In the emulated server, DCE is in control until an RPC request is made. At that point, the
Tcl command with the name of the operation is called. Handles are created for each of the
parameters; these handles are passed on the command line. The Tcl command is a
user-defined procedure which is responsible for producing valid output values in the output
parameters, and for returning a valid return value.

The following procedure represents a template for the RPC procedures. In this example, the
operation takes two input parameters (handle and streetAddr), and produces three output
parameters (status, msg, and output). In addition, the operation returns an object of type
error_status_t indicating the status of the RPC call.

proc xbdValidateAddr {handle streetAddr status msg output} {
puts "entered xbdValidateAddr"
display streetAddr
...
compute status, msg, and output
...
return [make-error_status_t rpc_s_okay]

}

If any error occurs within a procedure for an operation, the emulated server replies with an
error status of rpc_s_unknown_reject.
18–72

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.11 Constants

A Tcl command is created for each constant defined in the interface. The command name
is the name of the constant. The return value of the command is the value of the constant,
as a string.

Syntax

constantName

Returns

The value of the constant defined in the interface

Description

Constants can represent numeric or textural values.
 18–73

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 any
in an

y
 the
18.12 Destroying Objects

All objects instantiated may be removed using the destroy method.

18.12.1 destroy

Syntax

handle destroy

Returns

An empty string

Description

The destroy method removes the handle from Tcl’s command space. It also frees
resources associated with the handle. Subsequent use of the handle will result
error.

If the object is part of a larger object (e.g., a member of a structure), the memor
associated with the object is not freed until the container object is deleted. Only
name of the Tcl handle is deleted.

This is equivalent to using the low-level Tcl rename command as follows in the
example.

Example

Both of these are equivalent:

> $object destroy

> rename $object {}
18–74

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3

uced
18.13 Deleting Handles and Objects

The xmyDceScope method is used to automatically delete objects that were created. In
addition, there are a series of methods that can be used to support xmyDceScope.

18.13.1 xmyDceScope

Syntax

xmyDceScope body

Returns

The result of executing body

Description

The xmyDceScope command evaluates the Tcl commands in body, ensuring that all
objects created in body are deleted when finished. This is done regardless of the reason
that body exits, through error, normal exit, or one of Tcl’s flow control statments
(return, continue, break).

This method is particularly useful around calls to RPCs to ensure that all data prod
as a result of calling the RPC is deleted.

There is currently a limitation that there can only be one scope active at a time.
Therefore, scopes can not be nested.

Example

> xmyDceScope {
set in [make-long 5]; # create an input parameter
set out [make-pointer]; # create an output parameter
rpc-call $in $out; # call the RPC
$out print out; # print the output parameter

}; # delete in and out

Exceptions

Another scope is active
 18–75

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.13.2 Methods Supporting the Deletion of Objects

These commands are provided for backward-compatibility. They should not be used in new
scripts. The new xmyDceScope command should be used instead.

18.13.2.1 xmyDceDeleteHandles

Syntax

xmyDceDeleteHandles ?handle1? ... ?HandleN?

Returns

An empty string

Description

The xmyDceDeleteHandles command deletes all the handles given as arguments.
There is no error checking done to determine if the handles exist. This is used for bulk
deletion of handles.

Examples

This deletes the handles clientConn1 and clientConn2.

> xmyDceDeleteHandles clientConn1 clientConn2

This delete all handles.

> xmyDceDeleteHandles [info commands .xmyDceBinding*]
18–76

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.13.2.2 xmyDceDeleteAllHandles

Syntax

xmyDceDeleteAllHandles

Returns

An empty string

Description

The xmyDceDeleteAllHandles command deletes all handles used by DCE. These are
commands that match .xmyDceBinding*. There is no error checking.

Examples

These two example are equivalent.

> xmyDceDeleteHandles [info commands .xmyDceBinding*]

> xmyDceDeleteAllHandles

18.13.2.3 xmyDceDeleteDataHandles

Syntax

xmyDceDeleteDataHandles

Returns

An empty string

Description

The xmyDceDeleteDataHandles command deletes all handles that are not of type
handle_t.

Example

This delete all data handles.

> xmyDceDeleteDataHandles
 18–77

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.13.2.4 xmyDceSaveHandles

Syntax

DCE Package:Handles:Restoring

xmyDceSaveHandles

Returns

An empty string

Description

The xmyDceSaveHandles command saves the list of all handles currently in use. The
xmyDceRestoreHandles command deletes all handles not in this list. The list is
stored in the xmyG_HandlesToSave associative array.

Example

This saves and restores a set of handles.

> xmyDceSaveHandles

> #contents of a script

> xmyDceRestoreHandles

18.13.2.5 xmyDceRestoreHandles

Syntax

xmyDceRestoreHandles

Returns

An empty string

Description

The xmyDceRestoreHandles command restores the set of handles to the set
previously marked with xmyDceSaveHandles. It does this by deleting all of the
handles that were not marked using xmyDceSaveHandles.

Example

This saves and restores a set of handles.

> xmyDceSaveHandles

> # contents of a script

> xmyDceRestoreHandles
18–78

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.14 Getting the Interface- xmyDceInterface

You may get the name of the current interface handle using the xmyDceInterface
command.

Syntax

xmyDceInterface

Returns

The name of the interface handle

Description

The xmyDceInterface command returns the name of the interface that is being used
in the emulated client or emulated server.

Example

> set interface [xmyDceInterface]

> $interface name
tutorial

> $interface uuid
000b6ed6-debb-11a1-bcc2-80606abaaa77
 18–79

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.15 DCE/Async Commands

The xmyDceRecordEnterOperation, xmyDceRecordExitOperation, and
xmyDceCallRpc commands are used for integrating with the MYNAH System using the
TermAsync package. They are only used in the emulated client, and have no effect if not
running under the TermAsync package (i.e., XMY_DCE_RUNNING_UNDER_ASYNC
is not set).

These commands are used in the template scripts produced by the parser.

18.15.1 xmyDceRecordEnterOperation

Syntax

xmyDceRecordEnterOperation operationName

Returns

An empty string

Description

The xmyDceRecordEnterOperation command records the entry into the operation.

Example

> xmyDceRecordEnterOperation rpc-1
> rpc-1 $handle $output; # call the RPC
> $output print output; # dump the output parameter
> xmyDceRecordExitOperation rpc-1 “OKAY”
18–80

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 DCE Extension Package
Revision 1, February 1999 Release 5.3
18.15.2 xmyDceRecordExitOperation

Syntax

xmyDceRecordExitOperation operationName status

Returns

An empty string

Description

The xmyDceRecordExitOperation command records the exit status of the operation.

status must be one of OKAY, EVAL_FAILED, PARAM_BAD,
ILLEGAL_RETURN, RETURN_BAD, CLIENT_OP_FAILED

Example

xmyDceRecordEnterOperation rpc-1
rpc-1 $handle $output; # call the RPC
$output print output; # dump the output parameter
xmyDceRecordExitOperation rpc-1 “OKAY”
 18–81

MYNAH System Scripting Guide BR 007-252-004
DCE Extension Package Issue 4, December 1998
Release 5.3 Revision 1, February 1999
18.15.3 xmyDceCallRpc

Syntax

xmyDceCallRpc rpc ?args?

Returns

The result of calling rpc

Description

The xmyDceCallRpc command calls the RPC with the arguments, catching any Tcl
error response. If an error occurs, it calls xmyDceRecordExitOperation with
CLIENT_OP_FAILED status and rethrows the error.

Example

Record an exit due to an error return from the RPC.

xmyDceRecordEnterOperation rpc-1
xmyDceCallRpc rpc-1 $handle $output; # call the RPC
$output print output; # dump the outputs
xmyDceRecordExitOperation rpc-1 “OKAY”
18–82

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 GUI Tcl Language Extensions
Revision 1, February 1999 Release 5.3
19. GUI Tcl Language Extensions

The GUI test domain of the MYNAH system provides the ability to test GUI applications
running under the X Window System or Microsoft® Windows® 3.1, Windows95, or
Windows NT® systems. It does this by interfacing to existing vendor tools (e.g.,
QA Partner™ and SQA®).

There are no language extensions provided specifically for the GUI test domain. Users
write test scripts for the specific tool they are using. The MYNAH System treats these
scripts just like any other MYNAH script. They must, however, be executed as special
engines that are configured for the appropriate vendor tool. They may execute the scripts
using the MYNAH GUI or the MYNAH CLUI, or as a child script of another MYNAH
script using the Child Script language extensions. See the description of Child Script
language extensions in Section 8.

19.1 Accessing the MYNAH Symbol Table

The MYNAH System is shipped with scripts that let the GUI test tools access the MYNAH
symbol table, which is important for data flow between SEs.

NOTE — These scripts are implemented for QA Partner,
only. They have not yet been implemented for SQA.

To use these scripts, you must edit their GUI test script (e.g., a QA Partner script) to include
the appropriate script as determined by Table 19-1.

You can use the general MYNAH Tcl extensions (xmySymTblExists, xmySymTblGet,
and xmySymTblPut) to manipulate the Symbol Table. In addition, you can use
xmyMYNAHIsRunning to determine if the GUI tool is running under MYNAH control

NOTE — For information on the Symbol Table and the
general MYNAH Tcl extensions, see Section 6.

a. You cannot use the environment variable $XMYDIR; you must enter the full path to $XMYDIR.

Table 19-1. Choosing a GUI Test Tool Include Script

If you use this GUI tool … Enter this line in your GUI test script

QA Partner use "<XMYDIR>/lib/qap/xmy.inc"a

SQA TBD
 19–1

MYNAH System Scripting Guide BR 007-252-004
GUI Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999

nning
 tool.

 the

 for a
Table 19-2 lists extensions (and their syntax) you must enter in your GUI test script to
manipulate the Symbol Table.

19.2 SQA Pointer Scripts

Syntax

xmyPointerScript
set xmyPointerScript(res) {}
set xmyPointerScript(remoteScript) {}
xmyPointerScriptEnd

Description

By default, the MYNAH System uses the xmyConfig Engine entry’s ExecScript
parameter to forward execution requests to a Remote Execution Server (RES) ru
on a PC. The RES acts as an agent for the SE, running the script with the SQA

An SE that uses ExecScript does not run the user script within the SE; the script
specified by the ExecScript parameter is run in the SE. The user script is passed in
global variable xmyVar(ScriptName). The user script on UNIX points to the real
script on the PC.

In order to determine to which PC the execution request should be sent, the SE
consults the Remote Execution Server DataBase (RESDB) containing the RESs
particular SEGroup within an SD. This database is accessed through Tcl.

Instead of using the ExecScript parameter, you may want create a pointer script on
UNIX choose a specific RES on which to run the script.

NOTE — You may wish to create a MYNAH Script
object for the pointer script. This step is optional, and is
necessary only if you want to use the MYNAH test
management functions.

Table 19-2. GUI Test Tool Symbol Table Extensions

If you use this
GUI tool …

Enter these lines in your GUI test script to manipulate the
Symbol Table

QA Partner BOOLEAN exists = xmySymTblExists("SymbolName")
STRING value = xmySymTblGet("SymbolName")
xmySymTblPut("SymbolName", "value")
BOOLEAN mynah = xmyMYNAHIsRunning()

SQA TBD
19–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 GUI Tcl Language Extensions
Revision 1, February 1999 Release 5.3
The pointer script documents where to find the real vendor, mapping the script on
UNIX to the real script on the remote machine (typically a PC). It may also be used to
bypass the RESDB to force the script to run on a specific host.

The pointer script is sourced at the global level after the ExecScript is sourced but
before it starts any processing.

The pointer script requires the following methods.

NOTE — There should be nothing else in the pointer
script; comments are allowed.

Example

xmyPointerScript
set xmyPointerScript(res) {klehrpc.pc259 30001}
set xmyPointerScript(remoteScript) {c:\scripts\test.scr}
xmyPointerScriptEnd

xmyPointerScript A required header comment that signifies that
this is a pointer script. If the script does not
begin with this comment, the execution aborts.

xmyPointerScript(res) A list containing the host and port of the RES
that should be used for executing this script. If
xmyPointerScript(res) is set to an empty
string, the RES will be chosen from the
RESDB.

xmyPointerScript(remoteScript) The name of the script on the remote machine.
If set to the empty string, the basename of the
script is used in computing the name of the
remote script.

xmyPointerScriptEnd A required footer comment.
 19–3

MYNAH System Scripting Guide BR 007-252-004
GUI Tcl Language Extensions Issue 4, December 1998
Release 5.3 Revision 1, February 1999
19–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20. Conversion Runtime Procedures

This section describes the Tcl procedures supplied with the MYNAH System that support
the runtime environment for scripts converted from MYNAH 4.x. These procedures are
provided to help you better understand the converted scripts that invoke these procedures.

NOTE — While these procedures do not provide much
utility for new scripts developed using the MYNAH 5.3
Tcl extensions, you can create scripts using these
procedures.

Where appropriate the following section headings will list the MYNAH 5.3 Tcl procedure
first and then the MYNAH 4.x command, e.g., xmyCompareLines / compare-lines.

In addition, each section begins with a table mapping the MYNAH Tcl procedure with the
corresponding MYNAH 4.x command(s). If no corresponding MYNAH 4.x command
exists, this table cell will contain NA.

20.1 FIN Scripts

This section contains the procedures that were created for working with FIN scripts only.

Table 20-1 list the MYNAH 5.3 Tcl procedure, the MYNAH 4.x FIN command, and the
section where the description of the MYNAH 5.3 Tcl procedure can be found.

Table 20-1. FIN Commands to MYNAH 5.3 Mappings

MYNAH 5.3 Tcl Procedure MYNAH 4.x FIN
command(s)

Section

ASYNCconnect NA Section 20.1.1

xmyBreakLines compare-lines,
print-response,
log-for-phaser

Section 20.1.2

xmyCompareLines compare-lines Section 20.1.3

xmyGetEnvFin getenv Section 20.1.4

xmyLastPart last-part Section 20.1.5

xmy_ListToAttributeFin atr Section 20.1.6

xmyRecordCompareFin test, compare-lines Section 20.1.7

xmySetOutputLevelFin print-level Section 20.1.8

xmyTransKeyFin NA Section 20.1.9
 20–1

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.1.1 ASYNCconnect

Syntax

ASYNCconnect

Return

Async connection handle

Description

The ASYNCconnect procedure returns an existing Async connection handle or, if one
does not exist, creates and returns a new Async connection handle.

Example

> ASYNCconnect
20–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.1.2 xmyBreakLines / (compare-lines, print-response, log-for-phaser)

Syntax

xmyBreakLines async_response ?list_of_modifiers?

Return

A list of lines

Description

The xmyBreakLines procedure breaks the lines of a response into a list of lines,
according to the modifiers list, and returns it. This procedure is used to implement the
FIN commands listed above.

xmyBreakLines takes the following attributes:

Examples

• The MYNAH 4.X compare-lines code (comparing patterns)

compare-lines from-pattern "abc"
to-pattern "-echoke"
columns 1 99
expect
:abababababab
end

translates to

xmyRecordCompareFin $conn_async \
[xmyCompareLines $conn_async \

[xmyBreakLines [$conn_async response] \
[list [list from-pattern [xmyTCLTransRE "abc"]] \

[list to-pattern \
[xmyTCLTransRE "-echoke"]] {columns 1 99}]] {
"abababababab"

}]

async_response The output of a handle’s response method.

list_of_modifiers The optional modifiers list specified for the compare-lines,
print-response, or log-for-phaser FIN commands.
 20–3

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
• The MYNAH 4.X compare-lines code (comparing lines)

compare-lines from-line 1
to-line 5 fields 1 5 field-delimiter " "
mask "abc" "123"
expect
:abababababab
end

translates to

xmyRecordCompareFin $conn_async \
[xmyCompareLines $conn_async \

[xmyBreakLines [$conn_async response] \
[list {from-line 1} {to-line 5} \

{fields 1 5} {field-delimiter " "} \
[list mask [xmyTCLTransRE "abc"] "123"]]] {
"abababababab"

}]

• The MYNAH 4.X log-for-phaser code

The MYNAH 4.X code

log-for-phaser from-line 1
to-line 3
expect
:ananana
end

translates to

foreach XX_1 [xmyBreakLines [$conn_async \
response] [list {from-line 1} {to-line 3}]] {
xmyPrint -text "++ ${XX_1}"

}

20–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.1.3 xmyCompareLines / compare-lines

Syntax

xmyCompareLines conn_async async_lines expected_lines

Return

0 - if the comparison failed
1 - if the comparison was successful

Description

The xmyCompareLines procedure compares two sets of lines, performing wildcard
matching based on the Async handle’s -wildcard attribute. The result of the
comparison, either 0 or 1, is returned. The value 0 means failure, and 1 means success.
See also Section 20.1.2, xmyBreakLines / (compare-lines, print-response,
log-for-phaser).

xmyCompareLines takes the following attributes:

Example

The MYNAH 4.X code

compare-lines from-pattern "abc"
to-pattern "-echoke"
columns 1 99
expect
:abababababab
end

translates to

xmyRecordCompareFin $conn_async \
[xmyCompareLines $conn_async [xmyBreakLines \

[$conn_async response] \
[list [list from-pattern [xmyTCLTransRE "abc"]] \

[list to-pattern \
[xmyTCLTransRE "-echoke"]] {columns 1 99}]] {
"abababababab"

}]

conn_async A handle to an asynchronous connection.

async_lines The lines from the conn_async handle.

expected_lines The number of expected lines.
 20–5

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.1.4 xmyGetEnvFin / getenv

Syntax

xmyGetEnvFin env_variable

Return

A string containing the value of the env_variable

Description

The xmyGetEnvFin procedure gets an environment variable value and returns it. If
the variable does not exist, a string containing a single space is returned.

xmyGetEnvFin takes the following attribute:

Example

The MYNAH 4.X code

set x = getenv("HOME")

translates to

set x [xmyGetEnvFin "HOME"]

env_variable A string containing the environment variable name.
20–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.1.5 xmyLastPart / last-part

Syntax

xmyLastPart conn_async ?number_of_chars?

Return

A string

Description

The xmyLastPart procedure emulates the FIN’s built-in last-part function. If a
non-zero number_of_chars is passed, then that number of characters is returned from
the end of the response. Otherwise, enough characters to make the response unique are
returned.

xmyLastPart takes the following attributes:

Example

The MYNAH 4.X code

wait-until ((last-part(2)) == "9H")

translates to

$conn_async wait {[string compare \
[xmyLastPart $conn_async 2] "9H"] == 0}

conn_async A handle to an asynchronous connection

number_of_chars The number of characters from the end of the response
 20–7

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.1.6 xmy_ListToAttributeFin / atr

Syntax

xmy_ListToAttributeFin list_of_attributes

Return

A number

Description

The xmy_ListToAttributeFin procedure translates a MYNAH 5.3 ASYNC character
attribute list into a FIN character attribute number and returns it.

xmy_ListToAttributeFin takes the following attribute:

Example

The MYNAH 4.X code

set attribute = atr(Row, Column)

translates to

set attribute [xmy_ListToAttributeFin [$conn_async \
getAttributes -position [list $Row $Column]]]

list_of_attributes Lists the attributes returned by the getAttributes method.
20–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.1.7 xmyRecordCompareFin / (test, compare-lines)

Syntax

xmyRecordCompareFin conn_async expr_result

Return

A number

Description

The xmyRecordCompareFin procedure records the results of a comparison in the
xmyCompare global variable code and the MYNAH xmyVar variables, such as
xmyVar(GoodCompares) and xmyVar(FailedCompares). However, it does not
affect the handle’s comparison value and therefore need not be called if the comparison
is done through a handle method. The value of the expr_result parameter is returned.

xmyRecordCompareFin takes the following attributes:

Examples

• The MYNAH 4.X test code

test x == 10
expect
:1
end

translates to

xmyRecordCompareFin $conn_async [expr {[string compare \
[expr {$x == 10}] "1"] == 0}]

• The MYNAH 4.X compare-lines code

compare-lines from-pattern "abc"
to-pattern "-echoke"
columns 1 99
expect
:abababababab
end

translates to

xmyRecordCompareFin $conn_async [xmyCompareLines\
$conn_async \

[xmyBreakLines [$conn_async response] \
[list [list from-pattern \

conn_async Specifies a handle to an asynchronous connection.

expr_result The result of an expression, usually 0 or 1
 20–9

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
[xmyTCLTransRE "abc"]] [list to-pattern \
[xmyTCLTransRE "-echoke"]] \

{columns 1 99}]] {
"abababababab"

}]
20–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.1.8 xmySetOutputLevelFin / print-level

Syntax

xmySetOutputLevelFin

Return

None

Description

The xmySetOutputLevelFin procedure sets the output level to a value corresponding
to the xmyPrintLevel (FIN print-level) value. This procedure may be useful if the user
is familiar with setting the FIN print-level but not the MYNAH 5.3
xmyVar(OutputLevel) .

xmySetOutputLevelFin will perform the following print-level translations:

Example

The MYNAH 4.X code

set print-level = 0

translates to

set xmyPrintLevel 0; xmySetOutputLevelFin

0 set xmyVar(OutputLevel) {}}

1 set xmyVar(OutputLevel) {error compare \
usage sutimage}}

5 set xmyVar(OutputLevel) {error sutimage}}

6 set xmyVar(OutputLevel) {error suttiming}}

default set xmyVar(OutputLevel) {error childscr compare \
script summary sutimage testobj user}}
 20–11

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.1.9 xmyTransKeyFin

Syntax

xmyTransKeyFin keyname

Return

A string

Description

The xmyTransKeyFin procedure translates a key name from FIN into a MYNAH 5.X
ASYNC connection key name and returns it.

xmyTransKeyFin takes the following attribute:

Example

The MYNAH 4.X code

push BS

translates to

$conn_async send -key [xmyTransKeyFin BS]

keyname A string containing the name of the key, e.g., BS.
20–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.2 FUR Scripts

This section contains the procedures that were created for working with FUR scripts only.

Table 20-2 list the MYNAH 5.3 Tcl procedure, the MYNAH 4.x FUR command, and the
section where the description of the MYNAH 5.3 Tcl procedure can be found.

Table 20-2. FUR Commands to MYNAH 5.3 Mappings

MYNAH 5.3 Tcl Procedure MYNAH 4.x FUR
Command(s)

Section

3270connect NA Section 20.2.1

xmyAddMask add_mask Section 20.2.2

xmyDisableMask disable_mask Section 20.2.3

xmyEnableMask enable_mask Section 20.2.4

xmyFieldBegin fldbeg, fldbeg_tag Section 20.2.5

xmyFieldNext fldnext Section 20.2.6

xmyFieldNextTag fldnext_tag Section 20.2.7

xmyGetEnvFur getenv Section 20.2.8

xmy_ListToAttributeFur atr, atr_tag Section 20.2.9

xmy_ListToPositionFur col, fldbeg, fldbeg_tag,
fldnext, fldnext_tag

Section 20.2.10

xmyMoveCursorPattern move_cursor_pattern Section 20.2.11

xmyReconnect reconnect Section 20.2.12

xmyRecordCompareFur test Section 20.2.13

xmySetOutputLevelFur print-level Section 20.2.14
 20–13

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.1 3270connect

Syntax

3270connect

Return

3270 connection handle

Description

The 3270connect procedure returns an existing 3270 connection handle or, if one does
not exist, creates and returns a new 3270 connection handle.

Example

3270connect
20–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.2.2 xmyAddMask / add_mask

Syntax

xmyAddMask mask_name mask_pattern

Return

0 - if the mask_name already existed
1 - if the mask_name was added successfully

Description

The xmyAddMask procedure creates masks to be used by a 3270 connection.
mask_name is used as an index into the global xmyMask array, and the mask_pattern
is used to create an xmyMask. If the mask name and pattern match an existing mask,
no mask is created. Otherwise, a new mask is created and stored, along with any
previous masks in the xmyMask array.

xmyAddMask takes the following attributes:

Example

The MYNAH 4.X code

set result = add_mask("DATE",
"[0-1][0-9]/[0-3][0-9]/[0-9][0-9]")

translates to

set result [xmyAddMask "DATE" [xmyTCLTransRE \
"\[0-1\]\[0-9\]/\[0-3\]\[0-9\]/\[0-9\]\[0-9\]"]]

mask_name The name of the mask that should be added to the global list of
masks.

mask_pattern The pattern of the mask.
 20–15

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999

20.2.3 xmyDisableMask / disable_mask

Syntax

xmyDisableMask conn_3270 mask_list

Return

0 - if no masks were disabled
1 - if any masks were disabled

Description

The xmyDisableMask procedure disables a set of masks on a 3270 connection. If the
mask_list is empty, all enabled masks in the connection conn_3270 are disabled.
Otherwise, all masks in the xmyMask’s global array under the names given will be
disabled.

xmyDisableMask takes the following attributes:

Examples

• For one mask

The MYNAH 4.X code

set result = disable_mask("DATE")

translates to

set result [xmyDisableMask $conn_3270 "DATE"]

• For a list of masks

The MYNAH 4.X code

set result = disable_mask("DATE,TIME")

translates to

set result [xmyDisableMask $conn_3270 "DATE,TIME"]

• For all masks

The MYNAH 4.X code

set result = disable_mask("")

translates to

set result [xmyDisableMask $conn_3270 ""]

conn_3270 A handle to a 3270 connection

mask_list A comma and space separated list of mask names.
20–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3

d.
20.2.4 xmyEnableMask / enable_mask

Syntax

xmyEnableMask conn_3270 mask_list

Return

0 - if no masks were enabled
1 - if any masks were enabled

Description

The xmyEnableMask procedure enables a set of masks on a 3270 connection. If the
mask_list is empty, all masks referenced by the global array xmyMask are enabled.
Otherwise, all masks in the xmyMask’s array under the names given will be enable
The masks not known through xmyMask will not be enabled through this call.

xmyEnableMask takes the following attributes:

Examples

• For one mask

The MYNAH 4.X code

set result = enable_mask("DATE")

translates to

set result [xmyEnableMask $conn_3270 "DATE"]

• For a list of masks

The MYNAH 4.X code

set result = enable_mask("DATE,TIME")

translates to

set result [xmyEnableMask $conn_3270 "DATE,TIME"]

• For all masks

The MYNAH 4.X code

set result = enable_mask("")

translates to

set result [xmyEnableMask $conn_3270 ""]

conn_3270 A handle to a 3270 connection.

mask_list A comma and space separated list of mask names.
 20–17

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.5 xmyFieldBegin / fldbeg, fldbeg_tag

Syntax

xmyFieldBegin conn_3270 3270_position

Return

A Tcl list for the beginning of a field in the format {row column}

Description

The xmyFieldBegin procedure finds the beginning of a field and returns it as a list.

xmyFieldBegin takes the following attributes:

Examples

• fldbeg using variables

The MYNAH 4.X code

set position = fldbeg(rows, columns)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldBegin $conn_3270 [list -position\
[list $rows $columns]]]]

• fldbeg using row/column values

The MYNAH 4.X code

set position = fldbeg(24, 2)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldBegin $conn_3270 \
[list -position [list 24 2]]]]

conn_3270 A handle to a 3270 connection

3270_position The location of the field being requested.

Either of the following formats is valid:

• {-position {row column}}

• {-tag tag -offset offset}
20–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
• fldbeg_tag with zero offset into the field

The MYNAH 4.X code

set position = fldbeg_tag("employee", 0)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
xmyFieldBegin $conn_3270 \
[list -tag "employee"]]]

• fldbeg_tag with offset into field of 2

The MYNAH 4.X code

set position = fldbeg_tag("employee", 2)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldBegin $conn_3270 \
[list -tag "employee" -offset 2]]]
 20–19

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ing

d
20.2.6 xmyFieldNext / fldnext

Syntax

xmyFieldNext conn_3270 row column ?protected?

Return

A Tcl list for the next field in the format {row column}

Description

The xmyFieldNext procedure returns the location of the next field.

xmyFieldNext takes the following attributes:

Examples

• Using variables

The MYNAH 4.X code

set position = fldnext(rows, columns)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldNext $conn_3270 $rows $columns]]

conn_3270 A handle to a 3270 connection.

row Specifies the starting row. Enter a value from 1 to 27, depend
on the emulated screen size.

A value less than 1 returns the location of the first unprotecte
field.

column Specifies the starting column. Enter a value from 1 to 132,
depending on the emulated screen size.

protected Specifies whether the field is protected. protected is one of the
following:

1 = Processing protected field

0 = Not processing.

Default = 0.
20–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
• Using row/column values and offset of 2 into the field

The MYNAH 4.X code

set position = fldnext(24, 2, 2)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldNext $conn_3270 24 2 2]]

• For the next protected field

The MYNAH 4.X code

set position = fldnext(rows, columns, 1)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldNext $conn_3270 $rows $columns 1]]
 20–21

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.7 xmyFieldNextTag / fldnext_tag

Syntax

xmyFieldNextTag conn_3270 tag offset protected

Return

A Tcl list for the next field in the format {row column}

Description

The xmyFieldNextTag procedure returns the location of the next field.

xmyFieldNextTag takes the following attributes:

Examples

• With zero offset into the field

The MYNAH 4.X code

set position = fldnext_tag("employee", 0)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldNextTag $conn_3270 "employee" 0]]

• With offset into the field of 2

The MYNAH 4.X code

set position = fldnext_tag("employee", 2)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldNextTag $conn_3270 "employee" 2]]

conn_3270 A handle to a 3270 connection

tag The tag name as the starting point

offset The offset from the tag

protected Specifies whether the field is protected

1 = Processing protected field

0 = Not processing.

Default = 0.
20–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
• For the next protected field, with zero offset into the field

The MYNAH 4.X code

set position = fldnext_tag("employee", 0, 1)

translates to

set position [xmy_ListToPositionFur $conn_3270 \
[xmyFieldNextTag $conn_3270 "employee" 0 1]]
 20–23

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.8 xmyGetEnvFur / getenv

Syntax

xmyGetEnvFur env_variable

Return

A string containing the value of the requested variable, or an empty string if the
variable does not exist.

Description

The xmyGetEnvFur procedure gets an environment variable value and returns it.

xmyGetEnvFur takes the following attribute:

Example

The MYNAH 4.X code

set var = getenv("HOME")

translates to

set var [xmyGetEnvFur "HOME"]

env_variable A string containing the environment variable name.
20–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.2.9 xmy_ListToAttributeFur / (atr, atr_tag)

Syntax

xmy_ListToAttributeFur list_of_attributes

Return

A number

Description

The xmy_ListToAttributeFur procedure translates a MYNAH 5.3 3270 field
attribute list into a FUR field attribute number.

xmy_ListToAttributeFur takes the following attribute:

Examples

• atr

The MYNAH 4.X code

set attribute = atr(Row,Column)

translates to

set attribute [xmy_ListToAttributeFur [$conn_3270 \
getAttribute -position [list $Row $Column]]]

• atr_tag with zero offset into the field

The MYNAH 4.X code

set attribute = atr_tag("tag_name", 0)

translates to

set attribute [xmy_ListToAttributeFur [$conn_3270 \
getAttribute -tag "tag_name"]]

• atr_tag with offset into field of 2

The MYNAH 4.X code

set attribute = atr_tag("tag_name", 2)

translates to

set attribute [xmy_ListToAttributeFur [$conn_3270 \
getAttribute -tag "tag_name" -offset 2]]

list_of_attributes Lists the attributes returned by the getAttributes method.
 20–25

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.10 xmy_ListToPositionFur / (col, fldbeg, fldbeg_tag, fldnext,
fldnext_tag)

Syntax

xmy_ListToPositionFur conn_3270 list_row_col

Return

A number that corresponds to the FUR position value

Description

The xmy_ListToPositionFur procedure translates a row-column position list into a
FUR position number.

xmy_ListToPositionFur takes the following attributes:

Example

set positionNumber [xmy_ListToPositionFur $conn_3270 \
[xmyFieldNext $conn_3270 1 2]]

conn_3270 A handle to a 3270 connection.

list_row_col A list having the row and the column.
20–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.2.11 xmyMoveCursorPattern / move_cursor_pattern

Syntax

xmyMoveCursorPattern conn_3270 pattern \
?occurrence ?row ?column ?attribute????

Return

0 - if the pattern is not found
1 - if the pattern is found

Description

The xmyMoveCursorPattern procedure moves the cursor to the desired pattern.

xmyMoveCursorPattern takes the following attributes:

Example

The MYNAH 4.X code

set position = move_cursor_pattern("employee:")

translates to

set position [move_cursor_pattern $conn_3270 "employee:"]

conn_3270 A handle to a 3270 connection

pattern The pattern to search for

occurrence A number specifying which occurrence of the pattern

row The row from where to start looking

column The column from where to start looking

attribute A string to specify 3270 attributes for the pattern, consisting of one
or more of the following characters:

a Match all attributes (default)

u Match unprotected

m Modified unprotected

p Numeric protected

h Highlighted numeric protected

i Invisible modified numeric protected
 20–27

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.12 xmyReconnect / reconnect

Syntax

xmyReconnect conn_3270_var

Return

0 - if it fails to reconnect
1 - if it reconnected successfully

Description

The xmyReconnect procedure recreates a 3270 connection attempting to maintain as
much state as possible across the connections. It will not maintain certain statistically
oriented attributes, such as-dataBytesReceived or -lastKeyPressed.

xmyReconnect takes the following attribute

Example

The MYNAH 4.X code

set position = reconnect()

translates to

set position [xmyReconnect conn_3270]

conn_3270_var The variable that has the handle to a 3270 connection.
20–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.2.13 xmyRecordCompareFur / test

Syntax

xmyRecordCompareFur conn_3270 expr_result

Return

A number

Description

The xmyRecordCompareFur procedure records the results of a comparison in the
global variable xmyCompareCode and the MYNAH xmyVar variables, such as
xmyVar(GoodCompares) and xmyVar(FailedCompares). However it does not
affect the handle’s comparison value and therefore need not be called if the comparison
is done through a handle method. The value of the expr_result parameter is returned.

xmyRecordCompareFur takes the following attributes:

Example

The MYNAH 4.X code

set x = 1
test x == 1
expect
:1
end

translates to

set x 1

xmyRecordCompareFur $conn_3270 [expr {[string compare \
[expr {$x == 1}] "1"] == 0}]

conn_3270 A handle to a 3270 connection

expr_result The result of an expression, usually 0 or 1
 20–29

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.2.14 xmySetOutputLevelFur / print-level

Syntax

xmySetOutputLevelFur

Return

None

Description

The xmySetOutputLevelFur procedure sets the output level to a value corresponding
to the xmyPrintLevel (FUR print-level) value. This procedure may be useful if you
are familiar with setting the FUR print-level but not the MYNAH 5.3
xmyVar(OutputLevel).

xmySetOutputLevelFur will perform the following print-level translations:

Example

The MYNAH 4.X code

set print-level = 3

translates to

set xmyPrintLevel 3; xmySetOutputLevelFur

0 set xmyVar(OutputLevel) {}}

1 set xmyVar(OutputLevel) {error compare \
usage sutimage}}

5 set xmyVar(OutputLevel) {error sutimage}}

6 set xmyVar(OutputLevel) {error suttiming}}

default set xmyVar(OutputLevel) {error childscr compare \
script summary sutimage testobj user}}
20–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3 FIN and FUR Scripts

This section contains the procedures that were created for working with both FIN and FUR
scripts.

Table 20-3 list the MYNAH 5.3 Tcl procedure, the MYNAH 4.x FIN and FUR command,
and the section where the description of the MYNAH 5.3 Tcl procedure can be found.

Table 20-3. FIN and FUR Commands to MYNAH 5.3 Mappings

MYNAH 5.3 Tcl Procedure MYNAH 4.x FIN and
FUR Command(s)

Section

xmyEOF eof Section 20.3.1

xmyAddMonth addmonth Section 20.3.2

xmyAToN aton Section 20.3.3

xmyBreakPoint breakpoint Section 20.3.4

xmyCallPrompt prompt Section 20.3.5

xmyCallShell shell Section 20.3.6

xmyExpand $ Section 20.3.7

xmyFindLibPath load Section 20.3.8

xmyKeylGetKey dbget-key Section 20.3.9

xmyMultiPrompt multiprompt Section 20.3.10

xmyMultiPromptField NA Section 20.3.11

xmy_Open open Section 20.3.12

xmyRand rand Section 20.3.13

xmyReadbreak read Section 20.3.14

xmySetZero NA Section 20.3.15

xmySubString substring Section 20.3.16

xmyTCLTransRE rematch, adiff, addmask Section 20.3.17

xmyTrim trim Section 20.3.18

xmyTypeOf typeof Section 20.3.19
 20–31

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.1 xmyEOF / eof

Syntax

xmy_EOF fp

Return

1 if EOF
0 if not EOF

Description

The xmy_EOF procedure checks if the last character of a file has been read.

xmy_EOF takes the following attribute

fp A file pointer.

Example

The MYNAH 4.X code

while (!eof(file_ponter))
set x = x + 1
continue

endwhile

translates to

while {! [xmy_EOF $file_ponter]} {
incr x 1
continue

}

20–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3.2 xmyAddMonth / addmonth

Syntax

xmyAddMonth date months

Return

The date in seconds after adding months to it

Description

The xmyAddMonth procedure lets you add a number of months to a date.

xmyAddMonth takes the following attributes:

Example

The MYNAH 4.X code

set x = addmonth(today, 3)

which adds 3 months to the current date, translates to

xmyAddMonth [xmyDate] 3

date The result of xmyDate.

months A number specifying the number of months to be added.
 20–33

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.3 xmyAToN / aton

Syntax

xmyAToN number_string

Return

A number contained in the string, if possible, to convert. Returns a 0 if the conversion
fails.

Description

The xmyAToN procedure emulates FIN/FUR’s built-in aton function, converting
strings to numbers. The value it returns is canonical, but no error checking is done on
the input. This is implemented with C’s atof and atoi.

xmyAToN takes the following attribute:

Example

The MYNAH 4.X code

set x = aton("09.44e-34")

translates to

set x [xmyAToN "09.44e-34"]

number_string A string having a number in it.
20–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3.4 xmyBreakPoint / breakpoint

Syntax

xmyBreakPoint

Return

None

Description

The xmyBreakPoint procedure implements FIN/FUR’s breakpoint command,
letting you insert a break point into a script.

Example

The MYNAH 4.X code

breakpoint set x aton("09.44e-34")

translates to

xmyBreakpoint; set x [xmyAToN "09.44e-34"]
 20–35

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.5 xmyCallPrompt / prompt

Syntax

xmyCallPrompt prompt ?default ?noecho??

Return

The return value of xmyPrompt

Description

The xmyCallPrompt procedure emulates the FIN/FUR built-in prompt function.
xmyCallPrompt is used mainly by embedded engines.

xmyCallPrompt takes the following attributes:

Examples

The MYNAH 4.X code

set x = prompt("prompt_string")
set x = prompt("prompt_string", default)
set x = prompt("prompt_string", 0)
set x = prompt("prompt_string", 1)

translates, respectively, to

set x [xmyCallPrompt "prompt_string"]
set x [xmyCallPrompt "prompt_string" $default]
set x [xmyCallPrompt "prompt_string" 0]
set x [xmyCallPrompt "prompt_string" 1]

prompt The string to be used as the prompt

default The default value for the variable. If this is not supplied, the default
value is an empty string.

noecho Specifies whether or not the input should be echoed.

• 1 = no echo

• 0 = echo

Default value = 0.
20–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3.6 xmyCallShell / shell

Syntax

xmyCallShell shell_command

Return

None

Description

The xmyCallShell procedure calls a shell command. At run-time, the MYNAH 4.3
shell "adiff" command is replaced by the MYNAH 5.3 xmyCmd diff method.

xmyCallShell takes the following attribute:

Example

The MYNAH 4.X code

shell "pwd"

translates to

set xmyReturnCode [xmyCallShell "pwd"]

shell_command A string containing the shell command.
 20–37

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.7 xmyExpand / $

Syntax

xmyExpand file_name

Return

An expanded file_name as a string

Description

The xmyExpand procedure performs environment variable expansion on a string.

xmyExpand takes the following attribute:

Example

The MYNAH 4.X code

set x = $("$HOME/scripts")

translates to

set x [xmyExpand "\$HOME/scripts"]

file_name A string containing a file name with environment variables.
20–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3.8 xmyFindLibPath (load)

Syntax

xmyFindLibFile file

Return

A string containing the file name with a path

Description

The xmyFindLibFile procedure looks up a file on $xmyVar(LibraryPath).

In FIN/FUR, the built-in load command would use the library path provided in the
user’s .Xdefaults file to search for the script being loaded. To emulate this
functionality, the xmyFindLibFile procedure uses the LibraryPath of the MYNAH
5.X engine as indicated in the configuration file to search for the SE.

xmyFindLibFile takes the following attribute:

file A string containing the file name.

Example

The MYNAH 4.X code

load abc

translates to

xmySource [xmyFindLibFile "abc.tcl"]
 20–39

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.9 xmyKeylGetKey / dbget-key

Syntax

xmyKeylGetKey key

Return

A string containing the key

Description

The xmyKeylGetKey procedure returns the key corresponding to the value in the
xmyFinFurDB keyed list.

xmyKeylGetKey takes the following attribute:

key The value of a key.

Examples

The MYNAH 4.X code

set x = multiprompt()

translates to

set x [xmyMultiPrompt]
20–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3.10 xmyMultiPrompt / multiprompt

Syntax

xmyMultiPrompt

Return

1 if you are using an embedded SE
0 if you are not using an embedded SE

Description

The xmyMultiPrompt procedure requests input from a user, using the prompts and
variables specified by the previous xmyMultiPromptField calls. xmyMultiPrompt
uses xmy_PromptArgs and xmy_PromptVars to get the arguments to xmyPrompt
and the variables in which to store the results. xmyMultiPrompt does nothing if the
xmyVar(EngineType) is not embedded.

Examples

The MYNAH 4.X code

set x = multiprompt()

translates to

set x [xmyMultiPrompt]

This example sets two prompts and calls xmyMultiPrompt. The password prompt
will not be echoed.

> xmyMultiPromptField var1 "user name : "
"mynah"xmyMultiPromptField var2 \

"password : " "" 1xmyMultiPrompt
 20–41

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.11 xmyMultiPromptField

Syntax

xmyMultiPromptField prompt_variable prompt ?default ?noecho??

Return

None

Description

The xmyMultiPromptField procedure sets up an additional prompt for the next call
to xmyMultiPrompt. If you use a background SE, xmyMultiPromptField sets
prompt_variable to the default value. Otherwise xmyMultiPromptField adds the
prompt_variable and prompt information to the global variables xmy_PromptVars
and xmy_PromptArgs, respectively, for use by xmyMultiPrompt.

xmyMultiPromptField takes the following attributes:

Examples

The MYNAH 4.X code

set x = multiprompt-field(enter_name)
set x = multiprompt-field(enter_name, default)
set x = multiprompt-field(enter_name, 0)
set x = multiprompt-field(enter_name, 1)

translates, respectively, to

xmyMultiPromptField x "enter_name"
xmyMultiPromptField x "enter_name" $default
xmyMultiPromptField x "enter_name" 0
xmyMultiPromptField x "enter_name" 1

prompt_variable The variable to be used to store the input for this prompt.

prompt The string to be used as the prompt.

default The default value for the variable. If this is not supplied, the
default value is an empty string.

noecho Specifies whether or not the input should be echoed.

• 1 = no echo

• 0 = echo

Default value = 0.
20–42

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
This example sets two prompts and calls xmyMultiPrompt. The password prompt
will not be echoed.

> xmyMultiPromptField var1 "user name : " "mynah"
> xmyMultiPromptField var2 "password : " "" 1
> xmyMultiPrompt
 20–43

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.12 xmy_Open / open

Syntax

xmy_Open file mode

Return

A file pointer if successful, 0 if failure

Description

The xmy_Open procedure opens a file, returning a 0 if the file could not be opened.
If the file is opened, xmy_Open returns a file pointer in the format file_###, where
is a number.

xmy_Open takes the following attributes:

Example

The MYNAH 4.X code

set x = open("/tmp/abc", "r")

translates to

set x [xmy_Open "/tmp/abc" "r"]

file A string containing the file name.

mode Sets the file mode

• r = read

• w = write

• a = append
20–44

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3

ocess
20.3.13 xmyRand / rand

Syntax

xmyRand rand_value

Return

A number

Description

The xmyRand procedure lets you delete a batch job.

If rand_value

• <= 0, xmyRand returns the next number in a counter.

• < 0, the counter is first initialized to the absolute value of rand_value.

• = 0 and the counter has not been accessed before, it is first initialized to the pr
id. The xmyRandCounter variable stores the counter globally.

• > 0, xmyRand returns a random number between 0 and rand_value - 1.

xmyRand takes the following attribute:

Example

The MYNAH 4.X code

set x = rand(1)
set x = rand(0)
set x = rand(-1)

translates, respectively, to

set x [xmyRand 1]
set x [xmyRand 0]
set x [xmyRand [expr {- 1}]]

rand_value A number.
 20–45

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.14 xmyReadbreak / read

Syntax

xmyReadBreak line list_of_vars

Return

None

Description

The xmyReadBreak procedure breaks up an input line and places the fields into the
variables based on the xmyReadDelimiter global variable.

xmyReadBreak takes the following attributes:

Example

The MYNAH 4.X code

read fp, variable2

translates to

xmyReadBreak [gets $fp] {variable2} 0

In this example, fp is a file pointer. After the statement is executed, the variables fld1
and fld2 will contain the first two fields of the input line and fld3 will contain the
remainder of the line.

> xmyReadBreak [gets $fp] {fld1 fld2 fld3}

line A line containing multiple fields

list_of_vars A list of variables
20–46

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3.15 xmySetZero

Syntax

xmySetZero array_name subscript op

Return

None

Description

The xmySetZero procedure makes sure elements of arrays translated from FIN/FUR
have a value of 0 when first accessed. This should be used as a trace procedure on the
array.

xmySetZero takes the following attributes:

Example

When the following statement is executed, Tcl invokes xmySetZero with the three
arguments whenever the array IntArray is read or unset.

> trace variable IntArray ru xmySetZero

array_name An array that needs initialization

subscript A subscript that is valid in Tcl

op The operation to be performed on the array, which is any
combination of the following:

• r = read

• w = write

• u = inset
 20–47

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.16 xmySubString / substring

Syntax

xmySubstring string start ?num_of_char?

Return

A string that is a substring of the parameter string

Description

The xmySubstring procedure emulates FIN/FUR’s built-in substring function and
indexes the string from 1 rather than 0.

xmySubstring takes the following attributes:

Example

The MYNAH 4.X code

set x = substr(string, start)
set x = substr(string, start, 5)

translates, respectively, to

set x [xmySubstring $string $start]
set x [xmySubstring $string $start 5]

This example returns mynah project.

> xmySubstring "the mynah project" 5

string The string from which to get the substring.

start A number specifying the starting position.

num_of_char A number specifying the number of characters from the start.
20–48

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.3.17 xmyTCLTransRE / (rematch, adiff, addmask)

Syntax

xmyTCLTransRE reg_expr

Return

A Tcl regular expression

Description

The xmyTCLTransRE procedure is used during the translation of rematch, adiff,
and addmask to FIN/FUR/ADDAM regular expressions into TCL regular
expressions.

xmyTCLTransRE takes the following attribute:

Example

The MYNAH 4.X code

rematch("[a-z]");

translates to

regexp [xmyTCLTransRE "\[a-z\]"] [$handle -data]

reg_expr A FIN/FUR regular expression.
 20–49

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.3.18 xmyTrim / trim

Syntax

xmyTrim string ?mode ?chars??

Return

The trimmed string

Description

The xmyTrim procedure emulates FIN/FUR’s built-in trim function.

xmyTrim takes the following attributes:

Example

The MYNAH 4.X code

set x = trim(string)
set x = trim(string, 1)
set x = trim(string, 2)
set x = trim(string, 3)
set x = trim(string, 4)
set x = trim(string, mode, "abced")

translates, respectively, to

set x [xmyTrim $string]
set x [xmyTrim $string 1]
set x [xmyTrim $string 2]
set x [xmyTrim $string 3]
set x [xmyTrim $string 4]
set x [xmyTrim $string $mode "abced"]

string The string to be trimmed.

mode A number controlling how the characters are stripped.

• 1 - Strip from the end of the string only

• 2 - Strip from the beginning of the string only

• 3 - Strip from both ends of the string only

• 4 - Strip from the entire string.

Default = 1.

chars The characters that need to stripped.

Default = " ".
20–50

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3

20.3.19 xmyTypeOf / typeof

Syntax

xmyTypeOf any_value

Return

The type of any_value as a string

Description

The xmyTypeOf procedure emulates FIN/FUR’s built-in typeof function.

xmyTypeOf takes the following attribute:

Example

The MYNAH 4.X code

set x = typeof(variable)

translates to

set x [xmyTypeOf $variable]

This example returns float.

> xmyTypeOf 5.67

any_value Any value, i.e., an integer, floating point number, string, or file
pointer.
 20–51

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4 Converted ADDAM Scripts

This section contains the procedures that were created for working with ADDAM scripts
only.

Table 20-4 list the MYNAH 5.3 Tcl procedure, the MYNAH 4.x ADDAM command, and
the section where the description of the MYNAH 5.3 Tcl procedure can be found.

Table 20-4. ADDAM Commands to MYNAH 5.3 Mappings

MYNAH 5.3 Tcl Procedure MYNAH 4.x ADDAM
Command(s)

Section

checktags checktags Section 20.4.1

create_dot_out_file NA Section 20.4.2

export export Section 20.4.3

extratags extratags Section 20.4.4

fcifcomp fcifcomp Section 20.4.5

fciffield fciffield Section 20.4.6

fcifmatch fcifmatch Section 20.4.7

get_parm NA Section 20.4.8

postincr NA Section 20.4.9

printf printf Section 20.4.10

prt3270_connect NA Section 20.4.11

readfile readfile Section 20.4.12

reorder reorder Section 20.4.13

setvl setvl Section 20.4.14

soprespc soprespc Section 20.4.15

sprintf sprintf Section 20.4.16

substr substr Section 20.4.17

top_connect NA Section 20.4.18

vl vl Section 20.4.19

xmyImport import Section 20.4.20
20–52

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.1 checktags / checktags

Syntax

checktags handle ?list_of_tags?

Return

Number of additional tags

Description

The checktags procedure creates an FCIF message handle using the data from the
message pointed to by the connection handle. The FCIF compare method is used to
compare the given FCIF message against the list of tags.The number of additional tags
in the FCIF message is returned.

See Section 14 for details on the FCIF compare method.

checktags takes the following attributes:

Example

The MYNAH 4.X code

checktags("allowed list1");

translates to

checktags $handle "allowed list1"

handle Specifies the connection handle.

list_of_tags Specifies an optional list of tags, e.g., {tag1 tag2}.
 20–53

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.2 create_dot_out_file

Syntax

create_dot_out_file handle

Return

Null

Description

The create_dot_out_file procedure copies the message file pointed to by the
connection handle into the file <script name>.out_file in the output directory.

create_dot_out_file takes the following attribute:

Example

> create_dot_out_file $conn1

handle The connection handle of the desired message file.
20–54

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.3 export / export

Syntax

export tag value

Return

The value value added to the symbol table

Description

The export procedure updates the symbol table with the given tag and value attributes.

Example

The MYNAH 4.X code

export("a", "a");

translates to

export "a" "a"
 20–55

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.4 extratags / extratags

Syntax

extratags handle ?list_of_tags?

Return

Number of additional tags

Description

The extratags procedure creates an FCIF message handle using the data from the
message pointed to by the connection handle. FCIF extraTags method is used to
compare the given FCIF message against the list of tags.The list of additional tags in
the FCIF message is returned.

See Section 14 for details on the FCIF compare method.

extratags takes the following attributes:

Example

The MYNAH 4.X code

extratags("allowed list1");

translates to

extratags $handle "allowed list1"

handle Specifies the connection handle.

list_of_tags Specifies an optional list of tags, e.g., {tag1 tag2}.
20–56

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.5 fcifcomp / fcifcomp

Syntax

fcifcomp handle section_name section_number tag offset length\
relational_operator value

Return

-1 - indicates a match but a failed comparison
0 - indicates no matches
1 - indicates a match and the comparison(s) matched successfully

Description

The fcifcomp procedure creates an FCIF message handle using the data from the
message pointed to by the connection handle. The FCIF compareTags method is used
to compare the given FCIF message for the given tag against the given value. The
return code is set depending on the results of the comparison.

See Section 14 for details on the FCIF compareTags method.

fcifcomp takes the following attributes:

Example

The MYNAH 4.X code

fcifcomp("CRS",0,"REC.ACL(2).CTID(1)",0,-1,"=",\
"TN[2016260422]");

translates to

fcifcomp $handle "CRS" 0 "REC.ACL(2).CTID(1)" 0 \
[expr - 1] "=" "TN\[2016260422\]"

handle Specifies the connection handle.

section_name Description of the tag using the section name.

section_number Description of the tag using the section number.

tag Description of the tag using the tag name.

offset Specifies the number of bytes from the beginning of the
section.

length Specifies the length of the tag.

relational_operator Specifies the relational operator used when comparing the
received value with the expect value.

value Value against which the received value will be compared.
 20–57

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999

r, tag

.

20.4.6 fciffield / fciffield

Syntax

fciffield handle output section_name section_number \
tag offset length

Return

Value of the tag found in the FCIF message

Description

The fciffield procedure creates an FCIF message handle using the data from the
message pointed to by the connection handle. The FCIF getTag method is used to get
the value of the tag described by the parameter’s section name, section numbe
name, offset, and length.

See Section 14 for details on the FCIF getTag method.

fciffield takes the following attributes:

Example

The MYNAH 4.X code

fciffield(y,"CRS",0,"REC.ACL(2).ICE(1)",0,-1);

translates to

fciffield $handle y "CRS" 0 "REC.ACL(2).ICE(1)" 0 [expr - 1]

handle Specifies the connection handle.

output Specifies the output containing the value of the requested tag

section_name Description of the tag using the section name.

section_number Description of the tag using the section number.

tag Description of the tag using the tag name.

offset Specifies the offset of the tag.

length Specifies the length of the tag.
20–58

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.7 fcifmatch / fcifmatch

Syntax

fcifmatch handle function order number suffix

Return

0 - if any of the matches fail
1 - if all of the matches are successful

Description

The fcifmatch procedure creates an FCIF message handle using the data from the
message pointed to by the connection handle. The message is compared against the
following regular expressions:

^.....<function>
^...........<order>
^............<number>
^..............<number>
^....................<suffix>

fcifmatch takes the following attributes:

Example

The MYNAH 4.X code

fcifmatch("","","329ADAMS092","");

translates to

fcifmatch $handle "" "" "329ADAMS092" ""

handle Specifies the connection handle.

function Specifies the FCIF header function types (positions 6-8).

order Specifies the FCIF header order type (position 12).

number Specifies the FCIF header order number (positions 13-24 or 15-26).

suffix Specifies the FCIF header correction suffix (position 21)
 20–59

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.8 get_parm

Syntax

get_parm parameter_name

Return

Value of the symbol table value
-1 if the parameter does not exist

Description

The get_parm procedure checks if the given parameter exists in the symbol table. If
it is found, the corresponding value is returned. Else the local parameter list is
searched. If it is found, the corresponding value is returned. Else the global parameter
list is searched. If it is found, the corresponding value is returned. Else, -1 is returned.

get_parm takes the following attribute:

Example

> get_parm $host_name

parameter_name The name of the required parameter.
20–60

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.9 postincr

Syntax

postincr variable increment_value

Return

Original value of the variable

Description

The postincr procedure increments the value of the variable by the value of the
increment.

postincr takes the following attributes:

Example

> postincr $t1 5

variable Specifies the variable to be incremented.

increment_value Specifies the incremental numeric value.
 20–61

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.10 printf / printf

Syntax

printf format arguments

Return

0

Description

The printf procedure formats a string based on the format and arguments supplied.
The output is written to stdout.

printf takes the following attributes:

Example

The MYNAH 4.X code

printf("%s", "abc");

translates to

printf "%s" "abc"

format Specifies the format to be applied to the string.

arguments Specifies any optional format arguments to be applied to the
string.
20–62

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.11 prt3270_connect

Syntax

prt3270_connect

Return

PRT3270 connection handle

Description

The prt3270_connect procedure returns an existing PRT3270 connection handle or if
one does not exist, it creates and returns a new PRT3270 connection handle.

If a new connection handle is created, then the protocol handler name is taken from
the local runtime. It results in an error if the protocol handler is not defined in the local
runtime.

The listen mode attribute for connection is set to the value of the variable
SCRIPT_START_TIME. If this variable is not defined, then the attribute is set to
MSG_LISTEN_NOW.

 Example

> prt3270_connect
 20–63

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.12 readfile / readfile

Syntax

readfile variable filename

Return

null ("") - if the file is not readable
The file contents if the file is read successfully

Description

The readfile procedure reads the specified file and populates the given Tcl variable.

readfile takes the following attributes:

Example

The MYNAH 4.X code

readfile(y, "/tmp/bryan");

translates to

readfile y "/tmp/bryan"

variable Specifies the Tcl variable to be populated by the contents of the
read in file.

filename Specifies the name of the file to be read.
20–64

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.13 reorder / reorder

Syntax

reorder handle aggr_to_reorder ?list_of_tags?

Return

None

Description

The reorder procedure creates an FCIF message handle using the data from the
message pointed to by the connection handle. The FCIF reorder command is used to
reorder the aggregates of both the current and the master FCIF, using the values of tags
inside the aggregates to determine the new ordering of the given FCIF message for the
given tag against the given value.

See Section 14 for details on the FCIF reorder method.

reorder takes the following attributes:

Example

The MYNAH 4.X code

reorder(y, "tag1", "tag2", y, y, y, y, "abc");

translates to

reorder $handle $y "tag1" "tag2" $y $y $y $y "abc"

handle Specifies the connection handle.

aggr_to_reorder Specifies the aggregate to reorder.

list_of_tags Specifies the tags inside the aggregates that are used to
determine the new ordering of the given FCIF message.
 20–65

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.14 setvl / setvl

Syntax

setvl value

Return

Value

Description

The setvl procedure enters a new tag, called VL_OVERRIDE, in the local runtime tag
and sets it to the given value.

Example

> setvl "val_vl"
20–66

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.15 soprespc / soprespc

Syntax

soprespc handle response_code

Return

1 if a match is found, else 0

Description

The soprespc procedure creates an FCIF message handle using the data from the
message pointed to by the connection handle. The FCIF compareTags method is used
to check for a tag "SN" with the given response code.

See Section 14 for details on the FCIF compareTags method.

soprespc takes the following attributes:

Example

The MYNAH 4.X code

soprespc("code");

translates to

soprespc $handle "code"

handle Specifies the connection handle.

response_code Specifies the response code used to check for the SN tag.
 20–67

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.16 sprintf / sprintf

Syntax

sprintf variable format ?arguments?

Return

0

Description

The sprintf procedure formats a string based on the format and arguments
supplied.The given Tcl variable contains the formatted string.

sprintf takes the following attributes:

Example

The MYNAH 4.X code

sprintf(y, "%s %s %d %d %d %d %d", y, "xyz", 5, 6, 7, 8, 9);

translates to

sprintf y "%s %s %d %d %d %d %d" $y "xyz" 5 6 7 8 9

variable Specifies the Tcl variable containing the formatted string.

format Specifies the format to be applied to the string.

arguments Specifies any optional arguments to be applied to the string.
20–68

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.17 substr / substr

Syntax

substr output_string input_string offset ?length?

Return

Substring value

Description

The substr procedure extracts a substring from the given input string. The substring
parameters are offset and length. The extracted substring is returned in the given
output string parameter.

substr takes the following attributes:

Example

The MYNAH 4.X code

substr(y, y, x, x);

translates to

substr y $y $x $x

output_string Specifies the variable that will contain the output string.

input_string Specifies the input string or a variable containing the input string.

offset Specifies the substring offset.

length Specifies the substring length.
 20–69

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.18 top_connect

Syntax

top_connect

Return

TOP connection handle

Description

The top_connect procedure returns an existing TOP connection handle or if one does
not exist, it creates and returns a new TOP connection handle.

If a new connection handle is created, then the protocol handler name is taken from
the local runtime. It results in an error if the protocol handler is not defined in the local
runtime.

The listen mode attribute for connection is set to the value of the variable
SCRIPT_START_TIME. If this variable is not defined, then the attribute is set to
MSG_LISTEN_NOW.

 Example

> top_connect
20–70

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.4.19 vl / vl

Syntax

vl

Return

Value of tag vl if found, else -1

Description

The vl procedure looks for a tag called VL in the symbol table. If the tag is not found,
vl next looks in the local and global runtime parameters. If the tag is found, the value
of the tag is returned. If the tag is not found, nothing is returned.

Example

The MYNAH 4.X code

vl;

translates to

set val_vl [vl]
 20–71

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.4.20 xmyImport / import

Syntax

xmyImport variable_name

Return

Value of passed variable or string if found, else Null ("")

Description

The xmyImport procedure returns the current value of a passed variable. The
processing searches for this passed tag value in, in descending order, the Symbol
Table, the localruntime array, and the globalruntime array. If it is found in any of these
three places, xmyImport returns the found value. If it is not found in any of these three
places, xmyImport returns a NULL ("") value.

Examples

The MYNAH 4.X code

import(y, "w");

translates to

set y [xmyImport "w"]

This example shows returning a value from a passed variable.

> set x "tag_1"
set value1 [xmyImport $x]

This example shows returning a value from a string.

> set value1 [xmyImport "tag_1"]
20–72

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.5 Converted Tsf Scripts

This section contains the procedures that were created for working with Tsf scripts only.

Table 20-4 list the MYNAH 5.3 Tcl procedure, the MYNAH 4.x Tsf command, and the
section where the description of the MYNAH 5.3 Tcl procedure can be found.

Table 20-5. Tsf Commands to MYNAH 5.3 Mappings

MYNAH 5.3 Tcl Procedure MYNAH 4.x Tsf
Command(s)

Section

add_to_symtab_if_not_already_there NA Section 20.5.1

send_app_to_app_message NA Section 20.5.2

send_script NA Section 20.5.3

send_script_and_check_threshold NA Section 20.5.4

set_up_parent_script NA Section 20.5.5

wait_for_child_scripts NA Section 20.5.6

xmyAddToSymTbl NA Section 20.5.7

xmyRunTestEvents NA Section 20.5.8
 20–73

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.5.1 add_to_symtab_if_not_already_there

Syntax

add_to_symtab_if_not_already_there var value

Return

None

Description

The add_to_symtab_if_not_already_there procedure adds the specified variable
and the corresponding value to the symbol table if the variable does not exist in the
symbol table. If the variable exists in the symbol table, nothing is done.

add_to_symtab_if_not_already_there takes the following attributes:

Example

> add_to_symtab_if_not_already_there host_name pyibm1

var Specifies the name of the variable.

value Specifies the value of the variable.
20–74

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3

y
d

20.5.2 send_app_to_app_message

Syntax

send_app_to_app_message handle script ?attributes?

Return

An error if the send fails, else “success”

Description

The send_app_to_app_message procedure processes the given Template script b
substituting the variable names with values from the symbol table. The processe
message is sent to the protocol handler using the given connection handle. The
optional send attributes are used by the send method.

send_app_to_app_message takes the following attributes:

Example

> send_app_to_app_message $conn1 /u/madmin/scripts/s1

handle Specifies the connection handle.

script Specifies the name of the template script to be processed.

attributes Specifies the optional attributes to be sent to the handle.
 20–75

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.5.3 send_script

Syntax

send_script se_group script ?attributes?

Return

The string the child script execution returns

Description

The send_script procedure sets the given attributes as local run time in the symbol
table. It also sets the script start time in the local run time, if the tag exists in the local
run time. The given script is sent to the given SE Group for processing or it is locally
processed if single engine execution is specified.

The return code resulting from the child script execution is returned.

send_script takes the following attributes:

Example

> send_script SeGp1 /opt/SUNWmyn/scripts/s1.tcl

se_group Specifies the SE Group processing the script.

script Specifies the name of the script to be sent to the SE Group.

attributes Specifies any optional attributes to be set in the symbol table.
20–76

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3

f an

l
if the
r

ount
s" is

up.

.

20.5.4 send_script_and_check_threshold

Syntax

send_script_and_check_threshold se_group script ?attributes?

Return

The string “success” if the child script succeeds. The script terminates in case o
error and the error count exceeds a given threshold.

Description

The send_script_and_check_threshold procedure sets the given attributes as loca
run time in the symbol table. It also sets the script start time in the local run time,
tag exists in the local run time. The given script is sent to the given SE Group fo
processing or it is locally processed if single engine execution is specified.

If the given script execution fails, then the error count is incremented.If the error c
exceeds the given threshold, then the script execution terminates. Else "succes
returned.

send_script_and_check_threshold takes the following attributes:

Example

> send_script_and_check_threshold \
SeGp1 /opt/SUNWmyn/scripts/s1.tcl

se_group Specifies the SE Group processing the script.

script Specifies the name of the child script to be sent to the SE Gro

attributes Specifies any optional attributes to be set in the symbol table
 20–77

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.5.5 set_up_parent_script

Syntax

set_up_parent_script threshold_limit user_db_file_name

Return

Null ("")

Description

The set_up_parent_script procedure adds the specified threshold limit to the symbol
table. set_up_parent_script also read the specified user db file.

set_up_parent_script takes the following attributes:

Example

> set_up_parent_script 1 /opt/SUNWmyn/mynah_home/data/userdb

threshold_limit Specifies the threshold limit to be added to the symbol
table.

Default = 0.

user_db_file_name Specifies the name of the user database file.

Default = "" (null).
20–78

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3
20.5.6 wait_for_child_scripts

Syntax

wait_for_child_scripts msg_handles_list

Return

Exits if the threshold is exceeded, else returns Null ("")

Description

The wait_for_child_scripts procedure waits for the child scripts, specified in the list
of message handles, to complete. If any of the message handles fails, the script
threshold count is increased. If the count is greater than the threshold limit, all child
scripts specified in the list of message handles are cancelled and the parent script exits
with the string exceeded threshold.

wait_for_child_scripts takes the following attribute:

Example

> wait_for_child_scripts $mh set mh {m1 m2 m3 m4}

msg_handles_list The list of message handles.
 20–79

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999
20.5.7 xmyAddToSymTbl

Syntax

xmyAddToSymTbl list_of_variable/value_pairs

Return

None

Description

The xmyAddToSymTbl procedure updates the symbol table with the given
variable/value pairs if the given variable does not already exist in the symbol table.

xmyAddToSymTbl takes the following attribute:

Example

> xmyAddToSymTbl {
{ X_RCOMB "1.9" }
{ X_TECH "KYL" }
{ X_CNTR "SCRIPTCTR" }
{ X_do-center "sctr" }
{ X_do-signon "tph" }
{ X_do-password "1234tomh" }
{ X_JOBID1 "x" }
{ X_SEQ1 "x" }

}

list_of_variable/value_pairs Sets of variables and values to be added to the
symbol table.
20–80

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Conversion Runtime Procedures
Revision 1, February 1999 Release 5.3

.

.

ler
e
20.5.8 xmyRunTestEvents

Syntax

xmyRunTestEvents list_of_events

Return

None

Description

The xmyRunTestEvents procedure processes a Tcl list of "events" that look similar
to the statements found in a 4.3 TSF (Test Specification File).

The test events can be of the following types:

• Any event starting with "~" is treated as a comment and is ignored.

• testcase begin: To signify the beginning of a test case. This is equivalent to
xmyBegin method, e.g.,
{testcase 3178 begin}.

• testcase end: To signify the ending of a test case. This is equivalent to the
xmyEnd method, e.g.,
{testcase 3178 end}.

• 3270: Represents a 3270 testlet to be executed, e.g.,
{step 9999 3270 $se_Gp01 $P1/logout.fur.tcl {}}.

• The step is identified by a numeric id, followed by the SE Group in which this
script should be executed, followed by the testletscript which needs to be executed

• ASYNC: Represents an ASYNC testlet to be executed, e.g.,
{step 9999 ASYNC $se_Gp01 $P2/f02.fin.tcl {}}.

• The step is identified by a numeric id, followed by the SE Group in which this
script should be executed, followed by the testletscript that needs to be executed

• SND: Represents a TOPCOM message which needs to be sent, e.g.,
{step 9999 SND $ph_sndDCI $P2/RVWBLK03}.

• The step is identified by a numeric id, followed by the TOPCOM protocol hand
to which the message is to be sent, followed by the filename that contains th
message to be sent.

• RCV: Means that a TOPCOM message needs to be received, e.g.,
{step 9999 RCV $se_Gp02 $P2/RVWBLK03.spec.tcl\
{protocol_handler "prtDCI"}}.
 20–81

MYNAH System Scripting Guide BR 007-252-004
Conversion Runtime Procedures Issue 4, December 1998
Release 5.3 Revision 1, February 1999

o the
d for

.

• The step is identified by a numeric id, followed by the SE Group in which this
script should be executed, followed by the testlet name that has the logic to d
TOPCOM receive, followed by the protocol handler name that should be use
the TOPCOM receive.

• DCE: Represents a DCE testlet to be executed, e.g.,
{step 9999 DCE $se_Gp01 $P2/f02.fin.tcl {}}.

• The step is identified by a numeric id, followed by the SE Group in which this
script should be executed, followed by the testletscript that needs to be executed

xmyRunTestEvents takes the following attribute:

Example

> xmyRunTestEvents {
{testcase 3178 begin}
{step 10 3270 $se_group $P1/child_script_1 \

{{X_ims-wfado "SL3"} {X_logdata "abc def_ghi"}}}
{testcase 3178 end}
{~step 180 SND $se_group $P1/RVWBLK01}

}

list_of_events A list of events.
20–82

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
Appendix A: Basic Tcl Commands

This Appendix contains hard copy versions of the manual pages for the the basic Tcl
commands.

As in Section 6, in this Appendix the terms fileName and fileId are used. While they seem
similar, possibly synonymous, they are very different.

fileName is the name of a file in the operating system, and fileId is an identifier Tcl creates
when you open fileName using the open (Appendix A.39) command; fileId is a handle to
the open fileName. For example, assume you have a file called Login_script1 and you want
to open it. You could type the following:

> open Login_script1
file3

Login_script1 is a fileName and file3 is a fileId. As with all handles, you can assign a fileId
to a variable, such as in

> set x [open Login_script1]
file3
 A–1

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 to
A.1 append

Syntax

append varName value ?value value ...?

Description

The append command append all of the value arguments to the current value of
variable varName. If varName doesn’t exist, it is given a value equal to the
concatenation of all the value arguments. This command provides an efficient way
build up long variables incrementally. For example

append a $b

is much more efficient than

set a ab

if $a is long.
A–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

state

m

e
g is

st

en

A.2 array

Syntax

array option arrayName ?arg arg ...?

Description

The array command performs one of several operations on the variable given by
arrayName. arrayname must be the name of an existing array variable. The option
argument determines what action is carried out by the command. The legal options
(which may be abbreviated) are:

array anymore arrayName searchId
Returns 1 if there are any more elements left to be processed in an
array search, 0 if all elements have already been returned.
SearchId indicates which search on arrayName to check, and must
have been the return value from a previous invocation of array
startsearch. This option is particularly useful if an array has an
element with an empty name, since the return value from array
nextelement won’t indicate whether the search has been
completed.

array donesearch arrayName searchId
This command terminates an array search and destroys all the
associated with that search. SearchId indicates which search on
arrayName to destroy, and must have been the return value fro
a previous invocation of array startsearch. Returns an empty
string.

array names arrayName
Returns a list containing the names of all of the elements in th
array. If there are no elements in the array then an empty strin
returned.

array nextelement arrayName searchId
Returns the name of the next element in arrayName, or an empty
string if all elements of arrayName have already been returned in
this search. The searchId argument identifies the search, and mu
have been the return value of an array startsearch command.
Warning: if elements are added to or deleted from the array, th
all searches are automatically terminated just as if array
donesearch had been invoked; this will cause array nextelement
operations to fail for those searches.

array size arrayName
Returns a decimal string giving the number of elements in the
array.
 A–3

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
array startsearch arrayName
This command initializes an element-by-element search through
the array given by arrayName, such that invocations of the array
nextelement command will return the names of the individual
elements in the array. When the search has been completed, the
array donesearch command should be invoked. The return value
is a search identifier that must be used in array nextelement and
array donesearch commands; it allows multiple searches to be
underway simultaneously for the same array.
A–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.3 break

Syntax

break

Description

The break command may be invoked only inside the body of a looping command such
as for or foreach or while. It returns a TCL_BREAK code to signal the innermost
containing loop command to return immediately.
 A–5

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.4 case

Syntax

case string ?in? patList body ?patList body ...?
case string ?in? {patList body ?patList body ...?}

Description

NOTE — The case command is obsolete and is supported
only for backward compatibility. At some point in the
future it may be removed entirely. You should use the
switch command instead.

The case command matches string against each of the patList arguments in order.
Each patList argument is a list of one or more patterns. If any of these patterns matches
string then case evaluates the following body argument by passing it recursively to the
Tcl interpreter and returns the result of that evaluation. Each patList argument consists
of a single pattern or list of patterns. Each pattern may contain any of the wild-cards
described under string match. If a patList argument is default, the corresponding
body will be evaluated if no patList matches string. If no patList argument matches
string and no default is given, then the case command returns an empty string.

Two syntaxes are provided for the patList and body arguments. The first uses a
separate argument for each of the patterns and commands; this form is convenient if
substitutions are desired on some of the patterns or commands. The second form
places all of the patterns and commands together into a single argument; the argument
must have proper list structure, with the elements of the list being the patterns and
commands. The second form makes it easy to construct multi-line case commands,
since the braces around the whole list make it unnecessary to include a backslash at
the end of each line. Since the patList arguments are in braces in the second form, no
command or variable substitutions are performed on them; this makes the behavior of
the second form different than the first form in some cases.
A–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.5 catch

Syntax

catch script ?varName?

Description

The catch command may be used to prevent errors from aborting command
interpretation. catch calls the Tcl interpreter recursively to execute script, and always
returns a TCL_OK code, regardless of any errors that might occur while executing
script. The return value from catch is a decimal string giving the code returned by the
Tcl interpreter after executing script. This will be 0 (TCL_OK) if there were no errors
in script; otherwise it will have a non-zero value corresponding to one of the
exceptional return codes (see tcl.h for the definitions of code values). If the varName
argument is given, then it gives the name of a variable; catch will set the variable to
the string returned from script (either a result or an error message).
 A–7

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.6 cd

Syntax

cd ?dirName?

Description

cd change the current working directory to dirName, or to the home directory (as
specified in the HOME environment variable) if dirName is not given. If dirName
starts with a tilde, then tilde-expansion is done as described for Tcl_TildeSubst.
Returns an empty string.
A–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.7 close

Syntax

close fileId

Description

Closes the file given by fileId. fileid must be the return value from a previous
invocation of the open command; after this command, it should not be used anymore.
If fileId refers to a command pipeline instead of a file, then close waits for the children
to complete. The normal result of this command is an empty string, but errors are
returned if there are problems in closing the file or waiting for children to complete.
 A–9

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

and
A.8 concat

Syntax

concat ?arg arg ...?

Description

This command treats each argument as a list and concatenates them into a single list.
It also eliminates leading and trailing spaces in the arg’s and adds a single separator
space between arg’s. It permits any number of arguments. For example, the comm

concat a b {c d e} {f {g h}}

will return

a b c d e f {g h}

as its result.

If no args are supplied, the result is an empty string.
A–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

t
A.9 continue

Syntax

continue

Description

The continue command may be invoked only inside the body of a looping command
such as for or foreach or while. It returns a TCL_CONTINUE code to signal the
innermost containing loop command to skip the remainder of the loop’s body bu
continue with the next iteration of the loop.
 A–11

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.10 eof

Syntax

eof fileId

Description

The eof command returns 1 if an end-of-file condition has occurred on fileId, 0
otherwise. fileid must have been the return value from a previous call to open, or it
may be stdin, stdout, or stderr to refer to one of the standard I/O channels.
A–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

r
A.11 error

Syntax

error message ?info? ?code?

Description

Returns a TCL_ERROR code, which causes command interpretation to be unwound.
Message is a string that is returned to the application to indicate what went wrong.

If the info argument is provided and is non-empty, it is used to initialize the global
variable errorInfo. errorInfo is used to accumulate a stack trace of what was in
progress when an error occurred; as nested commands unwind, the Tcl interpreter adds
information to errorInfo. If the info argument is present, it is used to initialize
errorInfo and the first increment of unwind information will not be added by the Tcl
interpreter. In other words, the command containing the error command will not
appear in errorInfo; in its place will be info. This feature is most useful in conjunction
with the catch command: if a caught error cannot be handled successfully, info can be
used to return a stack trace reflecting the original point of occurrence of the error:

catch {...} errMsg set savedInfo $errorInfo ... error \
$errMsg $savedInfo

If the code argument is present, then its value is stored in the errorCode global
variable. This variable is intended to hold a machine-readable description of the error
in cases where such information is available; see the section BUILT-IN VARIABLES
below for information on the proper format for the variable. If the code argument is
not present, then errorCode is automatically reset to ‘‘NONE’’ by the Tcl interprete
as part of processing the error generated by the command.
 A–13

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.12 eval

Syntax

eval arg ?arg ...?

Description

The eval command concatenates all its arguments in the same fashion as the concat
command, passes the concatenated string to the Tcl interpreter recursively, and returns
the result of that evaluation (or any error generated by it). eval takes one or more
arguments, which together comprise a Tcl script containing one or more commands.
A–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

ts will

tput
t of

tput
to
on

t

e
A.13 exec

Syntax

exec ?switches? arg ?arg ...?

Description

The exec command treats its arguments as the specification of one or more
subprocesses to execute. The arguments take the form of a standard shell pipeline
where each arg becomes one word of a command, and each distinct command
becomes a subprocess.

If the initial arguments to exec start with – then they are treated as command-line
switches and are not part of the pipeline specification. The following switches are
currently supported:

–keepnewline Retains a trailing newline in the pipeline’s output. Normally a
trailing newline will be deleted.

– – Marks the end of switches. The argument following this one will
be treated as the first arg even if it starts with a –.

If an arg (or pair of arg’s) has one of the forms described below then it is used by exec
to control the flow of input and output among the subprocess(es). Such argumen
not be passed to the subprocess(es). In forms such as ‘‘< fileName’’ fileName may
either be in a separate argument from ‘‘<’’ or in the same argument with no
intervening space (i.e. ‘‘<fileName’’).

| Separates distinct commands in the pipeline. The standard ou
of the preceding command will be piped into the standard inpu
the next command.

|& Separates distinct commands in the pipeline. Both standard ou
and standard error of the preceding command will be piped in
the standard input of the next command. This form of redirecti
overrides forms such as 2> and >&.

< fileName The file named by fileName is opened and used as the standard
input for the first command in the pipeline.

<@ fileId fileid must be the identifier for an open file, such as the return
value from a previous call to open. It is used as the standard inpu
for the first command in the pipeline. FileId must have been
opened for reading.

<< value Value is passed to the first command as its standard input.

> fileName Standard output from the last command is redirected to the fil
named fileName, overwriting its previous contents.
 A–15

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

d
line

g the

 to its

utput.

er is
Tcl
2> fileName Standard error from all commands in the pipeline is redirected to
the file named fileName, overwriting its previous contents.

>& fileName Both standard output from the last command and standard error
from all commands are redirected to the file named fileName,
overwriting its previous contents.

>> fileName Standard output from the last command is redirected to the file
named fileName, appending to it rather than overwriting it.

2>> fileName Standard error from all commands in the pipeline is redirected to
the file named fileName, appending to it rather than overwriting it.

>>& fileName Both standard output from the last command and standard error
from all commands are redirected to the file named fileName,
appending to it rather than overwriting it.

>@ fileId fileid must be the identifier for an open file, such as the return
value from a previous call to open. Standard output from the last
command is redirected to fileId’s file, which must have been
opened for writing.

2>@ fileId fileid must be the identifier for an open file, such as the return
value from a previous call to open. Standard error from all
commands in the pipeline is redirected to fileId’s file. The file
must have been opened for writing.

>&@ fileId fileid must be the identifier for an open file, such as the return
value from a previous call to open. Both standard output from the
last command and standard error from all commands are
redirected to fileId’s file. The file must have been opened for
writing.

If standard output has not been redirected then the exec command returns the standar
output from the last command in the pipeline. If any of the commands in the pipe
exit abnormally or are killed or suspended, then exec will return an error and the error
message will include the pipeline’s output followed by error messages describin
abnormal terminations; the errorCode variable will contain additional information
about the last abnormal termination encountered. If any of the commands writes
standard error file and that standard error isn’t redirected, then exec will return an
error; the error message will include the pipeline’s standard output, followed by
messages about abnormal terminations (if any), followed by the standard error o

If the last character of the result or error message is a newline then that charact
normally deleted from the result or error message. This is consistent with other
return values, which don’t normally end with newlines.

However, if –keepnewline is specified then the trailing newline is retained.
A–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

t
ard

r all

on’s
ands

on is
ATH
ame

the
If standard input isn’t redirected with ‘‘<’’ or ‘‘<<’’ or ‘‘<@’’ then the standard inpu
for the first command in the pipeline is taken from the application’s current stand
input.

If the last arg is ‘‘&’’ then the pipeline will be executed in background. In this case
the exec command will return a list whose elements are the process identifiers fo
of the subprocesses in the pipeline.

The standard output from the last command in the pipeline will go to the applicati
standard output if it hasn’t been redirected, and error output from all of the comm
in the pipeline will go to the application’s standard error file unless redirected.

The first word in each command is taken as the command name; tilde-substituti
performed on it, and if the result contains no slashes then the directories in the P
environment variable are searched for an executable by the given name. If the n
contains a slash then it must refer to an executable reachable from the current
directory. No ‘‘glob’’ expansion or other shell-like substitutions are performed on
arguments to commands.
 A–17

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.14 exit

Syntax

exit ?returnCode?

Description

Terminate the process, returning returnCode to the system as the exit status. If
returnCode isn’t specified then it defaults to 0.
A–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

t as a

ted in
ponding

rands

eses.
s; it is

 as
 octal
s
en
oint

ers:
is left

orm

e and
A.15 expr

Syntax

expr arg ?arg arg ...?

Description

Concatenates arg’s (adding separator spaces between them), evaluates the resul
Tcl expression, and returns the value.

The operators permitted in Tcl expressions are a subset of the operators permit
C expressions, and they have the same meaning and precedence as the corres
C operators. Expressions almost always yield numeric results (integer or
floating-point values). For example, the expression

expr 8.2 + 6

evaluates to 14.2. Tcl expressions differ from C expressions in the way that ope
are specified. Also, Tcl expressions support non-numeric operands and string
comparisons.

Operands

A Tcl expression consists of a combination of operands, operators, and parenth
White space may be used between the operands and operators and parenthese
ignored by the expression processor. Where possible, operands are interpreted
integer values. Integer values may be specified in decimal (the normal case), in
(if the first character of the operand is 0), or in hexadecimal (if the first two character
of the operand are 0x). If an operand does not have one of the integer formats giv
above, then it is treated as a floating-point number if that is possible. Floating-p
numbers may be specified in any of the ways accepted by an ANSI-compliant C
compiler (except that the ‘‘f’’, ‘‘F’’, ‘‘l’’, and ‘‘L’’ suffixes will not be permitted in
most installations). For example, all of the following are valid floating-point numb
2.1, 3., 6e4, 7.91e+16. If no numeric interpretation is possible, then an operand
as a string (and only a limited set of operators may be applied to it).

Operands may be specified in any of the following ways:

[1] As an numeric value, either integer or floating-point.

[2] As a Tcl variable, using standard $ notation. The variable’s value will be
used as the operand.

[3] As a string enclosed in double-quotes. The expression parser will perf
backslash, variable, and command substitutions on the information
between the quotes, and use the resulting value as the operand

[4] As a string enclosed in braces. The characters between the open brac
matching close brace will be used as the operand without any
substitutions.
 A–19

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Where substitutions occur above (e.g. inside quoted strings), they are performed by the
expression processor. However, an additional layer of substitution may already have
been performed by the command parser before the expression processor was called.
As discussed below, it is usually best to enclose expressions in braces to prevent the
command parser from performing substitutions on the contents.

For some examples of simple expressions, suppose the variable a has the value 3 and
the variable b has the value 6. Then the command on the left side of each of the lines
below will produce the value on the right side of the line:

expr 3.1 + $a 6.1
expr 2 + "$a.$b" 5.6
expr 4* [llength "6 2"] 8
expr {{word one} < "word $a"} 0

Operators

The valid operators are listed below, grouped in decreasing order of precedence:

– ~ ! Unary minus, bit-wise NOT, logical NOT. None of these operands
may be applied to string operands, and bit-wise NOT may be
applied only to integers.

* / % Multiply, divide, remainder. None of these operands may be
applied to string operands, and remainder may be applied only to
integers.
The remainder will always have the same sign as the divisor and
an absolute value smaller than the divisor.

+ – Add and subtract. Valid for any numeric operands.

<< >> Left and right shift. Valid for integer operands only.

< > <= >= Boolean less, greater, less than or equal, and greater than or equal.
Each operator produces 1 if the condition is true, 0 otherwise.
These operators may be applied to strings as well as numeric
operands, in which case string comparison is used.

== != Boolean equal and not equal. Each operator produces a zero/one
result. Valid for all operand types.

& Bit-wise AND. Valid for integer operands only.

^ Bit-wise exclusive OR. Valid for integer operands only.

[5] As a Tcl command enclosed in brackets. The command will be executed
and its result will be used as the operand.

[6] As a mathematical function whose arguments have any of the above
forms for operands, such as ‘‘sin($x)’’. See below for a list of defined
functions.
A–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

at
or

rwise

e the

or
| Bit-wise OR. Valid for integer operands only.

&& Logical AND. Produces a 1 result if both operands are non-zero,
0 otherwise. Valid for numeric operands only (integers or
floating-point).

|| Logical OR. Produces a 0 result if both operands are zero, 1
otherwise. Valid for numeric operands only (integers or
floating-point).

x?y:z If-then-else, as in C. If x evaluates to non-zero, then the result is
the value of y. Otherwise the result is the value of z. The x operand
must have a numeric value.

See the C manual for more details on the results produced by each operator. All of the
binary operators group left-to-right within the same precedence level. For example,
the command

expr 4*2 < 7

returns 0.

The &&, ||, and ?: operators have ‘‘lazy evaluation’’, just as in C, which means th
operands are not evaluated if they are not needed to determine the outcome. F
example, in the command

expr {$v ? [a] : [b]}

only one of [a] or [b] will actually be evaluated, depending on the value of $v. Note,
however, that this is only true if the entire expression is enclosed in braces; othe
the Tcl parser will evaluate both [a] and [b] before invoking the expr command.

Math Functions

Tcl supports the following mathematical functions in expressions:

acos cos hypot sinh asincosh log sqrt atanexp log10 tan atan2
floor pow tanh ceilfmod sin

Each of these functions invokes the math library function of the same name; se
manual entries for the library functions for details on what they do. Tcl also
implements the following functions for conversion between integers and
floating-point numbers:

abs(arg) Returns the absolute value of arg. Arg may be either integer
floating-point, and the result is returned in the same form.

double(arg) If arg is a floating value, returns arg, otherwise converts arg to
floating and returns the converted value.

int(arg) If arg is an integer value, returns arg, otherwise converts arg to
integer by truncation and returns the converted value.
 A–21

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

t

r
s

lting

the
 can.
alue,
round(arg) If arg is an integer value, returns arg, otherwise converts arg to
integer by rounding and returns the converted value.

In addition to these predifined functions, applications may define additional functions
using Tcl_CreateMathFunc().

Types, Overflow, and Precision

All internal computations involving integers are done with the C type long, and all
internal computations involving floating-point are done with the C type double. When
converting a string to floating-point, exponent overflow is detected and results in a Tcl
error. For conversion to integer from string, detection of overflow depends on the
behavior of some routines in the local C library, so it should be regarded as unreliable.
In any case, integer overflow and underflow are generally not detected reliably for
intermediate results. Floating-point overflow and underflow are detected to the degree
supported by the hardware, which is generally pretty reliable.

Conversion among internal representations for integer, floating-point, and string
operands is done automatically as needed. For arithmetic computations, integers are
used until some floating-point number is introduced, after which floating-point is
used. For example,

expr 5 / 4

returns 1, while

expr 5 / 4.0 expr 5 / ([string length "abcd"] + 0.0)

both return 1.25.

Floating-point values are always returned with a ‘‘.’’ or an ‘‘e’’ so that they will no
look like integer values. For example,

expr 20.0/5.0

returns ‘‘4.0’’, not ‘‘4’’. The global variable tcl_precision determines the the numbe
of significant digits that are retained when floating values are converted to string
(except that trailing zeroes are omitted). If tcl_precision is unset then 6 digits of
precision are used. To retain all of the significant bits of an IEEE floating-point
number set tcl_precision to 17; if a value is converted to string with 17 digits of
precision and then converted back to binary for some later calculation, the resu
binary value is guaranteed to be identical to the original one.

String Operations

String values may be used as operands of the comparison operators, although
expression evaluator tries to do comparisons as integer or floating-point when it
If one of the operands of a comparison is a string and the other has a numeric v
the numeric operand is converted back to a string using the C sprintf format specifier
%d for integers and %g for floating-point values. For example, the commands
A–22

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
expr {"0x03" > "2"} expr {"0y" < "0x12"}

both return 1. The first comparison is done using integer comparison, and the second
is done using string comparison after the second operand is converted to the string
‘‘18’’.
 A–23

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

,
ied

A.16 file

Syntax

file option name ?arg arg ...?

Description

The file command provides several operations on a file’s name or attributes. name is
the name of a file; if it starts with a tilde, then tilde substitution is done before
executing the command (see the manual entry for Tcl_TildeSubst for details). Option
indicates what to do with the file name. Any unique abbreviation for option is
acceptable. The valid options are:

file atime name
Returns a decimal string giving the time at which file name was
last accessed. The time is measured in the standard POSIX
fashion as seconds from a fixed starting time (often January 1
1970). If the file doesn’t exist or its access time cannot be quer
then an error is generated.

file dirname name
Returns all of the characters in name up to but not including the
last slash character. If there are no slashes in name then returns
‘‘.’’. If the last slash in name is its first character, then return ‘‘/’’.

file executable name
Returns 1 if file name is executable by the current user, 0
otherwise.

file exists name
Returns 1 if file name exists and the current user has search
privileges for the directories leading to it, 0 otherwise.

file extension name
Returns all of the characters in name after and including the last
dot in name. If there is no dot in name then returns the empty
string.

file isdirectory name
Returns 1 if file name is a directory, 0 otherwise.

file isfile name
Returns 1 if file name is a regular file, 0 otherwise.

file lstat name varName
Same as stat option (see below) except uses the lstat kernel call
instead of stat. This means that if name refers to a symbolic link
the information returned in varName is for the link rather than the
A–24

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

is

ion
 the
n

at

he

file it refers to. On systems that don’t support symbolic links th
option behaves exactly the same as the stat option.

file mtime name
Returns a decimal string giving the time at which file name was
last modified. The time is measured in the standard POSIX fash
as seconds from a fixed starting time (often January 1, 1970). If
file doesn’t exist or its modified time cannot be queried then a
error is generated.

file owned name
Returns 1 if file name is owned by the current user, 0 otherwise.

file readable name
Returns 1 if file name is readable by the current user, 0 otherwise.

file readlink name
Returns the value of the symbolic link given by name (i.e. the
name of the file it points to). If name isn’t a symbolic link or its
value cannot be read, then an error is returned. On systems th
don’t support symbolic links this option is undefined.

file rootname name
Returns all of the characters in name up to but not including the
last ‘‘.’’ character in the name. If name doesn’t contain a dot, then
returns name.

file size name
Returns a decimal string giving the size of file name in bytes. If the
file doesn’t exist or its size cannot be queried then an error is
generated.

file stat name varName
Invokes the stat kernel call on name, and uses the variable given
by varName to hold information returned from the kernel call.
VarName is treated as an array variable, and the following
elements of that variable are set: atime, ctime, dev, gid, ino,
mode, mtime, nlink, size, type, uid. Each element except type is
a decimal string with the value of the corresponding field from t
stat return structure; see the manual entry for stat for details on the
meanings of the values. The type element gives the type of the file
in the same form returned by the command file type. This
command returns an empty string.

file tail name
Returns all of the characters in name after the last slash. If name
contains no slashes then returns name.
 A–25

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
file type name
Returns a string giving the type of file name, which will be one of
file, directory, characterSpecial, blockSpecial, fifo, link, or
socket.

file writable name
Returns 1 if file name is writable by the current user, 0 otherwise.
A–26

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.17 flush

Syntax

flush fileId

Description

Flushes any output that has been buffered for fileId. fileid must have been the return
value from a previous call to open, or it may be stdout or stderr to access one of the
standard I/O streams; it must refer to a file that was opened for writing. The command
returns an empty string.
 A–27

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.18 for

Syntax

for start test next body

Description

for is a looping command, similar in structure to the C for statement. The start, next,
and body arguments must be Tcl command strings, and test is an expression string. The
for command first invokes the Tcl interpreter to execute start. Then it repeatedly
evaluates test as an expression; if the result is non-zero it invokes the Tcl interpreter
on body, then invokes the Tcl interpreter on next, then repeats the loop. The command
terminates when test evaluates to 0. If a continue command is invoked within body
then any remaining commands in the current execution of body are skipped;
processing continues by invoking the Tcl interpreter on next, then evaluating test, and
so on. If a break command is invoked within body or next, then the for command will
return immediately. The operation of break and continue are similar to the
corresponding statements in C. For returns an empty string.
A–28

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.19 foreach

Syntax

foreach varname list body

Description

In this command varname is the name of a variable, list is a list of values to assign to
varname, and body is a Tcl script. For each element of list (in order from left to right),
foreach assigns the contents of the field to varname as if the lindex command had
been used to extract the field, then calls the Tcl interpreter to execute body. The break
and continue statements may be invoked inside body, with the same effect as in the
for command. Foreach returns an empty string.
 A–29

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 the

by the
 any

ag
A.20 format

Syntax

format formatString ?arg arg ...?

Description

This command generates a formatted string in the same way as the ANSI C sprintf
procedure (it uses sprintf in its implementation). FormatString indicates how to
format the result, using % conversion specifiers as in sprintf, and the additional
arguments, if any, provide values to be substituted into the result. The return value
from format is the formatted string.

Details On Formatting

The command operates by scanning formatString from left to right. Each character
from the format string is appended to the result string unless it is a percent sign. If the
character is a % then it is not copied to the result string. Instead, the characters
following the % character are treated as a conversion specifier. The conversion
specifier controls the conversion of the next successive arg to a particular format and
the result is appended to the result string in place of the conversion specifier. If there
are multiple conversion specifiers in the format string, then each one controls the
conversion of one additional arg. The format command must be given enough args
to meet the needs of all of the conversion specifiers in formatString.

Each conversion specifier may contain up to six different parts: an XPG3 position
specifier, a set of flags, a minimum field width, a precision, a length modifier, and a
conversion character. Any of these fields may be omitted except for the conversion
character. The fields that are present must appear in the order given above. The
paragraphs below discuss each of these fields in turn.

If the % is followed by a decimal number and a $, as in ‘‘%2$d’’, then the value to
convert is not taken from the next sequential argument. Instead, it is taken from
argument indicated by the number, where 1 corresponds to the first arg. If the
conversion specifier requires multiple arguments because of * characters in the
specifier then successive arguments are used, starting with the argument given
number. This follows the XPG3 conventions for positional specifiers. If there are
positional specifiers in formatString then all of the specifiers must be positional.

The second portion of a conversion specifier may contain any of the following fl
characters, in any order:

– Specifies that the converted argument should be left-justified in its field
(numbers are normally right-justified with leading spaces if needed).

+ Specifies that a number should always be printed with a sign, even if
positive.
A–30

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

tead

ro.
The third portion of a conversion specifier is a number giving a minimum field width
for this conversion. It is typically used to make columns line up in tabular printouts. If
the converted argument contains fewer characters than the minimum field width then
it will be padded so that it is as wide as the minimum field width. Padding normally
occurs by adding extra spaces on the left of the converted argument, but the 0 and –
flags may be used to specify padding with zeroes on the left or with spaces on the
right, respectively. If the minimum field width is specified as * rather than a number,
then the next argument to the format command determines the minimum field width;
it must be a numeric string.

The fourth portion of a conversion specifier is a precision, which consists of a period
followed by a number. The number is used in different ways for different conversions.
For e, E, and f conversions it specifies the number of digits to appear to the right of
the decimal point. For g and G conversions it specifies the total number of digits to
appear, including those on both sides of the decimal point (however, trailing zeroes
after the decimal point will still be omitted unless the # flag has been specified). For
integer conversions, it specifies a mimimum number of digits to print (leading zeroes
will be added if necessary). For s conversions it specifies the maximum number of
characters to be printed; if the string is longer than this then the trailing characters will
be dropped. If the precision is specified with * rather than a number then the next
argument to the format command determines the precision; it must be a numeric
string.

The fourth part of a conversion specifier is a length modifier, which must be h or l. If
it is h it specifies that the numeric value should be truncated to a 16-bit value before
converting. This option is rarely useful. The l modifier is ignored.

The last thing in a conversion specifier is an alphabetic character that determines what
kind of conversion to perform. The following conversion characters are currently
supported:

space Specifies that a space should be added to the beginning of the number if
the first character isn’t a sign.

0 Specifies that the number should be padded on the left with zeroes ins
of spaces.

Requests an alternate output form. For o and O conversions it guarantees
that the first digit is always 0. For x or X conversions, 0x or 0X
(respectively) will be added to the beginning of the result unless it is ze
For all floating-point conversions (e, E, f, g, and G) it guarantees that the
result always has a decimal point. For g and G conversions it specifies
that trailing zeroes should not be removed.

d Convert integer to signed decimal string.

u Convert integer to unsigned decimal string.
 A–31

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

:

ion,

en

For the numerical conversions the argument being converted must be an integer or
floating-point string; format converts the argument to binary and then converts it back
to a string according to the conversion specifier.

Differences From Ansi Sprintf

The behavior of the format command is the same as the ANSI C sprintf procedure
except for the following differences:

i Convert integer to signed decimal string; the integer may either be in
decimal, in octal (with a leading 0) or in hexadecimal (with a leading 0x).

o Convert integer to unsigned octal string.

x or X Convert integer to unsigned hexadecimal string, using digits
‘‘0123456789abcdef’’ for x and ‘‘0123456789ABCDEF’’ for X).

c Convert integer to the 8-bit character it represents.

s No conversion; just insert string.

f Convert floating-point number to signed decimal string of the form
xx.yyy, where the number of y’s is determined by the precision (default
6). If the precision is 0 then no decimal point is output.

e or e Convert floating-point number to scientific notation in the form
x.yyye±zz, where the number of y’s is determined by the precision
(default: 6). If the precision is 0 then no decimal point is output. If theE
form is used then E is printed instead of e.

g or G If the exponent is less than –4 or greater than or equal to the precis
then convert floating-point number as for %e or %E. Otherwise convert
as for %f. Trailing zeroes and a trailing decimal point are omitted.

% No conversion: just insert %.

[1] %p and %n specifiers are not currently supported.

[2] For %c conversions the argument must be a decimal string, which will th
be converted to the corresponding character value.

[3] The l modifier is ignored; integer values are always converted as if there
were no modifier present and real values are always converted as if thel
modifier were present (i.e. type double is used for the internal
representation). If the h modifier is specified then integer values are
truncated to short before conversion.
A–32

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

n
mpty
o
he file

 the
A.21 gets

Syntax

gets fileId ?varName?

Description

The gets command reads the next line from the file given by fileId and discards the
terminating newline character. If varName is specified then the line is placed in the
variable by that name and the return value is a count of the number of characters read
(not including the newline). If the end of the file is reached before reading any
characters then –1 is returned and varName is set to an empty string. If varName is not
specified then the return value will be the line (minus the newline character) or a
empty string if the end of the file is reached before reading any characters. An e
string will also be returned if a line contains no characters except the newline, seof
may have to be used to determine what really happened. If the last character in t
is not a newline character then gets behaves as if there were an additional newline
character at the end of the file. fileid must be stdin or the return value from a previous
call to open; it must refer to a file that was opened for reading.

Any existing end-of-file or error condition on the file is cleared at the beginning of
gets command.
 A–33

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

. It

r

ts

or
A.22 glob

Syntax

glob ?switches? pattern ?pattern ...?

Description

The command performs file name ‘‘globbing’’ in a fashion similar to the csh shell
returns a list of the files whose names match any of the pattern arguments.

If the initial arguments to glob start with – then they are treated as switches. The
following switches are currently supported:

The pattern arguments may contain any of the following special characters:

As with csh, a ‘‘.’’ at the beginning of a file’s name or just after a ‘‘/’’ must be
matched explicitly or with a {} construct. In addition, all ‘‘/’’ characters must be
matched explicitly.

If the first character in a pattern is ‘‘~’’ then it refers to the home directory for the use
whose name follows the ‘‘~’’. If the ‘‘~’’ is followed immediately by ‘‘/’’ then the
value of the HOME environment variable is used.

The glob command differs from csh globbing in two ways. First, it does not sort i
result list (use the lsort command if you want the list sorted).

Second, glob only returns the names of files that actually exist; in csh no check f
existence is made unless a pattern contains a ?, *, or [] construct.

–nocomplain Allows an empty list to be returned without error; without this
switch an error is returned if the result list would be empty.

– – Marks the end of switches. The argument following this one will
be treated as a pattern even if it starts with a –.

? Matches any single character.

* Matches any sequence of zero or more characters.

[chars] Matches any single character in chars. If chars contains a sequence of
the form a–b then any character between a and b (inclusive) will match.

\x Matches the character x.

{a,b,...} Matches any of the strings a, b, etc.
A–34

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

ure),
A.23 global

Syntax

global varname ?varname ...?

Description

The command is ignored unless a Tcl procedure is being interpreted. If so then it
declares the given varname’s to be global variables rather than local ones. For the
duration of the current procedure (and only while executing in the current proced
any reference to any of the varnames will refer to the global variable by the same
name.
 A–35

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 If
A.24 history

Syntax

history ?option? ?arg arg ...?

Description

The history command performs one of several operations related to recently-executed
commands recorded in a history list. Each of these recorded commands is referred to
as an ‘‘event’’. When specifying an event to the history command, the following
forms may be used:

The history command can take any of the following forms:

history
Same as history info, described below.

history add command ?exec?
Adds the command argument to the history list as a new event.
exec is specified (or abbreviated) then the command is also
executed and its result is returned. If exec isn’t specified then an
empty string is returned as result.

history change newValue ?event?
Replaces the value recorded for an event with newValue. Event
specifies the event to replace, and defaults to the current event (not
event –1). This command is intended for use in commands that
implement new forms of history substitution and wish to replace
the current event (which invokes the substitution) with the
command created through substitution. The return value is an
empty string.

history event ?event?
Returns the value of the event given by event. Event defaults to
–1. This command causes history revision to occur: see below for
details.

[1] A number: if positive, it refers to the event with that number (all events are
numbered starting at 1). If the number is negative, it selects an event
relative to the current event (–1 refers to the previous event, –2 to the one
before that, and so on).

[2] A string: selects the most recent event that matches the string. An event is
considered to match the string either if the string is the same as the first
characters of the event, or if the string matches the event in the sense of the
string match command.
A–36

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
history info ?count?
Returns a formatted string (intended for humans to read) giving
the event number and contents for each of the events in the history
list except the current event. If count is specified then only the
most recent count events are returned.

history keep count
This command may be used to change the size of the history list to
count events. Initially, 20 events are retained in the history list.
This command returns an empty string.

history nextid
Returns the number of the next event to be recorded in the history
list. It is useful for things like printing the event number in
command-line prompts.

history redo ?event?
Re-executes the command indicated by event and return its result.
Event defaults to –1. This command results in history revision: see
below for details.

history substitute old new ?event?
Retrieves the command given by event (–1 by default), replace any
occurrences of old by new in the command (only simple character
equality is supported; no wild cards), execute the resulting
command, and return the result of that execution. This command
results in history revision: see below for details.

history words selector ?event?
Retrieves from the command given by event (–1 by default) the
words given by selector, and return those words in a string
separated by spaces. The selector argument has three forms. If it
is a single number then it selects the word given by that number (0
for the command name, 1 for its first argument, and so on). If it
consists of two numbers separated by a dash, then it selects all the
arguments between those two. Otherwise selector is treated as a
pattern; all words matching that pattern (in the sense of string
match) are returned. In the numeric forms $ may be used to select
the last word of a command. For example, suppose the most recent
command in the history list is

format {%s is %d years old} Alice
[expr $ageInMonths/12]

Below are some history commands and the results they would
produce:
 A–37

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

inate

of the
history words $ [expr $ageInMonths/12]
history words 1-2 {%s is %d years old} Alice
history words *a*o* {%s is %d years old} \

[expr $ageInMonths/12]

History words results in history revision: see below for details.

History Revision

The history options event, redo, substitute, and words result in ‘‘history revision’’.
When one of these options is invoked then the current event is modified to elim
the history command and replace it with the result of the history command. For
example, suppose that the most recent command in the history list is

set a [expr $b+2]

and suppose that the next command invoked is one of the ones on the left side
table below. The command actually recorded in the history event will be the
corresponding one on the right side of the table.

history redo set a [expr $b+2]
history s a b set b [expr $b+2]
set c [history w 2] set c [expr $b+2]

History revision is needed because event specifiers like –1 are only valid at a particular
time: once more events have been added to the history list a different event specifier
would be needed.

History revision occurs even when history is invoked indirectly from the current event
(e.g. a user types a command that invokes a Tcl procedure that invokes history): the
top-level command whose execution eventually resulted in a history command is
replaced.

If you wish to invoke commands like history words without history revision, you can
use history event to save the current history event and then use history change to
restore it later.
A–38

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

r to

ult
s was
A.25 if

Syntax

if expr1 ?then? body1 elseif expr2 ?then? body2 \
elseif ... ?else? ?bodyN?

Description

The if command evaluates expr1 as an expression (in the same way that expr evaluates
its argument). The value of the expression must be a boolean (a numeric value, where
0 is false and anything is true, or a string value such as true or yes for true and false
or no for false); if it is true then body1 is executed by passing it to the Tcl interpreter.
Otherwise expr2 is evaluated as an expression and if it is true then body2 is executed,
and so on. If none of the expressions evaluates to true then bodyN is executed. The
then and else arguments are optional ‘‘noise words’’ to make the command easie
read. There may be any number of elseif clauses, including zero. BodyN may also be
omitted as long as else is omitted too. The return value from the command is the res
of the body script that was executed, or an empty string if none of the expression
non-zero and there was no bodyN.
 A–39

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.26 incr

Syntax

incr varName ?increment?

Description

Increments the value stored in the variable whose name is varName. The value of the
variable must be an integer. If increment is supplied then its value (which must be an
integer) is added to the value of variable varName; otherwise 1 is added to varName.
The new value is stored as a decimal string in variable varName and also returned as
result.
A–40

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

ure

een

nd

of
t
 is
t

lay
the
A.27 info

Syntax

info option ?arg arg ...?

Description

The command provides information about various internals of the Tcl interpreter. The
legal option’s (which may be abbreviated) are:

info args procname
Returns a list containing the names of the arguments to proced
procname, in order. Procname must be the name of a Tcl
command procedure.

info body procname
Returns the body of procedure procname. Procname must be the
name of a Tcl command procedure.

info cmdcount
Returns a count of the total number of commands that have b
invoked in this interpreter.

info commands ?pattern?
If pattern isn’t specified, returns a list of names of all the Tcl
commands, including both the built-in commands written in C a
the command procedures defined using the proc command. If
pattern is specified, only those names matching pattern are
returned. Matching is determined using the same rules as for
string match.

info complete command
Returns 1 if command is a complete Tcl command in the sense
having no unclosed quotes, braces, brackets or array elemen
names, If the command doesn’t appear to be complete then 0
returned. This command is typically used in line-oriented inpu
environments to allow users to type in commands that span
multiple lines; if the command isn’t complete, the script can de
evaluating it until additional lines have been typed to complete
command.

info default procname arg varname
Procname must be the name of a Tcl command procedure and arg
must be the name of an argument to that procedure. If arg doesn’t
have a default value then the command returns 0. Otherwise it
returns 1 and places the default value of arg into variable varname.
 A–41

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

g
 is
t
t

, 2
l

1 to

l
nto

d

pt

h a

l.
info exists varName
Returns 1 if the variable named varName exists in the current
context (either as a global or local variable), returns 0 otherwise.

info globals ?pattern?
If pattern isn’t specified, returns a list of all the names of
currently-defined global variables. If pattern is specified, only
those names matching pattern are returned. Matching is
determined using the same rules as for string match.

info level ?number?
If number is not specified, this command returns a number givin
the stack level of the invoking procedure, or 0 if the command
invoked at top-level. If number is specified, then the result is a lis
consisting of the name and arguments for the procedure call a
level number on the stack. If number is positive then it selects a
particular stack level (1 refers to the top-most active procedure
to the procedure it called, and so on); otherwise it gives a leve
relative to the current level (0 refers to the current procedure, -
its caller, and so on). See the uplevel command for more
information on what stack levels mean.

info library
Returns the name of the library directory in which standard Tc
scripts are stored. The default value for the library is compiled i
Tcl, but it may be overridden by setting the TCL_LIBRARY
environment variable. If there is no TCL_LIBRARY variable an
no compiled-in value then and error is generated. See the library
manual entry for details of the facilities provided by the Tcl scri
library. Normally each application will have its own
application-specific script library in addition to the Tcl script
library; I suggest that each application set a global variable wit
name like $app_library (where app is the application’s name) to
hold the location of that application’s library directory.

info locals ?pattern?
If pattern isn’t specified, returns a list of all the names of
currently-defined local variables, including arguments to the
current procedure, if any. Variables defined with the global and
upvar commands will not be returned. If pattern is specified, only
those names matching pattern are returned. Matching is
determined using the same rules as for string match.

info patchlevel
Returns a decimal integer giving the current patch level for Tc
A–42

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

e

 to

ost
ty

s

e
The patch level is incremented for each new release or patch, and
it uniquely identifies an official version of Tcl.

info procs ?pattern?
If pattern isn’t specified, returns a list of all the names of Tcl
command procedures. If pattern is specified, only those names
matching pattern are returned. Matching is determined using th
same rules as for string match.

info script
If a Tcl script file is currently being evaluated (i.e. there is a call
Tcl_EvalFile active or there is an active invocation of the source
command), then this command returns the name of the innerm
file being processed. Otherwise the command returns an emp
string.

info tclversion
Returns the version number for this version of Tcl in the form x.y,
where changes to x represent major changes with probable
incompatibilities and changes to y represent small enhancement
and bug fixes that retain backward compatibility.

info vars ?pattern?
If pattern isn’t specified, returns a list of all the names of
currently-visible variables, including both locals and
currently-visible globals. If pattern is specified, only those names
matching pattern are returned. Matching is determined using th
same rules as for string match.
 A–43

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.28 join

Syntax

join list ?joinString?

Description

The list argument must be a valid Tcl list. This command returns the string formed by
joining all of the elements of list together with joinString separating each adjacent pair
of elements. The joinString argument defaults to a space character.
A–44

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

 to
A.29 lappend

Syntax

lappend varName value ?value value ...?

Description

The command treats the variable given by varName as a list and appends each of the
value arguments to that list as a separate element, with spaces between elements. If
varName doesn’t exist, it is created as a list with elements given by the value
arguments. Lappend is similar to append except that the values are appended as list
elements rather than raw text. This command provides a relatively efficient way
build up large lists. For example, ‘‘lappend a $b’’ is much more efficient than ‘‘set
a [concat $a [list $b]]’’ when $a is long.
 A–45

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.30 library

Syntax

auto_execok cmd
auto_load cmd
auto_mkindex dir pattern pattern ...
auto_reset
parray arrayName
unknown cmd ?arg arg ...?

Description

Tcl includes a library of Tcl procedures for commonly-needed functions. The
procedures defined in the Tcl library are generic ones suitable for use by many
different applications. The location of the Tcl library is returned by the info library
command. In addition to the Tcl library, each application will normally have its own
library of support procedures as well; the location of this library is normally given by
the value of the $app_library global variable, where app is the name of the
application. For example, the location of the Tk library is kept in the variable
$tk_library.

To access the procedures in the Tcl library, an application should source the file
init.tcl in the library, for example with the Tcl command

source [info library]/init.tcl

This will define the unknown procedure and arrange for the other procedures to be
loaded on-demand using the auto-load mechanism defined below.

Command Procedures

The following procedures are provided in the Tcl library:

auto_execok cmd
Determines whether there is an executable file by the name cmd.
This command examines the directories in the current search path
(given by the PATH enviornment variable) to see if there is an
executable file named cmd in any of those directories. If so, it
returns 1; if not it returns 0. Auto_exec remembers information
about previous searches in an array named auto_execs; this avoids
the path search in future calls for the same cmd. The command
auto_reset may be used to force auto_execok to forget its cached
information.

auto_load cmd
This command attempts to load the definition for a Tcl command
named cmd. To do this, it searches an auto-load path, which is a
list of one or more directories. The auto-load path is given by the
A–46

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

he

e
the

d

 the
ure

s

n
 the
global variable $auto_path if it exists. If there is no $auto_path
variable, then the TCLLIBPATH environment variable is used, if
it exists. Otherwise the auto-load path consists of just the Tcl
library directory. Within each directory in the auto-load path there
must be a file tclIndex that describes one or more commands
defined in that directory and a script to evaluate to load each of the
commands. The tclIndex file should be generated with the
auto_mkindex command. If cmd is found in an index file, then the
appropriate script is evaluated to create the command.

The auto_load command returns 1 if cmd was successfully
created. The command returns 0 if there was no index entry for
cmd or if the script didn’t actually define cmd (e.g. because index
information is out of date). If an error occurs while processing t
script, then that error is returned. Auto_load only reads the index
information once and saves it in the array auto_index; future calls
to auto_load check for cmd in the array rather than re-reading th
index files. The cached index information may be deleted with
command auto_reset. This will force the next auto_load
command to reload the index database from disk.

auto_mkindex dir pattern pattern ...
Generates an index suitable for use by auto_load. The command
searches dir for all files whose names match any of the pattern
arguments (matching is done with the glob command), generates
an index of all the Tcl command procedures defined in all the
matching files, and stores the index information in a file name
tclIndex in dir. For example, the command

auto_mkindex foo *.tcl

will read all the .tcl files in subdirectory foo and generate a new
index file foo/tclIndex.

Auto_mkindex parses the Tcl scripts in a relatively
unsophisticated way: if any line contains the word proc as its first
characters then it is assumed to be a procedure definition and
next word of the line is taken as the procedure’s name. Proced
definitions that don’t appear in this way (e.g. they have space
before the proc) will not be indexed.

auto_reset
Destroys all the information cached by auto_execok and
auto_load. This information will be re-read from disk the next
time it is needed. Auto_reset also deletes any procedures listed i
the auto-load index, so that fresh copies of them will be loaded
next time that they’re used.
 A–47

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

of the

nal

ipt.
es

d

nd
 the

le
er

rary:

r
parray arrayName
Prints on standard output the names and values of all the elements
in the array arrayName. ArrayName must be an array accessible
to the caller of parray. It may be either local or global.

unknown cmd ?arg arg ...?
This procedure is invoked automatically by the Tcl interpreter
whenever the name of a command doesn’t exist. The unknown
procedure receives as its arguments the name and arguments
missing command.

Unknown first calls auto_load to load the command. If this
succeeds, then it executes the original command with its origi
arguments. If the auto-load fails then unknown calls auto_execok
to see if there is an executable file by the name cmd. If so, it
invokes the Tcl exec command with cmd and all the args as
arguments. If cmd can’t be auto-executed, unknown checks to see
if the command was invoked at top-level and outside of any scr
If so, then unknown takes takes two additional steps. First, it se
if cmd has one of the following three forms: !!, !event, or
^old^new?̂ ?. If so, then unknown carries out history substitution
in the same way that csh would for these constructs. Second, an
last, unknown checks to see if cmd is a unique abbreviation for an
existing Tcl command. If so, it expands the command name a
executes the command with the original arguments. If none of
above efforts has been able to execute the command, unknown
generates an error return. If the global variable auto_noload is
defined, then the auto-load step is skipped. If the global variab
auto_noexec is defined then the auto-exec step is skipped. Und
normal circumstances the return value from unknown is the return
value from the command that was eventually executed.

Variables

The following global variables are defined or used by the procedures in the Tcl lib

auto_execs
Used by auto_execok to record information about whether particula
commands exist as executable files.

auto_index
Used by auto_load to save the index information read from disk.

auto_noexec
If set to any value, then unknown will not attempt to auto-exec any
commands.
A–48

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

ch

auto_noload
If set to any value, then unknown will not attempt to auto-load any
commands.

auto_path
If set, then it must contain a valid Tcl list giving directories to search
during auto-load operations.

env(TCL_LIBRARY)
If set, then it specifies the location of the directory containing library
scripts (the value of this variable will be returned by the command info
library). If this variable isn’t set then a default value is used.

env(TCLLIBPATH)
If set, then it must contain a valid Tcl list giving directories to sear
during auto-load operations. This variable is only used if auto_path is
not defined.

unknown_active
This variable is set by unknown to indicate that it is active. It is used
to detect errors where unknown recurses on itself infinitely. The
variable is unset before unknown returns.
 A–49

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

preter;
A.31 lindex

Syntax

lindex list index

Description

This command treats list as a Tcl list and returns the index’th element from it (0 refers
to the first element of the list). In extracting the element, lindex observes the same
rules concerning braces and quotes and backslashes as the Tcl command inter
however, variable substitution and command substitution do not occur. If index is
negative or greater than or equal to the number of elements in value, then an empty
string is returned.
A–50

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.32 linsert

Syntax

linsert list index element ?element element ...?

Description

The linsert command produces a new list from list by inserting all of the element
arguments just before the indexth element of list. Each element argument will become
a separate element of the new list. If index is less than or equal to zero, then the new
elements are inserted at the beginning of the list. If index is greater than or equal to
the number of elements in the list, then the new elements are appended to the list.
 A–51

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e
A.33 list

Syntax

list ?arg arg ...?

Description

The command returns a list comprised of all the args, or an empty string if no args are
specified.

Braces and backslashes get added as necessary, so that the index command may be
used on the result to re-extract the original arguments, and also so that eval may be
used to execute the resulting list, with arg1 comprising the command’s name and th
other args comprising its arguments. List produces slightly different results than
concat: concat removes one level of grouping before forming the list, while list
works directly from the original arguments. For example, the command

list a b {c d e} {f {g h}}

will return

a b {c d e} {f {g h}}

while concat with the same arguments will return

a b c d e f {g h}
A–52

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.34 llength

Syntax

llength list

Description

The llength command treats list as a list and returns a decimal string giving the
number of elements in it.
 A–53

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

es,
A.35 lrange

Syntax

lrange list first last

Description

List must be a valid Tcl list. This command will return a new list consisting of
elements first through last, inclusive. Last may be end (or any abbreviation of it) to
refer to the last element of the list. If first is less than zero, it is treated as if it were
zero. If last is greater than or equal to the number of elements in the list, then it is
treated as if it were end. If first is greater than last then an empty string is returned.
Note: ‘‘lrange list first first’’ does not always produce the same result as ‘‘lindex list
first’’ (although it often does for simple fields that aren’t enclosed in braces); it do
however, produce exactly the same results as ‘‘list [lindex list first]’’
A–54

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.36 lreplace

Syntax

lreplace list first last ?element element ...?

Description

Lreplace returns a new list formed by replacing one or more elements of list with the
element arguments. First gives the index in list of the first element to be replaced. If
first is less than zero then it refers to the first element of list; the element indicated by
first must exist in the list. Last gives the index in list of the last element to be replaced;
it must be greater than or equal to first. Last may be end (or any abbreviation of it) to
indicate that all elements between first and the end of the list should be replaced. The
element arguments specify zero or more new arguments to be added to the list in place
of those that were deleted. Each element argument will become a separate element of
the list. If no element arguments are specified, then the elements between first and last
are simply deleted.
 A–55

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.37 lsearch

Syntax

lsearch ?mode? list pattern

Description

The command searches the elements of list to see if one of them matches pattern. If
so, the command returns the index of the first matching element. If not, the command
returns –1.

The mode argument indicates how the elements of the list are to be matched against
pattern and it must have one of the following values:

If mode is omitted then it defaults to –glob.

–exact The list element must contain exactly the same string as pattern.

–glob Pattern is a glob-style pattern which is matched against each list
element using the same rules as the string match command.

–regexp Pattern is treated as a regular expression and matched against each list
element using the same rules as the regexp command.
A–56

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

A.38 lsort

Syntax

lsort ?switches? list

Description

The command sorts the elements of list, returning a new list in sorted order. By default
ASCII sorting is used with the result returned in increasing order. However, any of the
following switches may be specified before list to control the sorting process (unique
abbreviations are accepted):

–ascii Use string comparison with ASCII collation order. This
is the default.

–integer Convert list elements to integers and use integer
comparison.

–real Convert list elements to floating-point values and use
floating comparison.

–command command Use command as a comparison command. To compare
two elements, evaluate a Tcl script consisting of
command with the two elements appended as additional
arguments. The script should return an integer less than,
equal to, or greater than zero if the first element is to be
considered less than, equal to, or greater than the second,
respectively.

–increasing Sort the list in increasing order (‘‘smallest’’ items first).
This is the default.

–decreasing Sort the list in decreasing order (‘‘largest’’ items first).
 A–57

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 to

’t

is

n
A.39 open

Syntax

open fileName ?access? ?permissions?

Description

The command opens a file and returns an identifier, fileId, that may be used in future
invocations of commands like read, puts, and close. filename gives the name of the
file to open; if it starts with a tilde then tilde substitution is performed as described for
Tcl_TildeSubst. If the first character of fileName is ‘‘|’’ then the remaining characters
of fileName are treated as a command pipeline to invoke, in the same style as for exec.
In this case, the identifier returned by open may be used to write to the command’s
input pipe or read from its output pipe.

The access argument indicates the way in which the file (or command pipeline) is
be accessed.

It may take two forms, either a string in the form that would be passed to the fopen
library procedure or a list of POSIX access flags. It defaults to ‘‘r’’. In the first form
access may have any of the following values:

In the second form, access consists of a list of any of the following flags, all of which
have the standard POSIX meanings. One of the flags must be either RDONLY,
WRONLY or RDWR.

r Open the file for reading only; the file must already exist.

r+ Open the file for both reading and writing; the file must already exist.

w Open the file for writing only. Truncate it if it exists. If it doesn’t exist,
create a new file.

w+ Open the file for reading and writing. Truncate it if it exists. If it doesn
exist, create a new file.

a Open the file for writing only. The file must already exist, and the file
positioned so that new data is appended to the file.

a+ Open the file for reading and writing. If the file doesn’t exist, create a
new empty file. Set the initial access position to the end of the file.

RDONLY Open the file for reading only.

WRONLY Open the file for writing only.

RDWR Open the file for both reading and writing.

APPEND Set the file pointer to the end of the file prior to each write.

CREAT Create the file if it doesn’t already exist (without this flag it is a
error for the file not to exist).
A–58

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

ask.

lines

and.

y

r
If a new file is created as part of opening it, permissions (an integer) is used to set the
permissions for the new file in conjunction with the process’s file mode creation m
Permissions defaults to 0666.

If a file is opened for both reading and writing then seek must be invoked between a
read and a write, or vice versa (this restriction does not apply to command pipe
opened with open). When fileName specifies a command pipeline and a write-only
access is used, then standard output from the pipeline is directed to the current
standard output unless overridden by the command. When fileName specifies a
command pipeline and a read-only access is used, then standard input from the
pipeline is taken from the current standard input unless overridden by the comm

EXCL If CREAT is specified also, an error is returned if the file alread
exists.

NOCTTY If the file is a terminal device, this flag prevents the file from
becoming the controlling terminal of the process.

NONBLOCK Prevents the process from blocking while opening the file. Fo
details refer to your system documentation on the open system
call’s O_NONBLOCK flag.

TRUNC If the file exists it is truncated to zero length.
 A–59

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

l
A.40 pid

Syntax

pid ?fileId?

Description

If the fileId argument is given then it should normally refer to a process pipeline
created with the open command. In this case the pid command will return a list whose
elements are the process identifiers of all the processes in the pipeline, in order. The
list will be empty if fileId refers to an open file that isn’t a process pipeline. If no fileId
argument is given then pid returns the process identifier of the current process. Al
process identifiers are returned as decimal strings.
A–60

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

e
nd

mit
 the
 the
e that

hich
urns.
ts.

the
A.41 proc

Syntax

proc name args body

Description

The proc command creates a new Tcl procedure named name, replacing any existing
command or procedure there may have been by that name. Whenever the new
command is invoked, the contents of body will be executed by the Tcl interpreter. Args
specifies the formal arguments to the procedure. It consists of a list, possibly empty,
each of whose elements specifies one argument. Each argument specifier is also a list
with either one or two fields. If there is only a single field in the specifier then it is the
name of the argument; if there are two fields, then the first is the argument name and
the second is its default value.

When name is invoked a local variable will be created for each of the formal
arguments to the procedure; its value will be the value of corresponding argument in
the invoking command or the argument’s default value. Arguments with default
values need not be specified in a procedure invocation. However, there must b
enough actual arguments for all the formal arguments that don’t have defaults, a
there must not be any extra actual arguments. There is one special case to per
procedures with variable numbers of arguments. If the last formal argument has
name args, then a call to the procedure may contain more actual arguments than
procedure has formals. In this case, all of the actual arguments starting at the on
would be assigned to args are combined into a list (as if the list command had been
used); this combined value is assigned to the local variable args.

When body is being executed, variable names normally refer to local variables, w
are created automatically when referenced and deleted when the procedure ret
One local variable is automatically created for each of the procedure’s argumen
Global variables can only be accessed by invoking the global command or the upvar
command.

The proc command returns an empty string. When a procedure is invoked, the
procedure’s return value is the value specified in a return command. If the procedure
doesn’t execute an explicit return, then its return value is the value of the last
command executed in the procedure’s body. If an error occurs while executing
procedure body, then the procedure-as-a-whole will return that same error.
 A–61

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.42 puts

Syntax

puts ?–nonewline? ?fileId? string

Description

Writes the characters given by string to the file given by fileId. FileId must have been
the return value from a previous call to open, or it may be stdout or stderr to refer to
one of the standard I/O channels; it must refer to a file that was opened for writing. If
no fileId is specified then it defaults to stdout. Puts normally outputs a newline
character after string, but this feature may be suppressed by specifying the
–nonewline switch. Output to files is buffered internally by Tcl; the flush command
may be used to force buffered characters to be output.
A–62

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.43 pwd

Syntax

pwd

Description

Returns the path name of the current working directory.
 A–63

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.44 read

Syntax

read ?–nonewline? fileId
read fileId numBytes

Description

In the first form, all of the remaining bytes are read from the file given by fileId; they
are returned as the result of the command. If the –nonewline switch is specified then
the last character of the file is discarded if it is a newline. In the second form, the extra
argument specifies how many bytes to read; exactly this many bytes will be read and
returned, unless there are fewer than numBytes bytes left in the file; in this case, all the
remaining bytes are returned. fileid must be stdin or the return value from a previous
call to open; it must refer to a file that was opened for reading. Any existing end-of-file
or error condition on the file is cleared at the beginning of the read command.
A–64

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

of

ch of
ntry.

A.45 regexp

Syntax

regexp ?switches? exp string ?matchVar? \
?subMatchVar subMatchVar ...?

Description

regexp determines whether the regular expression exp matches part or all of string and
returns 1 if it does, 0 if it doesn’t.

If additional arguments are specified after string then they are treated as the names
variables in which to return information about which part(s) of string matched exp.
MatchVar will be set to the range of string that matched all of exp. The first
subMatchVar will contain the characters in string that matched the leftmost
parenthesized subexpression within exp, the next subMatchVar will contain the
characters that matched the next parenthesized subexpression to the right in exp, and
so on.

If the initial arguments to regexp start with – then they are treated as switches. The
following switches are currently supported:

If there are more subMatchVar’s than parenthesized subexpressions within exp, or if
a particular subexpression in exp doesn’t match the string (e.g. because it was in a
portion of the expression that wasn’t matched), then the corresponding subMatchVar
will be set to ‘‘–1 –1’’ if –indices has been specified or to an empty string otherwise.

Regular Expressions

Regular expressions are implemented using Henry Spencer’s package, and mu
the description of regular expressions below is copied verbatim from his manual e

A regular expression is zero or more branches, separated by ‘‘|’’. It matches anything
that matches one of the branches.

A branch is zero or more pieces, concatenated. It matches a match for the first,
followed by a match for the second, etc.

–nocase Causes upper-case characters in string to be treated as lower case
during the matching process.

–indices Changes what is stored in the subMatchVars. Instead of storing the
matching characters from string, each variable will contain a list of two
decimal strings giving the indices in string of the first and last
characters in the matching range of characters.

– – Marks the end of switches. The argument following this one will be
treated as exp even if it starts with a –.
 A–65

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

’’
’’

ar

t

cter).

gle
ngle

em

e

 input

 left
ieces
y in

ing

ered
A piece is an atom possibly followed by ‘‘*’’, ‘‘+’’, or ‘‘?’’. An atom followed by ‘‘*’’
matches a sequence of 0 or more matches of the atom. An atom followed by ‘‘+
matches a sequence of 1 or more matches of the atom. An atom followed by ‘‘?
matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regul
expression), a range (see below), ‘‘.’’ (matching any single character), ‘‘^’’ (matching
the null string at the beginning of the input string), ‘‘$’’ (matching the null string a
the end of the input string), a ‘‘\’’ followed by a single character (matching that
character), or a single character with no other significance (matching that chara

A range is a sequence of characters enclosed in ‘‘[]’’. It normally matches any sin
character from the sequence. If the sequence begins with ‘‘^’’, it matches any si
character not from the rest of the sequence. If two characters in the sequence are
separated by ‘‘–’’, this is shorthand for the full list of ASCII characters between th
(e.g. ‘‘[0-9]’’ matches any decimal digit). To include a literal ‘‘]’’ in the sequence,
make it the first character (following a possible ‘‘^’’). To include a literal ‘‘–’’, mak
it the first or last character.

Choosing Among Alternative Matches

In general there may be more than one way to match a regular expression to an
string. For example, consider the command

regexp (a*)b* aabaaabb x y

Considering only the rules given so far, x and y could end up with the values aabb and
aa, aaab and aaa, ab and a, or any of several other combinations. To resolve this
potential ambiguity regexp chooses among alternatives using the rule ‘‘first then
longest’’. In other words, it consders the possible matches in order working from
to right across the input string and the pattern, and it attempts to match longer p
of the input string before shorter ones. More specifically, the following rules appl
decreasing order of priority:

In the example from above, (a*)b* matches aab: the (a*) portion of the pattern is
matched first and it consumes the leading aa; then the b* portion of the pattern
consumes the next b. Or, consider the following example:

[1] If a regular expression could match two different parts of an input str
then it will match the one that begins earliest.

[2] If a regular expression contains | operators then the leftmost matching
sub-expression is chosen.

[3] In *, +, and ? constructs, longer matches are chosen in preference to
shorter ones.

[4] In sequences of expression components the components are consid
from left to right.
A–66

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
regexp (ab|a)(b*)c abc x y z

After this command x will be abc, y will be ab, and z will be an empty string. Rule 4
specifies that (ab|a) gets first shot at the input string and Rule 2 specifies that the ab
sub-expression is checked before the a sub-expression. Thus the b has already been
claimed before the (b*) component is checked and (b*) must match an empty string.
 A–67

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

es,

n
A.46 regsub

Syntax

regsub ?switches? exp string subSpec varName

Description

The regsub command perform substitutions based on regular expression pattern
matching. regsub matches the regular expression exp against string, and it copies
string to the variable whose name is given by varName. The command returns 1 if
there is a match and 0 if there isn’t. If there is a match, then while copying string to
varName the portion of string that matched exp is replaced with subSpec. If subSpec
contains a ‘‘&’’ or ‘‘\0’’, then it is replaced in the substitution with the portion of
string that matched exp. If subSpec contains a ‘‘\n’’, where n is a digit between 1 and
9, then it is replaced in the substitution with the portion of string that matched the n-th
parenthesized subexpression of exp. Additional backslashes may be used in subSpec
to prevent special interpretation of ‘‘&’’ or ‘‘\0’’ or ‘‘\n’’ or backslash. The use of
backslashes in subSpec tends to interact badly with the Tcl parser’s use of backslash
so it’s generally safest to enclose subSpec in braces if it includes backslashes.

If the initial arguments to regexp start with – then they are treated as switches. The
following switches are currently supported:

–all All ranges in string that match exp are found and substitution is
performed for each of these ranges. Without this switch only the
first matching range is found and substituted. If –all is specified,
then ‘‘&’’ and ‘‘\ n’’ sequences are handled for each substitutio
using the information from the corresponding match.

–nocase Upper-case characters in string will be converted to lower-case
before matching against exp; however, substitutions specified by
subSpec use the original unconverted form of string.

– – Marks the end of switches. The argument following this one will
be treated as exp even if it starts with a –.

See the manual entry for regexp for details on the interpretation of regular
expressions.
A–68

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.47 rename

Syntax

rename oldName newName

Description

The rename command renames or deletes a command. rename renames the
command that used to be called oldName so that it is now called newName. If
newName is an empty string then oldName is deleted. rename returns an empty string
as result.
 A–69

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.48 return

Syntax

return ?–code code? ?–errorinfo info? \
?–errorcode code? ?string?

Description

The return command returns from a procedure. return returns immediately from the
current procedure (or top-level command or source command), with string as the
return value. If string is not specified then an empty string will be returned as result.

Exceptional Returns

In the usual case where the –code option isn’t specified the procedure will return
normally (its completion code will be TCL_OK). However, the –code option may be
used to generate an exceptional return from the procedure. code may have any of the
following values:

ok Normal return: same as if the option is omitted.

error Error return: same as if the error command were used to terminate
the procedure, except for handling of errorInfo and errorCode
variables (see below).

return The current procedure will return with a completion code of
TCL_RETURN, so that the procedure that invoked it will return
also.

break The current procedure will return with a completion code of
TCL_BREAK, which will terminate the innermost nested loop in
the code that invoked the current procedure.

continue The current procedure will return with a completion code of
TCL_CONTINUE, which will terminate the current iteration of
the innermost nested loop in the code that invoked the current
procedure.

value Value must be an integer; it will be returned as the completion
code for the current procedure.

The –code option is rarely used. It is provided so that procedures that implement new
control structures can reflect exceptional conditions back to their callers.

Two additional options, –errorinfo and –errorcode, may be used to provide
additional information during error returns. These options are ignored unless code is
error .

The –errorinfo option specifies an initial stack trace for the errorInfo variable; if it
is not specified then the stack trace left in errorInfo will include the call to the
A–70

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
procedure and higher levels on the stack but it will not include any information about
the context of the error within the procedure. Typically the info value is supplied from
the value left in errorInfo after a catch command trapped an error within the
procedure.

If the –errorcode option is specified then code provides a value for the errorCode
variable. If the option is not specified then errorCode will default to NONE.
 A–71

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 are

ent to

lue

lue

 the

he
in
his
t
ay

le.
A.49 scan

Syntax

scan string format varName ?varName ...?

Introduction

The scan command parses fields from an input string in the same fashion as the ANSI
C sscanf procedure and returns a count of the number of fields sucessfully parsed.
string gives the input to be parsed and format indicates how to parse it, using %
conversion specifiers as in sscanf. Each varName gives the name of a variable; when
a field is scanned from string the result is converted back into a string and assigned to
the corresponding variable.

Details On Scanning

scan operates by scanning string and formatString together. If the next character in
formatString is a blank or tab then it is ignored. Otherwise, if it isn’t a % character
then it must match the next non-white-space character of string. When a % is
encountered in formatString, it indicates the start of a conversion specifier. A
conversion specifier contains three fields after the %: a *, which indicates that the
converted value is to be discarded instead of assigned to a variable; a number
indicating a maximum field width; and a conversion character. All of these fields
optional except for the conversion character.

When scan finds a conversion specifier in formatString, it first skips any white-space
characters in string. Then it converts the next input characters according to the
conversion specifier and stores the result in the variable given by the next argum
scan. The following conversion characters are supported:

d The input field must be a decimal integer. It is read in and the va
is stored in the variable as a decimal string.

o The input field must be an octal integer. It is read in and the va
is stored in the variable as a decimal string.

x The input field must be a hexadecimal integer. It is read in and
value is stored in the variable as a decimal string.

c A single character is read in and its binary value is stored in t
variable as a decimal string. Initial white space is not skipped
this case, so the input field may be a white-space character. T
conversion is different from the ANSI standard in that the inpu
field always consists of a single character and no field width m
be specified.

s The input field consists of all the characters up to the next
white-space character; the characters are copied to the variab
A–72

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
e or f or g The input field must be a floating-point number consisting of an
optional sign, a string of decimal digits possibly con taining a
decimal point, and an optional exponent consisting of an e or E
followed by an optional sign and a string of decimal digits. It is
read in and stored in the variable as a floating-point string.

[chars] The input field consists of any number of characters in chars. The
matching string is stored in the variable. If the first character
between the brackets is a] then it is treated as part of chars rather
than the closing bracket for the set.

[^chars] The input field consists of any number of characters not in chars.
The matching string is stored in the variable. If the character
immediately following the ^ is a] then it is treated as part of the
set rather than the closing bracket for the set.

The number of characters read from the input for a conversion is the largest number
that makes sense for that particular conversion (e.g. as many decimal digits as possible
for %d, as many octal digits as possible for %o, and so on). The input field for a given
conversion terminates either when a white-space character is encountered or when the
maximum field width has been reached, whichever comes first. If a * is present in the
conversion specifier then no variable is assigned and the next scan argument is not
consumed.

Differences From Ansi Sscanf

The behavior of the scan command is the same as the behavior of the ANSI C sscanf
procedure except for the following differences:

[1] %p and %n conversion specifiers are not currently supported.

[2] For %c conversions a single character value is converted to a decimal
string, which is then assigned to the corresponding varName; no field
width may be specified for this conversion.

[3] The l, h, and L modifiers are ignored; integer values are always
converted as if there were no modifier present and real values are always
converted as if the l modifier were present (i.e. type double is used for the
internal representation).
 A–73

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.50 seek

Syntax

seek fileId offset ?origin?

Description

Change the current access position for fileId. fileid must have been the return value
from a previous call to open, or it may be stdin, stdout, or stderr to refer to one of
the standard I/O channels. The offset and origin arguments specify the position at
which the next read or write will occur for fileId. offset must be an integer (which may
be negative) and origin must be one of the following:

start The new access position will be offset bytes from the start of the
file.

current The new access position will be offset bytes from the current
access position; a negative offset moves the access position
backwards in the file.

end The new access position will be offset bytes from the end of the
file. A negative offset places the access position before the
end-of-file, and a positive offset places the access position after
the end-of-file.

The origin argument defaults to start. This command returns an empty string.
A–74

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

t: the

e
A.51 set

Syntax

set varName ?value?

Description

The set command reads and writes variables. set returns the value of variable
varName. If value is specified, then set the value of varName to value, creating a new
variable if one doesn’t already exist, and return its value. If varName contains an open
parenthesis and ends with a close parenthesis, then it refers to an array elemen
characters before the first open parenthesis are the name of the array, and the
characters between the parentheses are the index within the array. Otherwise varName
refers to a scalar variable. If no procedure is active, then varName refers to a global
variable. If a procedure is active, then varName refers to a parameter or local variabl
of the procedure unless the global command has been invoked to declare varName to
be global.
 A–75

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.52 source

Syntax

source fileName

Description

The source command evaluate a file as a Tcl script. source reads the file fileName and
pass the contents to the Tcl interpreter as a script to evaluate in the normal fashion.
The return value from source is the return value of the last command executed from
the file. If an error occurs in evaluating the contents of the file then source will return
that error. If a return command is invoked from within the file then the remainder of
the file will be skipped and the source command will return normally with the result
from the return command. If fileName starts with a tilde, then it is tilde-substituted
as described in the Tcl_TildeSubst manual entry.
A–76

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.53 split

Syntax

split string ?splitChars?

Description

The split command splits a string into a proper Tcl list. split returns a list created by
splitting string at each character that is in the splitChars argument. Each element of
the result list will consist of the characters from string that lie between instances of the
characters in splitChars. Empty list elements will be generated if string contains
adjacent characters in splitChars, or if the first or last character of string is in
splitChars. If splitChars is an empty string then each character of string becomes a
separate element of the result list. splitchars defaults to the standard white-space
characters. For example,

split "comp.unix.misc" .

returns

"comp unix misc"

and

split "Hello world" {}

returns

H e l l o { } w o r l d
 A–77

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

the

If
of

the

ll.
A.54 string

Syntax

string option arg ?arg ...?

Description

Performs one of several string operations, depending on option. The legal options
(which may be abbreviated) are:

string compare string1 string2
Perform a character-by-character comparison of strings string1
and string2 in the same way as the C strcmp procedure. Return
–1, 0, or 1, depending on whether string1 is lexicographically less
than, equal to, or greater than string2.

string first string1 string2
Search string2 for a sequence of characters that exactly match
characters in string1. If found, return the index of the first
character in the first such match within string2. If not found,
return –1.

string index string charIndex
Returns the charIndex’th character of the string argument. A
charIndex of 0 corresponds to the first character of the string.
charIndex is less than 0 or greater than or equal to the length
the string then an empty string is returned.

string last string1 string2
Search string2 for a sequence of characters that exactly match
characters in string1. If found, return the index of the first
character in the last such match within string2. If there is no
match, then return –1.

string length string
Returns a decimal string giving the number of characters in string.

string match pattern string
See if pattern matches string; return 1 if it does, 0 if it doesn’t.
Matching is done in a fashion similar to that used by the C-she
For the two strings to match, their contents must be identical
except that the following special sequences may appear in pattern:

* Matches any sequence of characters in string,
including a null string.

? Matches any single character in string.
A–78

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
string range string first last
Returns a range of consecutive characters from string, starting
with the character whose index is first and ending with the
character whose index is last. An index of 0 refers to the first
character of the string. last may be end (or any abbreviation of it)
to refer to the last character of the string. If first is less than zero
then it is treated as if it were zero, and if last is greater than or
equal to the length of the string then it is treated as if it were end.
If first is greater than last then an empty string is returned.

string tolower string
Returns a value equal to string except that all upper case letters
have been converted to lower case.

string toupper string
Returns a value equal to string except that all lower case letters
have been converted to upper case.

string trim string ?chars?
Returns a value equal to string except that any leading or trailing
characters from the set given by chars are removed. If chars is not
specified then white space is removed (spaces, tabs, newlines, and
carriage returns).

string trimleft string ?chars?
Returns a value equal to string except that any leading characters
from the set given by chars are removed. If chars is not specified
then white space is removed (spaces, tabs, newlines, and carriage
returns).

string trimright string ?chars?
Returns a value equal to string except that any trailing characters
from the set given by chars are removed. If chars is not specified
then white space is removed (spaces, tabs, newlines, and carriage
returns).

[chars] Matches any character in the set given by chars. If a
sequence of the form x–y appears in chars, then any
character between x and y, inclusive, will match.

\x Matches the single character x. This provides a way of
avoiding the special interpretation of the characters
*?[]\ in pattern.
 A–79

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e
A.55 switch

Syntax

switch ?options? string pattern body ?pattern body ...?
switch ?options? string {pattern body ?pattern body ...?}

Description

The switch command matches its string argument against each of the pattern
arguments in order. As soon as it finds a pattern that matches string it evaluates the
following body argument by passing it recursively to the Tcl interpreter and returns the
result of that evaluation. If the last pattern argument is default then it matches
anything. If no pattern argument matches string and no default is given, then switch
returns an empty string.

If the initial arguments to switch start with – then they are treated as options. The
following options are currently supported:

Two syntaxes are provided for the pattern and body arguments. The first uses a
separate argument for each of the patterns and commands; this form is convenient if
substitutions are desired on some of the patterns or commands. The second form
places all of the patterns and commands together into a single argument; the argument
must have proper list structure, with the elements of the list being the patterns and
commands. The second form makes it easy to construct multi-line switch commands,
since the braces around the whole list make it unnecessary to include a backslash at
the end of each line. Since the pattern arguments are in braces in the second form, no
command or variable substitutions are performed on them; this makes the behavior of
the second form different than the first form in some cases.

If a body is specified as ‘‘–’’ it means that the body for the next pattern should also be
used as the body for this pattern (if the next pattern also has a body of ‘‘–’’ then the
body after that is used, and so on). This feature makes it possible to share a singlbody
among several patterns.

–exact Use exact matching when comparing string to a pattern. This is the
default.

–glob When matching string to the patterns, use glob-style matching (i.e.
the same as implemented by the string match command).

–regexp When matching string to the patterns, use regular expression
matching (i.e. the same as implemented by the regexp command).

– – Marks the end of options. The argument following this one will be
treated as string even if it starts with a –.
A–80

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
Below are some examples of switch commands:

switch abc a – b {format 1} abc {format 2} default {format 3}

will return 2,

switch –regexp aaab {
^a.*b$ –
b {format 1}
a* {format 2}
default {format 3}

will return 1, and

switch xyz {
a
–
b

{format 1}
a*

{format 2}
default

{format 3}
}

will return 3.
 A–81

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

ral
The

n

n

use

ate;
as
A.56 tclvars

Description

tclvars – Variables used by Tcl

The following global variables are created and managed automatically by the Tcl
library. Except where noted below, these variables should normally be treated as
read-only by application-specific code and by users.

env
This variable is maintained by Tcl as an array whose elements are
the environment variables for the process. Reading an element will
return the value of the corresponding environment variable.
Setting an element of the array will modify the corresponding
environment variable or create a new one if it doesn’t already
exist. Unsetting an element of env will remove the corresponding
environment variable. Changes to the env array will affect the
environment passed to children by commands like exec. If the
entire env array is unset then Tcl will stop monitoring env
accesses and will not update environment variables.

errorCode
After an error has occurred, this variable will be set to hold
additional information about the error in a form that is easy to
process with programs. errorCode consists of a Tcl list with one
or more elements. The first element of the list identifies a gene
class of errors, and determines the format of the rest of the list.
following formats for errorCode are used by the Tcl core;
individual applications may define additional formats.

ARITH code msg
This format is used when an arithmetic error occurs (e.g. an
attempt to divide by zero in the expr command). code identifies
the precise error and msg provides a human-readable descriptio
of the error. code will be either DIVZERO (for an attempt to
divide by zero), DOMAIN (if an argument is outside the domai
of a function, such as acos(–3)), IOVERFLOW (for integer
overflow), OVERLFLOW (for a floating-point overflow), or
UNKNOWN (if the cause of the error cannot be determined).

CHILDKILLED pid sigName msg
This format is used when a child process has been killed beca
of a signal. The second element of errorCode will be the
process’s identifier (in decimal). The third element will be the
symbolic name of the signal that caused the process to termin
it will be one of the names from the include file signal.h, such
A–82

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

e

d

nd;
 as

 for

is
ror.

he
ch
e
le

ch

,

e

nts
SIGPIPE. The fourth element will be a short human-readable
message describing the signal, such as ‘‘write on pipe with no
readers’’ for SIGPIPE.

CHILDSTATUS pid code
This format is used when a child process has exited with a
non-zero exit status. The second element of errorCode will be the
process’s identifier (in decimal) and the third element will be th
exit code returned by the process (also in decimal).

CHILDSUSP pid sigName msg
This format is used when a child process has been suspende
because of a signal. The second element of errorCode will be the
process’s identifier, in decimal. The third element will be the
symbolic name of the signal that caused the process to suspe
this will be one of the names from the include file signal.h, such
SIGTTIN. The fourth element will be a short human-readable
message describing the signal, such as ‘‘background tty read’’
SIGTTIN.

NONE
This format is used for errors where no additional information
available for an error besides the message returned with the er
In these cases errorCode will consist of a list containing a single
element whose contents are NONE.

POSIX errName msg
If the first element of errorCode is POSIX, then the error
occurred during a POSIX kernel call. The second element of t
list will contain the symbolic name of the error that occurred, su
as ENOENT; this will be one of the values defined in the includ
file errno.h. The third element of the list will be a human-readab
message corresponding to errName, such as ‘‘no such file or
directory’’ for the ENOENT case.

To set errorCode, applications should use library procedures su
as Tcl_SetErrorCode and Tcl_PosixError, or they may invoke
the error command. If one of these methods hasn’t been used
then the Tcl interpreter will reset the variable to NONE after the
next error.

errorInfo
After an error has occurred, this string will contain one or mor
lines identifying the Tcl commands and procedures that were
being executed when the most recent error occurred. Its conte
take the form of a stack trace showing the various nested Tcl
commands that had been invoked at the time of the error.
 A–83

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

t
gs
tcl_precision
If this variable is set, it must contain a decimal number giving the
number of significant digits to include when converting
floating-point values to strings. If this variable is not set then 6
digits are included. 17 digits is ‘‘perfect’’ for IEEE floating-poin
in that it allows double-precision values to be converted to strin
and back to binary with no loss of precision.
A–84

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3
A.57 tell

Syntax

tell fileId

Description

The tell command returns the current access position for an open file. Returns a
decimal string giving the current access position in fileId. fileid must have been the
return value from a previous call to open, or it may be stdin, stdout, or stderr to refer
to one of the standard I/O channels.
 A–85

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

nds.
A.58 time

Syntax

time script ?count?

Description

The time command times the execution of a script. time will call the Tcl interpreter
count times to evaluate script (or once if count isn’t specified). time then returns a
string of the form

503 microseconds per iteration

which indicates the average amount of time required per iteration, in microseco
Time is measured in elapsed time, not CPU time.
A–86

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

ole
ed

one

2
and
gle

set
A.59 trace

Syntax

trace option ?arg arg ...?

Description

The trace command monitors variable accesses. trace causes Tcl commands to be
executed whenever certain operations are invoked. At present, only variable tracing
is implemented. The legal option’s (which may be abbreviated) are:

trace variable name ops command
Arrange for command to be executed whenever variable name is
accessed in one of the ways given by ops. name may refer to a
normal variable, an element of an array, or to an array as a wh
(i.e. name may be just the name of an array, with no parenthesiz
index). If name refers to a whole array, then command is invoked
whenever any element of the array is manipulated.

Ops indicates which operations are of interest, and consists of
or more of the following letters:

When the trace triggers, three arguments are appended to
command so that the actual command is as follows:

command name1 name2 op

name1 and name2 give the name(s) for the variable being
accessed: if the variable is a scalar then name1 gives the
variable’s name and name2 is an empty string; if the variable is an
array element then name1 gives the name of the array and name
gives the index into the array; if an entire array is being deleted
the trace was registered on the overall array, rather than a sin
element, then name1 gives the array name and name2 is an empty
string. op indicates what operation is being performed on the
variable, and is one of r, w, or u as defined above.

r Invoke command whenever the variable is read.

w Invoke command whenever the variable is written.

u Invoke command whenever the variable is unset.
Variables can be unset explicitly with the unset
command, or implicitly when procedures return (all of
their local variables are unset). Variables are also un
when interpreters are deleted, but traces will not be
invoked because there is no interpreter in which to
execute them.
 A–87

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

to

s
 and

n
set

 to:
.
ce
 trace

der
 no
has
e, the
ent.
command executes in the same context as the code that invoked
the traced operation: if the variable was accessed as part of a Tcl
procedure, then command will have access to the same local
variables as code in the procedure. This context may be different
than the context in which the trace was created. If command
invokes a procedure (which it normally does) then the procedure
will have to use upvar or uplevel if it wishes to access the traced
variable. Note also that name1 may not necessarily be the same as
the name used to set the trace on the variable; differences can
occur if the access is made through a variable defined with the
upvar command.

For read and write traces, command can modify the variable to
affect the result of the traced operation. If command modifies the
value of a variable during a read or write trace, then the new value
will be returned as the result of the traced operation. The return
value from command is ignored except that if it returns an error
of any sort then the traced operation also returns an error with the
same error message returned by the trace command (this
mechanism can be used to implement read-only variables, for
example). For write traces, command is invoked after the
variable’s value has been changed; it can write a new value in
the variable to override the original value specified in the write
operation. To implement read-only variables, command will have
to restore the old value of the variable.

While command is executing during a read or write trace, trace
on the variable are temporarily disabled. This means that reads
writes invoked by command will occur directly, without invoking
command (or any other traces) again. However, if command
unsets the variable then unset traces will be invoked.

When an unset trace is invoked, the variable has already bee
deleted: it will appear to be undefined with no traces. If an un
occurs because of a procedure return, then the trace will be
invoked in the variable context of the procedure being returned
the stack frame of the returning procedure will no longer exist
Traces are not disabled during unset traces, so if an unset tra
command creates a new trace and accesses the variable, the
will be invoked. Any errors in unset traces are ignored.

If there are multiple traces on a variable they are invoked in or
of creation, most-recent first. If one trace returns an error, then
further traces are invoked for the variable. If an array element
a trace set, and there is also a trace set on the array as a whol
trace on the overall array is invoked before the one on the elem
A–88

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

the
Once created, the trace remains in effect either until the trace is
removed with the trace vdelete command described below, until
the variable is unset, or until the interpreter is deleted. Unsetting
an element of array will remove any traces on that element, but
will not remove traces on the overall array.

This command returns an empty string.

trace vdelete name ops command
If there is a trace set on variable name with the operations and
command given by ops and command, then the trace is removed,
so that command will never again be invoked. Returns an empty
string.

trace vinfo name
Returns a list containing one element for each trace currently set
on variable name. Each element of the list is itself a list containing
two elements, which are the ops and command associated with the
trace. If name doesn’t exist or doesn’t have any traces set, then
result of the command will be an empty string.
 A–89

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

 If

s for

g
A.60 unknown

Syntax

unknown cmdName ?arg arg ...?

Description

The unknown command is used to handle attempts to use non-existent commands.
unknown doesn’t actually exist as part of Tcl, but Tcl will invoke it if it does exist.
the Tcl interpreter encounters a command name for which there is not a defined
command, then Tcl checks for the existence of a command named unknown. If there
is no such command, then the interpreter returns an error. If unknown exists, then it
is invoked with arguments consisting of the fully-substituted name and argument
the original non-existent command. unknown typically does things like searching
through library directories for a command procedure with the name cmdName, or
expanding abbreviated command names to full-length, or automatically executin
unknown commands as sub-processes. In some cases (such as expanding
abbreviations) unknown will change the original command slightly and then
(re-)execute it. The result of unknown is used as the result for the original
non-existent command.
A–90

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

re not
A.61 unset

Syntax

unset name ?name name ...?

Description

The unset command removes one or more variables. Each name is a variable name,
specified in any of the ways acceptable to the set command. If a name refers to an
element of an array then that element is removed without affecting the rest of the array.
If a name consists of an array name with no parenthesized index, then the entire array
is deleted. The unset command returns an empty string as result. An error occurs if
any of the variables doesn’t exist, and any variables after the non-existent one a
deleted.
 A–91

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e c

 (for
.
A.62 uplevel

Syntax

uplevel ?level? arg ?arg ...?

Description

The uplevel command executes a script in a different stack frame. All of the arg
arguments are concatenated as if they had been passed to concat; the result is then
evaluated in the variable context indicated by level. uplevel returns the result of that
evaluation.

If level is an integer then it gives a distance (up the procedure calling stack) to move
before executing the command. If level consists of # followed by a number then the
number gives an absolute level number. If level is omitted then it defaults to 1. Level
cannot be defaulted if the first command argument starts with a digit or #.

For example, suppose that procedure a was invoked from top-level, and that it called
b, and that b called c. Suppose that c invokes the uplevel command. If level is 1 or #2
or omitted, then the command will be executed in the variable context of b. If level is
2 or #1 then the command will be executed in the variable context of a. If level is 3 or
#0 then the command will be executed at top-level (only global variables will be
visible).

uplevel causes the invoking procedure to disappear from the procedure calling stack
while the command is being executed. In the above example, suppose c invokes the
command

uplevel 1 {set x 43; d}

where d is another Tcl procedure. The set command will modify the variable x in b’s
context, and d will execute at level 3, as if called from b. If it in turn executes the
command

uplevel {set x 42}

then the set command will modify the same variable x in b’s context: the procedur
does not appear to be on the call stack when d is executing. The command ‘‘info
level’’ may be used to obtain the level of the current procedure.

uplevel makes it possible to implement new control constructs as Tcl procedures
example, uplevel could be used to implement the while construct as a Tcl procedure)
A–92

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Basic Tcl Commands
Revision 1, February 1999 Release 5.3

ding

.

 the

s

r
ible
A.63 upvar

Syntax

upvar ?level? otherVar myVar ?otherVar myVar ...?

Description

The upvar command creates a link to a variable in a different stack frame. upvar
arranges for one or more local variables in the current procedure to refer to variables
in an enclosing procedure call or to global variables. Level may have any of the forms
permitted for the uplevel command, and may be omitted if the first letter of the first
otherVar isn’t # or a digit (it defaults to 1). For each otherVar argument, upvar makes
the variable by that name in the procedure frame given by level (or at global level, if
level is #0) accessible in the current procedure by the name given in the correspon
myVar argument. The variable named by otherVar need not exist at the time of the
call; it will be created the first time myVar is referenced, just like an ordinary variable
upvar may only be invoked from within procedures.MyVar may not refer to an
element of an array, but otherVar may refer to an array element. upvar returns an
empty string.

upvar simplifies the implementation of call-by-name procedure calling and also
makes it easier to build new control constructs as Tcl procedures. For example,
consider the following procedure:

proc add2 name { upvar $name x set x [expr $x+2] }

add2 is invoked with an argument giving the name of a variable, and it adds two to
value of that variable. Although add2 could have been implemented using uplevel
instead of upvar, upvar makes it simpler for add2 to access the variable in the caller’
procedure frame.

If an upvar variable is unset (e.g. x in add2 above), the unset operation affects the
variable it is linked to, not the upvar variable. There is no way to unset an upva
variable except by exiting the procedure in which it is defined. However, it is poss
to retarget an upvar variable by executing another upvar command.
 A–93

MYNAH System Scripting Guide BR 007-252-004
Basic Tcl Commands Issue 4, December 1998
Release 5.3 Revision 1, February 1999
A.64 while

Syntax

while test body

Description

The while command executes a script repeatedly as long as a condition is met. while
evaluates test as an expression (in the same way that expr evaluates its argument). The
value of the expression must a proper boolean value; if it is a true value then body is
executed by passing it to the Tcl interpreter. Once body has been executed then test is
evaluated again, and the process repeats until eventually test evaluates to a false
boolean value. continue commands may be executed inside body to terminate the
current iteration of the loop, and break commands may be executed inside body to
cause immediate termination of the while command. while always returns an empty
string.
A–94

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Glossary
Revision 1, February 1999 Release 5.3
Glossary Glossary

A B

m.

.
g

t
AID Key — Any 3270 special program
key which causes the current screen to
be sent to the 3270 SUT, and causes
the SUT to transmit screen data back
to the client.

Aggregate — A term used to identify a
portion of a Flexible Computer
Interface Format (FCIF) message. An
aggregate contains zero or more
tag-value pairs and is contained in an
FCIF section.

App-to-App — Package that allows a
user to send, receive, and analyze
messages to and from a SUT over an
application-to-application interface or
a binary synchronous printer interface.

Array — A collection of associated
variable elements.

Asynchronous Terminal
Interface — An interface to an operating

system or application that sends and
receives data in arbitrarily-sized
blocks at arbitrary times.

Attributes — 1. The values defining the
characteristics of a class or a class’s
connection, e.g., blinking,
highlighted. 2. The sub-commands
used to specify or return attribute
values. 3. A category of methods and
attributes that are used to find
information about the SUT’s
configuration characteristics.

Background Execution
Environment — The combination of the

Script Dispatchers, the Script Engine
Groups, and the associated SEs.

Background Script Engine — SE
process that communicates over an
channel to a controlling process.

BD — See Boot Daemon

BEE — See Background Execution
Environment

Binary Synchronous
Communication — An IBM

communications protocol that
provides access to a 3270 data strea

Boot Daemon — A platform process
required by an SD that manages the
SEs running on its machine.

BSC — See Binary Synchronous
Communication

BSE — See Background Script Engine

C

Character Position — The manner in
which screen positions are referred to
The screen can be viewed as one lon
string, where the indices of that string
map to a position on the screen. For
instance, the first value of the string
has a character position of 1, which
would have a corresponding
row/column value of {1 1}. The
maximum character position, or the
last position on the screen, varies from
model type to model type, as differen
model types have different screen
sizes. Model 2’s max character
 Glossary–1

MYNAH System Scripting Guide BR 007-252-004
Glossary Issue 4, December 1998
Release 5.3 Revision 1, February 1999

e

position is (24 x 80) 1920, while the
bigger Model 5 has a max character
position of (27 x 132) 3564.

Child Script — A Tcl script that is
submitted for execution by a parent
script

Class — A specific area or category of
functionality.

Class Command — A command that
gives you control over a class or
category of functions.

Clear Tag-value Database — An ASCII
file containing two columns separated
by spaces or tabs. The first column
contains the tag, and the second
column contains the values.

CLUI — See Command Line User
Interface

Command Line Script Engine — A
MYNAH process that accepts Tcl
commands from stdin and produces
results on stdout. The Command Line
Script Engine (CSE) does not
interface with the MYNAH System
database, but does, however, open a
channel.

Concatenate — To put two items
together, end to end. For example, if
you concatenated the strings "uvw"
and "xyz", you get "uvwxyz". If you
concatenate two files, the new file
contains the contents of both files,
presented sequentially.

Concurrency Group — The set of all
scripts that run on one Script
Dispatcher

Config file — The MYNAH
Configuration File (named
xmyConfig) that resides in the
directory $XMYHOME/config.

CSE — See Command Line Script Engin

D

des — A UNIX command to encrypt or
decrypt data using the Data
Encryption Standard.

Domain — A type of interface provided to
the System Under Test. Examples of
domains are the asysnchronous
terminal interface of an application,
the application-to-application
interface of an application, and the
synchronous printer interface of an
application.

Domain Connection — Any specific
input/output interface to a SUT.

E

EAB — See Extended Attribute Bytes,
used in 3270 to provide more
information about a field, such as
color attributes.

EHLLAPI — See Emulator High Level
Language Application Programmatic
Interface.

Elements — Components of a list or
array.
Glossary–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Glossary
Revision 1, February 1999 Release 5.3

l
e

I

rs
Embedded Script Engines — Script
Engines that graphically display the
screens associated with Term3270 or
TermAsync Packages. Embedded
Script Engines (ESEs) offer script
execution functionality through class
methods. ESEs are not separate
processes.

Emulator High Level Language Application
Programmatic Interface — The IBM

specification API for interacting with
a 3270 host providing the essential
functionality underneath the MYNAH
5.0 3270 Terminal domain.

Encrypted Database — Aclear database
that has been encrypted using des

ESE — See Embedded Script Engine

Exception — Any event that can abort a
script.

Extended Attribute Bytes — Used by
the Term3270 Package to provide
more information about a field, such
as color attributes.

Extended Tcl — See TclX.

Extensions — Commands and
procedures that expand Tcl’s
capabilities.

F

FCIF — Flexible Computer Interface
Format. FCIF is a text format
developed at Bellcore for
communicating messages between
processes.

FMM — See Flexible Message Manager
(TraxWay-provided wrapper to
Telexel IPC)

Flexible Message Manager — A
TraxWay-provided wrapper to
Telexel IPC. An inter-process
communication module used by the
MYNAH System that uses the Telexe
directory daemon underneath to do th
actual IPC processing.

Focusing — Selecting a MYNAH GUI
element and making it ready for you to
enter information.

G

Global Array — An array of elements
that are available to all domains.

GUI — Graphical User Interface.

H

Handle — A reference to an instance.

hllc() — The native EHLLAPI call.
EHLLAPI makes use of one function,
the hllc() function, which always takes
four parameters. These four
parameters determine what EHLLAP
function to execute, the input
parameters to that function, and,
afterwards, return the output of that
function’s execution, should there be
any. The four parameters are
commonly referred to as (and passed
to the hllc() function in this order):
Function Number, Data String, Data
String Length or Buffer Size, and
Presentation Space. This design refe
to the specific EHLLAPI function
simply as hllc(function_number). For
instance, the EHLLAPI function
Connect Presentation Space
corresponds to hllc(1).
 Glossary–3

MYNAH System Scripting Guide BR 007-252-004
Glossary Issue 4, December 1998
Release 5.3 Revision 1, February 1999

s

s

o

n
is

I

Icon — An X-Window that has been
closed using a window manager
function.

Iconified — The state of an X-Window
after it has become an icon.

Instances — Connections made to SUTs
using a class command.

IPC — Inter-process Communication
Telexel IPC processes

J

Job Status Container — MYNAH
GUI tool used to monitor the scripts
that have submitted to the BEE.

L

List — An ordered collection of elements.

Log File — A file containing a record of
activity for a software product.

M

Mask — A way to identify data that will
be ignored during a comparison.

Methods — Sub-commands used to
perform particular actions on
instances you create in Tcl.

MYNAH System — An advanced
software environment that can be used
in all phases of software testing to
exercise and analyze mainframe,
minicomputer, and workstation
applications. The MYNAH System
can also be used for task automation
and rapid application development.

O

OA — See Operability Agent

OM — See Operability Manager

Operability Agent — A MYNAH
process that manages all MYNAH
required processes on a host,
communicating the start, stop and
status requests to individual processe
and then communicating the reply
back to the OM.

Operability Management — The
MYNAH mechanism, consisting of
the OA and OM, that lets the MYNAH
Adminstrator start, stop, and get statu
of all of the MYNAH processes from
any host.

Operability Manager — A set of
commands used interact with an OA t
manageall MYNAH processes. You
can start or stop a process or you ca
determine if a process is running stat

P

Parent Script — A Tcl script that
submits other scripts for execution.

-position position — One of the ways
of specifying screen location to a 3270
Tcl command. The position is a list of
two integer values, row and column in
that order. Example: -position {1 1}.

Presentation space — The 3270 screen
that the EHLLAPI function call will
affect and/or perform its action upon.
Glossary–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Glossary
Revision 1, February 1999 Release 5.3

,

s

 a

e.
,

PRINTCOM — A program that interfaces
to applications on a host computer
over a binary synchronous
communication line, receiving and
capturing the printer output sent by the
applications.

Process — An executable program that is
active (running).

Prt3270 — MYNAH Package that lets a
user simulate PRINTCOM processes.

R

Regression Testing — The testing of a
previously verified application after
changes have been made to the
application.

Requesting Process — A process that
sends a script-execution request to the
SD (this does not include an SE
sending a child-script-execution
request to the SD).

Resource, X-Window System — A
default value that can be changed by a
user. Sets of resources are commonly
stored in the ~/.Xdefaults file (i.e., the
file called ".Xdefaults" in your home
directory).

Root Script — A script submitted to an
SD via the GUI, CLUI, CSE, or an
embedded SE, but not from one of the
SEs that is controlled by the SD.

Runtime — A state in which a script is
being executed.

Runtime Analysis — data Analysis that
occurs during the execution of a test
and provides verification that the
application being tested performed a
expected. An example of runtime
analysis is a comparison statement in
test script.

S

Screen Definition File — A file
containing a tag name table. One file
exists for each screen in a user's
application. The file may contain
other information in addition to the tag
name table. The tag name table is
delimited in this file by "begin" and
"end" statements.

Screen IDs File — A file containing the
names of screens and other
information to uniquely identify one
screen from another.

Script — A file that contains one or more
instructions to be performed by a
domain.

Script Dispatcher — MYNAH process
that provides scheduling and
concurrency control for background
execution of user scripts.

Script Engine — An extended Tcl
interpreter that runs user scripts.

Script Engine Group — A logical set of
BSEs controlled by an SD that all run
on one host and run in the same mod
When a script is submitted to the BEE
it is submitted to run in a particular SE
Group. It will run on one of the SEs in
that group, but it doesn’t matter which
SE in the group it runs on.
 Glossary–5

MYNAH System Scripting Guide BR 007-252-004
Glossary Issue 4, December 1998
Release 5.3 Revision 1, February 1999

.

d

g

Script Builder — A MYNAH GUI tool
used to create script code by capturing
interactions with a system, importing
templates and procedures, and
existing script code. A Standalone
Script Builder can be run
independently of the rest of the
MYNAH GUI.

Script Object — A MYNAH GUI object
used to create and track script code.

SD — See Script Dispatcher.

SE — See Script Engine.

SNA — See Systems Network
Architecture.

String — In Tcl: A set of characters that
represents the current value of a
variable. In some cases, strings show
what will appear on the screen or in a
printout.

SUT — System Under Test.

Symbol Table — User-supplied data
associated with a script. Symbol tables
contain symbol-value pairs; they can
be read and modified by the script
during execution.

Synchronous Terminal
Interface — An interface to an operating

system or application that sends and
receives data in blocks of predefined
size at regular intervals.

Systems Network
Architecture — An IBM

communications protocol that
provides access to a 3270 data stream.

System Under Test — The system you
wish to test or which contains the
application you wish to automate.

T

TagDir — A directory containing Tag
Name files.

Tag Table — A formatted table in a
screen definition file, containing
screen information for a single screen
For each user-identified screen field
this table has a name for the field
(called a tag name), the field's row an
column location, and the number of
characters in the field.

Tag Name File — A file containing
tag-value pairs, used for locating
items on a synchronous screen.

Tag-value Pair — A pair of items, the
first being a variable, the second bein
the value of that variable. Tag-value
pairs reside in a symbol table.

Tags — User defined lables used by the
Term3270 Package for locating items
on a synchronous screen.

Tcl — Tool Command Language. An
interpretive programming language,
implemented as a library of C
procedures, developed by John
Ousterhout. Tcl is the basis for the
MYNAH scripting language.

TclX — Extended Tcl, flavor of Tcl used
by the MYNAH System under license
from NeoSoft.

Term3270 — Package that performs 3270
synchronous terminal emulation,
allowing users to build scripts that
simulate an interactive work session
with a SUT.
Glossary–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Glossary
Revision 1, February 1999 Release 5.3
TermAsync — Package that performs
asynchronous terminal emulation,
allowing users to build scripts that
simulate an interactive work session
with a SUT.

Terminal Emulation — The use of
software to emulate a type of hardware
terminal (e.g., vt100, 3278).

TOPCOM — A software product that
provides an interface to allow an
application to establish and accept
Transaction Oriented Protocol (TOP)
sessions with a foreign partner, to send
and receive messages to and from the
partner, and to terminate the sessions.
TOPCOM uses X.25 or TCP/IP
transport services to transport the
application data messages and TOP
protocol messages between the two
partners.

TOP — Extension Package that lets a user
simulate TOPCOM processes.

V

Variable — A user defined quantity that
can assume a value.
 Glossary–7

MYNAH System Scripting Guide BR 007-252-004
Glossary Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Glossary–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Index Index

A Send Status, 12-31
Adding Elements to Lists, 4-29

append, A-2

Appending Lists, 4-27

Application-to-Application
See Also FCIF Package
See Also TCP Package
See MsgDir Package
See PRT3270 Package
See TOP Package

Arithmetic Operators, 4-8

array, A-3

Arrays, 4-21
Contrast to Lists, 4-21
Creating, 4-35

Asynchronous Request, Canceling, 8-4

Asynchronous Terminals
See TermAsync Package

Attributes
Definition, 1-8
Listing Valid Values

Term3270 Package, 10-30
TermAsync Package, 9-15

Overview
Term3270 Package, 10-3
TermAsync Package, 9-2

PRT3270 Package
Receive Session Number, 13-22
Receive Status, 13-22
Receive Time Stamp, 13-23

Returning Current Values
Term3270 Package, 10-28
TermAsync Package, 9-14

TCP Package
Receive Time Stamp, 16-32

Term3270 Methods, 10-2
TermAsync Attributes, 9-3
TermAsync Methods, 9-2
TOP Package

Receive Session Number, 12-27
Receive Status, 12-28
Receive Time Stamp, 11-29, 12-29
Send Session Number, 12-30

Send Time Stamp, 12-32

Attributes, definition, 1-3

B

Background Execution Environment
See BEE

Backslash
Backslash Sequences, 4-17
Used in Substitution, 4-16
Using to Insert Special Characters, 4-16

Batch Package
Condition Codes, 17-11
Deleting a Job, 17-5
Hosts

Querying for, 17-7
Specifying, 17-2

Implementation as Tcl Procedures, 17-1
Job IDs, 17-8
.netrc File, 17-14
Returning Condition Codes, 17-11
Returning Job ID, 17-8
Returning Job Status, 17-9
Returning Number of Steps in Job, 17-10
Status of Jobs, 17-9
Step Results, 17-11
Steps Reported in a Job, 17-10
Submitting a Batch Job, 17-1
Waiting for a Response, 17-13

BEE, 2-10, 3-2
Concurrency, 2-10
File Ownership, 3-12
Permissions, Execution Directory, 3-12
Relation Between SDs and SE Groups,

2-10
SE Groups, 2-10
Submitting Scripts

From the CLUI, 2-11
From the GUI, 2-12

Bitwise Operators, 4-10

Braces, 4-19
Suppressing Variable Substitution, 4-19
Used to Defer Evaluation, 4-19
 Index–1

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
break, A-5

Buffer Size, 9-10, 9-25

C

Carriage Returns in Differenced Files, 7-12

case, A-6

catch, A-7

catch Command, 4-46

cd, A-8

checktags, 14-5

Child Script Events, 2-26

Child Script Package
Canceling Asynchronous Request, 8-4
Creating a Connection, 8-2
Data

Sending to an Application, 8-9
Waiting for Responses, 8-10

Disconnecting a Connection, 8-5
Loading, 8-1
Pausing a Request, 8-6
Request

Pausing, 8-6
Resuming, 8-7

Requests
Sending, 8-8

Resuming a Request, 8-7
SDs, 8-2
SE Groups, 8-2
Sending a Request, 8-8
Sending Data to an Application, 8-9
Specifying

SDs, 8-2
SE Groups, 8-2

Timeout
Returning, 8-2
Specifying, 8-2

Waiting for Responses, 8-10
Waiting Until all Scripts Complete, 8-11
Waiting Until any Scripts Complete, 8-12

Class Command, 1-5

Classes of functionality, 1-5

Clear Tag-Value Database, 3-3

close, A-9

Closing Files, 4-58

CLUI, 2-1
Submitting Scripts, 2-11
xmyCmd Command, 2-11, 2-39

Columns
Returning Current Position

Term3270 Package, 10-39
TermAsync Package, 9-25

Using to Move a Cursor on a 3270 Screen,
10-31

Using to Return 3270 Screen Images,
10-32

Using to Specify 3270 Screen Location,
10-10

Command Line User Interface
See CLUI

Comments, 4-20

Compare Events, 2-27

Compare Master, 5-1, 7-6, 10-7
3270, 10-7
Async, 9-8
expectMaster, 5-1
Region dimension restriction, 5-2
Suppressing creation, 5-3, 6-2

compares File, 2-18
Child Script Events, 2-26
Compare Events, 2-27
Event Categories, 2-25
Exception Events, 2-28
Format, 2-23
Language Events, 2-28
Script Events, 2-29
Summary Events, 2-30
SUT Timing (suttiming) Events, 2-32
Sutimage Events, 2-31
Test Object Events, 2-32
User Events, 2-33

Comparing a Region
See Also Masks
See Comparisons

Comparing Differences Between Files, 7-11,
7-31

Comparisons
Category Definition, 1-10
Commands that Create Output, 2-27
compares File, 2-18, 2-23
Index–2

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Comparing Differences Between Files,
7-11, 7-31

Disabling Masks
Term3270 Package, 10-19
TermAsync Package, 9-11

Enabling Masks
Term3270 Package, 10-21
TermAsync Package, 9-13

Failed, 6-8
FCIF Package

Check for Extra Tags, 14-11
Comparing FCIF Tags, 14-7
Comparing to Master FCIF Message,

14-5
Getting FCIF Values, 14-13
offset, 14-7
Reordering Sections, 14-14

General Extensions, 7-2, 7-6
Good, 6-10
Ignoring a Region, 7-20
Ignoring a Region on a 3270 Screen,

10-29
Maximum, 6-12
Number of Failed

Term3270 Package, 10-41
TermAsync Package, 9-26

Number of Successful
Term3270 Package, 10-41
TermAsync Package, 9-27

Number of Warnings
Term3270 Package, 10-48
TermAsync Package, 9-30

PRT3270 Package
Listen Mode, 13-16
Matching Messages, 13-17
Specifying Tcl Procedure, 13-17

Regions, 5-1, 9-7, 10-8
See Also Masks
See Also Tests
TCP Package

Listen Mode, 16-24
Matching Messages, 16-26
Specifying Tcl Procedure, 16-26

Term3270 Attributes, 10-4
Term3270 Methods, 10-2
Term3270 Package, 10-14
TermAsync Attributes, 9-3
TermAsync Methods, 9-1

TermAsync Package, 9-7
TOP Package

Listen Mode, 12-19
Matching Messages, 12-21
Specifying Tcl Procedure, 12-21

Updating Counters, 6-20
Using the Compare Master, 5-1
Warnings, 6-21

concat, A-10

Concealing Sensitive Data, 3-1
Obtaining From Scripts in the

Background, 3-2
Prompting Using the Script Builder, 3-1
Scrambling Encryption Keys, 7-42
See Also xmyCmd
See Also xmyUdb
TermAsync SUTimages Files, 3-8

Concurrency, 2-10

Connections
Accepting

TCP Package, 16-5
Connection ID

TCP Package, 16-20
Creating

Child Script Package, 8-2
DCE Package

Emulated Client, 18-5
Emulated Server, 18-8

FCIF Package, 14-3
MsgDir Package, 15-4
PRT3270 Package, 13-5
TCP Package, 16-7, 16-23
Term3270 Package, 10-16
TermAsync Package, 9-9
TOP Package, 12-5

Deleting
TCP Package, 16-9

Deleting a Batch Job, 17-5
Disconnecting

Child Script Package, 8-5
DCE Package, 18-74
FCIF Package, 14-10
MsgDir Package, 15-2
PRT3270 Package, 13-7
TCP Package, 16-10
Term3270 Package, 10-20
TermAsync Package, 9-12
 Index–3

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
TOP Package, 12-7
General Extensions, 7-1
Handle Names, 1-6
Handles, 1-6
Instances, 1-6
Listing Open Connections

PRT3270 Package, 13-12
TCP Package, 16-19
Term3270 Package, 10-40
TermAsync Package, 9-26
TOP Package, 12-14

Maintaining Between Scripts, 2-14
Maximum number, 8-2, 9-9, 10-16, 12-5
No Reinitialization Between Script

Executions, 2-15
PRT3270 Package

Receive Status, 13-22
Receive Time Stamp, 13-23
Returning a Connection Name,

13-20
Returning a PRT3270 Handler,

13-21
Returning Receive Session Number,

13-22
Specifying a Connection Name,

13-20
Specifying a PRT3270 Handler,

13-21
Receiving messages

TCP Package, 16-11
Returning a Connection Name, 9-10,

9-27, 10-17, 10-45
Sending

TCP Package, 16-13
Specifying a Connection Name, 9-10,

9-27, 10-17, 10-45
State, 10-46
Status, 9-29, 10-47
Submitting a Batch Job, 17-1
TCP Package

Receive Time Stamp, 16-32
Returning a Connection Name,

16-29
Specifying a Connection Name,

16-29
Term3270 Attributes, 10-3
Term3270 Methods, 10-1
TermAsync Attributes, 9-2

TermAsync Methods, 9-1
TOP Package

DTN, 12-17
PSN, 12-26
Receive Status, 12-28
Receive Time Stamp, 11-29, 12-29
Returning a Connection Name,

11-26, 12-25
Returning a TOPCOM Handler,

12-34
Returning Receive Session Number,

12-27
Returning Send Session Number,

12-30
Send Status, 12-31
Send Time Stamp, 12-32
Specifying a Connection Name,

11-26, 12-25
Specifying a TOPCOM Handler,

12-34

ConnOnly Mode, 2-14
Effect of Exceptions, 3-9

Constants, DCE Package, 18-73

continue, A-11

Control Flows, 4-36 to 4-45
break Command, 4-41
continue Command, 4-42
eval Command, 4-45
for Command, 4-39
foreach Command, 4-40
if Command, 4-36
See Also Looping Controls
switch Command, 4-43
while Command, 4-38

Controlling the Flow of Execution of a Script,
4-36
See Also Control Flows

Conversion of Expressions, 4-14

Conversion runtime procedures, 20-1
Converted ADDAM Scripts, 20-52
Converted Tsf Scripts, 20-73
FIN and FUR scripts, 20-31
Fin Scripts, 20-1
FUR scripts, 20-13

Converting Between Strings and Lists, 4-33
Index–4

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Creating a Connection
Child Script Package, 8-2
Term3270 Package, 10-16
TermAsync Package, 9-9

Creating Lists, 4-22 to 4-25
Concatenating Elements, 4-23
Using the concat Command, 4-23
Using the list Command, 4-24
Using the set Command, 4-22

Creating Scripts
Overview, 2-1
Using an Editor, 2-3
Using Script Objects, 2-4
Using the Script Builder, 2-6

Cursor
Moving on a 3270 Screen, 10-22, 10-24,

10-31
Returning Position, TermAsync Package,

9-28

D

Data
Associated with MsgDir Package Position,

15-5
Finding on a 3270 Screen, 10-25
General Extensions, 7-1
PRT3270 Package

Appending Messages, 13-10
Converting Messages, 13-13
Maximum Number of Messages, File

Name, 13-19
Receiving Messages

File Name, 13-15
Last Received, 13-14

Receiving
PRT3270 Package, 13-8
TOP Package, 12-8

Receiving at Script Execution, 7-25
Returning Number of Bytes Received,

10-40
Sending

TOP Package, 12-10
Message size, 12-10

Sending to an Application
Child Script Package, 8-9
Delaying, 9-10, 9-26

Term3270 Package, 10-36
TermAsync Package, 9-20, 9-22

Simulating Pressing a 3270 Function
Key, 10-34, 10-35

TCP Package
Appending Messages, 16-15
Creating connection, 16-23
Receiving Messages

File Name, 16-22
Last Received, 16-21

Receiving messages, 16-18
Specifying application name, 16-17

Term3270 Attributes, 10-4
Term3270 Methods, 10-1
TermAsync Attributes, 9-3
TermAsync Methods, 9-1
TOP Package

Appending Messages, 12-12
Converting Messages, 12-15
Maximum Number of Messages, File

Name, 12-23
Maximum Segment Length, File

Name, 12-24
Receiving Messages

File Name, 12-18
Last Received, 12-16

Waiting for Responses
Child Script Package, 8-10
Term3270 Package, 10-37
TermAsync Package, 9-22, 9-23

Database
Clear Tag-value, 3-3
Encrypted, 3-3
Loading User Files, 7-40

Database Mode, 6-3

Database Output, 2-37
Result Object, 2-37
Runtime Object, 2-37

Date Functions, 7-8

DCE Package
Client Development, 18-3
Constants, 18-73
DCE Architecture, 18-2
Emulated Client

Definition, 18-4
RPC Calls, 18-69
Starting, 18-5
 Index–5

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Waiting for Output, 18-7
Emulated Server

Definition, 18-4
RPC Calls, 18-72
Starting, 18-8
Starting a Long-Running Server,

18-10
Waiting for Output, 18-9

Getting the Name of the Interface, 18-79
Getting the Type of an Object, 18-71
Handles

Deleting, 18-75, 18-76
All Handles, 18-77
Data Handles, 18-77

Restoring, 18-78
Saving, 18-78

IDL
IDL File, 18-3
IDL Types, 18-14 to 18-68

Categories, 18-14
See Also IDL

Integrating with MYNAH System Using
TermAsync Commands, 18-80

Interface
Definition, 18-2
Getting the Name of, 18-79

Interface Object
Identifier of the Interface,

Obtaining, 18-11
Listing Defined Constants, 18-13
Listing Defined Operations, 18-13
Listing Defined Types, 18-13
Major Version of the Interface,

Obtaining, 18-11
Minor Version of the Interface,

Obtaining, 18-12
Name of the Interface, Obtaining,

18-11
Running as Emulated Client, 18-12
Running as Emulated Server, 18-12

Objects
Deleting, 18-75
Removing, 18-74

Printing Objects, 18-70
Recording Entries, 18-80
Recording Exit Status, 18-81
RPC Calls

Emulated Client, 18-69

Emulated Server, 18-72
TermAsync Commands, 18-82

Scripting Overview, 18-4
Server Development, 18-3
TermAsync Commands, 18-80

Calling the RPC, 18-82
Recording Entries, 18-80
Recording Exit Status, 18-81
See Also TermAsync Package

Debugging, 3-9, 4-46
catch Command, 4-46
Error Information Procedures, 3-9, 4-46
Error Processing, 3-10
errorCode Variable, 4-47
errorInfo Variable, 4-48
General Actions, 3-10
Global Variables, 3-9
Using xmytclsh, 4-59

Deferring Evaluation, 4-19

des, 3-2, 3-3, 3-4
Encrypting Data, 3-2
Specifying a Key, 3-4
Using to Encrypt a Database, 3-4

destroy, 14-10

Destroying a Connection
Child Script Package, 8-5
Term3270 Package, 10-20
TermAsync Package, 9-12

Differences Between Files
Carriage Returns, 7-12
General Extensions, 7-11, 7-31

Domain, 1-3

Double Quotes, 4-18

E

Editors
Using to Create Scripts, 2-3

Elements
Adding to a List, 4-29
Appending to a List, 4-27
Components of Lists, 4-21
Extracting From Lists, 4-30
Inserting in a List, 4-28
Number in a List, 4-25
Replacing in a List, 4-29
Index–6

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Searching for in a List, 4-31

Embedded Spaces, 4-16

Emulated Client
Definition, 18-4
Running Status of Interface, 18-12
Starting, 18-5
Waiting for Output, 18-7

Emulated Server
Definition, 18-4
Running Status of Interface, 18-12
Starting, 18-8
Starting a Long-Running Server, 18-10
Waiting for Output, 18-9

Emulated Terminal, 9-9, 9-30

Encrypted Data
Databases, 3-3
des, 3-3
Loading, 7-40
Scrambling Encryption Keys, 7-42
Using, 3-6

Encrypted Databases, 3-3
Encrypting Using des, 3-4

Engine Modes, 6-4

Engine Types, 6-5

Entering Sensitive Data, 3-2

eof, A-12

error, A-13

Errors
See Also Exceptions
See Debugging

Escape Sequences, 4-17

eval, A-14

Exception Events, 2-28

Exceptions, 3-9, 4-46
catch Command, 4-46
Error Processing, 3-10
errorCode Variable, 4-47
errorInfo Variable, 4-48
Global Variables, 3-9, 4-47
MYNAH System Handling Procedures,

3-9
See Also Debugging
Tcl Procedures, 3-9, 4-46

exec, A-15

Executing Scripts
eval Command, 4-45
Overview, 2-2
Using the Script Builder, 2-8
Without Database Update, 2-39

Execution Directory Permissions, 3-12

Execution Modes, 6-4
ConnOnly, 2-14
FullState, 2-15
Stateless, 2-14

exit, A-18

Exit Handlers
Called at Maximum Failed Comparisons,

6-13
ExitHandler, 6-6
MaxFailsHandler, 6-13
TimeoutHandler, 6-19

ExitHandler, 6-6

expectMaster, 5-1

expr, A-19

Expressions, 4-7 to 4-14
Conversion, 4-14
Creating Using the expr Command, 4-4
Mathematical Functions, 4-13

Math Functions, 4-14
Trig Functions, 4-13

Operands, 4-7

extended Tcl, 1-1

Extension
Functional Categories, 1-10

Extensions
Definition, 1-3
Loading, 2-14, 7-18
Unloading, 7-38

Extracting Elements From Lists, 4-26, 4-30

extratags, 14-11

F

FCIF Package, 14-1
Comparisons

Check for Extra Tags, 14-11
Comparing FCIF Tags, 14-7
Comparing to Master FCIF Message,

14-5
 Index–7

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Getting FCIF Values, 14-13
offset, 14-7
Reordering Sections, 14-14

Connections
Creating, 14-3
Disconnecting, 14-10

Loading, 14-1

Fields on a 3270 Screen
Moving to a Specified Field, 10-22
Moving to the Next Field, 10-24
Returning the Length of a Field, 10-23

file, A-24

File Ownership, 3-12

Files
Closing, 4-58
Input/Output Functions, 4-55
Loading, 7-40
Opening, 4-56
Reading Lines, 7-26

Floating-point Numbers, 4-7, 4-14

flush, A-27

for, 4-39, A-28

foreach, 4-40, A-29

format, A-30

Formats
Returning Current Screen Name, 10-41
See Also Screen Identification File
Using to Find Screen Locations, 10-27

FullState Mode, 2-14, 2-15

Function Keys
Counting Number Pressed, 10-43
Counting Usage of, 10-17, 10-39
Last Key Pressed, 10-43
Sending, 10-34
Sending and Waiting for a Response,

10-35

G

General Extensions, 7-1 to 7-43
Comparisons, 7-6
Date and Time Functions, 7-8
Exiting From Scripts, 7-3, 7-16

Exit Handler, 7-16
Specifying an Exit String, 7-16

Masks
Creating, 7-20
Destroying, 7-22
Disabling, 7-23
Enabling, 7-23
Masks, 7-20 to 7-23

Pausing Scripts, 7-32
Prompting for Sensitive Data, 7-25
Reading Lines of a File, 7-26
Receiving at Script Execution, 7-25
Regular Expressions, Searching for, 7-29
Returning Current Location, 7-17
Tests

Beginning, 7-4
Ending, 7-15

Updating Results Object, 7-39
Writing Output, 7-24

gets, A-33

glob, A-34

global, A-35

Global Script Variables, 6-1 to 6-21

Global Variables, 4-47, 4-51, 4-52
global Command, 4-52
xmyVar Array, 6-1 to 6-21

Globbing, 4-53

Graphical User Interface
See GUI

GUI, 2-1
Insert Template Dialog, 2-40
Submitting Scripts, 2-12

H

Handles, definition, 1-6

Help Facility, TclX, 1-2

history, A-36

Hosts
Querying for Batch Hosts, 17-7
Returning Current, 10-42
Specifying, 10-16
Specifying for Batch Jobs, 17-2
Index–8

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
I

IDL, 18-2
IDL File, 18-3
IDL Types, 18-14 to 18-68

Arrays, 18-17
Constructing, 18-17
Elements, 18-17
Indexing, 18-18

Bool Object, 18-19
Constructing, 18-19
Returning Boolean Value, 18-19
Setting Boolean Value, 18-20

Buffer Object, 18-21
Constructing, 18-21
Getting a Stored Value, 18-21
Setting a Value, 18-22
Size of Largest String, 18-22

Byte Object, 18-23
Constructing, 18-23
Getting a Stored Value, 18-23
Setting a Value, 18-24

Categories, 18-14
Char Object, 18-25

Constructing, 18-25
Getting a Stored Value, 18-25
Setting a Value, 18-26

Double Object, 18-27
Constructing, 18-27
Getting a Stored Value, 18-27
Setting a Value, 18-28

Enumeration Object, 18-29
Constructing, 18-29
Getting a Stored Value, 18-29
Listing Legal Value, 18-30
Setting a Value, 18-30

error_status_t Object (DCE Error
Codes), 18-31
Constructing, 18-31
Getting a Symbolic

Representation Value, 18-31
Listing Legal Value, 18-32
Setting a Value, 18-32

Floating Point Number Object,
18-33
Constructing, 18-33
Getting a Stored Value, 18-33
Setting a Value, 18-34

Floating Point Numbers
32-bit, 18-33
64-bit, 18-27

handle_t Object (Connection to
Server), 18-35
Binding Object to Server, 18-37
Constructing, 18-35
Getting a Stored Value, 18-36
Setting a Value, 18-37
Setting Authentication, 18-39

Hyper Object, 18-40
Constructing, 18-40
Getting a Stored Value, 18-40
Setting a Value, 18-41

Integers
Signed

16-bit, 18-50
32-bit, 18-42
64-bit, 18-40
8-bit, 18-52

Unsigned
16-bit, 18-65
32-bit, 18-60
64-bit, 18-58
8-bit, 18-23, 18-25, 18-67

Long Object, 18-42
Constructing, 18-42
Getting a Stored Value, 18-42
Setting a Value, 18-43

Pipe Object, 18-44
Constructing, 18-44
Dumping to File, 18-45
Reading a File, 18-46
Setting a Sink for Output Pipe,

18-45
Setting Source for Input Pipe,

18-44
Pointer Object, 18-47

Constructing, 18-47
Deferring, 18-48
Getting Handle of an Object,

18-47
Returning the Address in a Real

Pointer, 18-49
Setting Pointer to an Object,

18-48
Short Object, 18-50

Constructing, 18-50
 Index–9

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Getting a Stored Value, 18-50
Setting a Value, 18-51

Small Object, 18-52
Constructing, 18-52
Getting a Stored Value, 18-52
Setting a Value, 18-53

String Object, 18-54
Constructing, 18-54
Getting a Stored String, 18-54
Setting a Value, 18-55

Structure Object, 18-56
Constructing, 18-56
Constructing With Conformant

Array, 18-56
Listing all Members, 18-57
Retrieving Members by Name,

18-57
Uhyper Object, 18-58

Constructing, 18-58
Getting a Stored Value, 18-58
Setting a Value, 18-59

Ulong Object, 18-60
Constructing, 18-60
Getting a Stored Value, 18-60
Setting a Value, 18-61

Union Object, 18-62
Constructing, 18-62
Getting the Name of the

Discriminant, 18-63
Listing all Members, 18-62
Retrieving Currently Valid Union

Name, 18-64
Retrieving Members by Name,

18-63
Retrieving the Discriminant by

Name, 18-64
Ushort Object, 18-65

Constructing, 18-65
Getting a Stored Value, 18-65
Setting a Value, 18-66

Usmall Object, 18-67
Constructing, 18-67
Getting a Stored Value, 18-67
Setting a Value, 18-68

if, 4-36, A-39

Importing Scripts, 4-60

incr, A-40

info, A-41

Inserting Elements into Lists, 4-28

Inserting Special Characters, 4-16

Instances, definition, 1-6

Interface Description Language
See Also DCE Package
See IDL

Invisible Fields, Processing, 10-17, 10-40

J

join, A-44

K

Keyed Lists, 3-3, 3-6, 7-25, 7-40
Extracting Values, 3-6
keylget, 3-6
keylset, 3-2
Using to Loading Data, 3-7

keylget, 3-6

keylset, 3-2

Keys, Supplying
Argument to xmyUdb, 3-5
Using xmyPrompt, 3-5
xmyConfig File, 3-4

L

Label Processing, 10-11

Labels
Finding Position on a 3270 Screen, 10-26
Using to Move a Cursor on a 3270 Screen,

10-31
Using to Return 3270 Screen Images,

10-32
Using to Specify 3270 Screen Location,

10-11

Language Events, 2-28

lappend, A-45

library, A-46

Library Path, 6-11

lindex, A-50

linsert, A-51
Index–10

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
list, A-52

Lists, 4-2, 4-21 to 4-34
Appending, 4-27
Concatenating Elements, 4-23
Contrast to Arrays, 4-21
Converting Between Strings and Lists,

4-33
Creating, 4-22 to 4-25

Concatenating Elements, 4-23
Using the concat Command, 4-23
Using the list Command, 4-24
Using the set Command, 4-22

Elements, 4-21
Extracting Elements From, 4-26, 4-30
Inserting Elements Into, 4-28
Joining Elements into a String, 4-34
list Command, 4-24
Modifying Lists, 4-27 to 4-30

Adding Elements, 4-29
Appending, 4-27
Extracting Elements, 4-30
Inserting, 4-28
Replacing Elements, 4-29

Number of Elements in a List, 4-25
Replacing Elements In, 4-29
Searching for Elements, 4-31
Sorting, 4-32
Splitting Strings into List Elements, 4-33

llength, A-53

Loading Extension Packages, 2-14, 7-18
FCIF Package, 14-1
PRT3270 Package, 13-1
TCP Package, 16-1
Term3270 Package, 10-1
TermAsync Package, 9-1
TOP Package, 12-1

Local Variables, 4-51

Location
General Extensions, 7-2
Moving a Cursor on a 3270 Screen, 10-22,

10-24, 10-31
Term3270 Attributes, 10-4
Term3270 Methods, 10-2
TermAsync Attributes, 9-3

Location of Output Files, 2-16

Location Processing, 10-9 to 10-13
By Labels, 10-11

By Row and Column, 10-10
By Tag Names, 10-12
Formats, 10-27
Screen Ids, 10-27
Tag Name Files, 10-12
TagDir, 10-13

Logical Operators, 4-9, 4-10

Looping Commands, 4-38

Looping Controls, 4-41
Terminating Current Iteration, 4-42
Terminating Looping Commands, 4-41

lrange, A-54

lreplace, A-55

lsearch, A-56

lsort, A-57

M

Manipulating Strings, 4-53

Masks
Creating, 7-20
Destroying, 7-22
Disabling, 7-23

Term3270 Package, 10-19
TermAsync Package, 9-11

Enabling, 7-23
Term3270 Package, 10-21
TermAsync Package, 9-13

Listing Mask Handles
Term3270 Package, 10-44
TermAsync Package, 9-27

Regular Expressions, 7-20

Match Extensions
Matching Tcl Procedure, 15-23
Multiple Part Messages

Waiting For Next Part, 15-27
Waiting Until Ending Part, 15-25

Receiving Matching Messages, 15-23
Receiving Multipart Messages

Waiting For Next Part, 15-27
Waiting Until Ending Part, 15-25

Math Functions, 4-14

Mathematical Functions, 4-13
Math Functions, 4-14
Trig Functions, 4-13
 Index–11

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
MaxFailsHandler, 6-13

Maximum Comparisons, 6-12

Message Response Directory, 15-13
Marking Messages, 15-28
See Also MsgDir Package

Methods
Definition, 1-3, 1-7
Overview

Term3270 Package, 10-1
TermAsync Package, 9-1

Model
Returning Current Value, 10-44
Specifying, 10-17

MsgDir Package
Connections

Creating, 15-4
Disconnecting, 15-2

Data Associated with a Position, 15-5
Handles

PRT3270 Handle, Creating, 15-18
Returning File Name, 15-6
Setting Current Time Position,

15-14, 15-16
Setting Position to First Message,

15-7
Setting Position to Last Message,

15-9
Setting to Previous Time Position,

15-17
TOPCOM Handle, Creating, 15-21

Marked Messages, 15-10
Maximum Number of Messages, 15-11
Message Response Directory, 15-13
Move Time Value, 15-12
Number of Message Loaded, 15-15
Receive Session Number, 15-19
See Also Match Extensions

MYNAH System
Loading Extension Packages, 7-18
Unloading Extension Packages, 7-38

N

.netrc File, 17-14

Number Base, 4-7

O

Objects
Getting the Type of, DCE Package, 18-71

open, A-58

Opening Files, 4-56

Operands, 4-7
Floating-point Numbers, 4-7
Number Base, 4-7

Operators, 4-8
Arithmetic Operators, 4-8
Bitwise Operators, 4-10
Logical Operators, 4-9, 4-10
Precedence, 4-11
Relational Operators, 4-9

Output, 2-16 to 2-24
compares File, 2-23
Execution Directory Permissions, 3-12
File Ownership, 3-12
Location of Output Files, 2-16

Changing, 2-17
Output Directory, 2-18, 6-14

compares File, 2-18, 2-23
output File, 2-18, 2-25
result File, 2-18
See also compares File
See also output File
See also result File
See also SUTimage Files
stderr File, 2-18
stdout File, 2-18
SUTimage Files, 2-18, 2-20

output File, 2-18, 2-25
Ownership Considerations, 3-12
Permissions, 2-16
result File, 2-18
Retaining Output Directories, 2-16
See also Database Output
Setting the Output Level, 2-16, 3-14, 6-14
SUTimage Files, 2-18, 2-20
Writing Screen Attributes to SUTimages

File, 9-10, 9-29, 10-17, 10-47
Writing to the output File, 7-24

Output Directory, 6-14

output File, 2-18, 2-23, 2-25, 7-24
Format, 2-25
Index–12

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Output Level
Changing, 3-15
Current Level, 3-15
Setting, 2-16, 3-14, 6-14

Overview, 16-1

P

Parent/Child Scripting
See Child Script Package

Pausing Scripts, 7-32

Performance Measurement Functions, 7-43

Permissions, 2-16

pid, A-60

Port Number
Returning, 10-17, 10-45
Specifying, 10-17, 10-45

Printer Testing
See PRT3270 Package

Printing Objects, 18-70

proc, A-61

Procedures, 4-50 to 4-52
Autoloading, 2-40
Conversion runtime, 20-1
Creating, 4-50
Defined Locally, 2-39
Exit Handlers, 6-6
Exiting From, 4-51
Global Variables, 4-52
Loading, 2-39
Loading Using Insert Template Dialog,

2-40
Loading Using the source, 2-39
Local Variables, 4-51
ProcRepository Parameter, 2-40
Timeout Handlers, 6-19

Prompting for Sensitive Data, 7-25

Prompts
xmytclsh, 4-59

PRT3270 Package
Appending Messages, 13-10
Attributes

Receive Session Number, 13-22
Receive Status, 13-22
Receive Time Stamp, 13-23

Comparisons
Listen Mode, 13-16
Matching Messages, 13-17
Specifying Tcl Procedure, 13-17

Connections
Creating, 13-5
Disconnecting, 13-7
Receive Session Number, 13-22
Receive Status, 13-22
Receive Time Stamp, 13-23
Returning a Connection Name,

13-20
Returning a PRT3270 Handler,

13-21
Specifying a Connection Name,

13-20
Specifying a PRT3270 Handler,

13-21
Converting Messages, 13-13
Data

Appending Messages, 13-10
Converting Messages, 13-13
Maximum Number of Messages,

13-19
Receiving, 13-8
Receiving Messages

File Name, 13-15
Last Received, 13-14

Loading, 7-18, 13-1
Maximum Number of Messages, 13-19
Receiving Data, 13-8
Receiving Messages

File Name, 13-15
Last Received, 13-14

Timeout
Returning, 13-24
Specifying, 13-24

puts, A-62

pwd, A-63

Q

Quoting, 4-18
Using Braces, 4-19
Using Double Quotes, 4-18
 Index–13

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
R

read, A-64

regexp, A-65

Regions, 5-1, 9-7, 10-8
Dimension restrictions, 5-2
See Also Compare Master

Regular Expressions, 4-54, 7-20, 7-26, 10-13,
A-65
Searching for, 7-29

Relational Operators, 4-9

Removing a Connection
Child Script Package, 8-5
Term3270 Package, 10-20
TermAsync Package, 9-12

reorder, 14-14

Replacing Elements in Lists, 4-29

Reports, See Output

Requests
Pausing, 8-6
Resuming, 8-7
Sending, 8-8

Responses
Buffer Size, 9-10, 9-25
Waiting, 9-5

Specifying an Initial Read, 10-17,
10-42

Supplying an Expected Response,
10-17, 10-42

Responses from Applications
Returning

TermAsync Package, 9-16

result File, 2-18

Result Object
Updating Status, 7-39

Result Objects, 2-37

return, A-70

Returning Current Location, 7-17

Row/Column Processing, 10-10

Rows
Returning Current Position

Term3270 Package, 10-46
TermAsync Package, 9-28

Using to Move a Cursor on a 3270 Screen,
10-31

Using to Return 3270 Screen Images,
10-32

Using to Specify 3270 Screen Location,
10-10

RPC Calls
Emulated Client, 18-69
Emulated Server, 18-72
TermAsync Commands, 18-82

Runtime Object, 2-37

Runtime Objects
ID, 6-15
Run Status, 2-37
Run Summary, 2-37
Tcl Code Status, 2-38

S

scan, A-72

Screen Identification File, 10-13, 10-27, 10-46
Regular Expressions, 10-13
Using Formats, 10-41

Screen Images
Returning

Term3270 Package, 10-32
TermAsync Package, 9-18

Screens
Returning Size, 9-29
Specifying Size, 9-10

Script Builder
Accessing, 2-6
Creating Scripts, 2-6
Displaying Remote Session Connections,

2-9
Executing Scripts, 2-8
Insert Template Dialog, 2-40
Using to Prompt for Sensitive Data, 3-1

Script Dispatchers
See SDs

Script Engines
See SEs

Script Events, 2-29

Script Names, Returning Name of Script Being
Executed, 6-15

Script Objects
Creating Scripts, 2-4
Index–14

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Insert Template Dialog, 2-40

Script Terminations
Maximum Allowed Failed Comparisons,

6-12

Scripts
Concealing Sensitive Data, 3-1, 7-40,

7-42
Obtaining From Scripts in the

Background, 3-2
Prompting Using the Script Builder,

3-1
Controlling the Execution of, 4-36

break Command, 4-41
continue Command, 4-42
eval Command, 4-45
for Command, 4-39
foreach Command, 4-40
if Command, 4-36
switch Command, 4-43
while Command, 4-38

Creating
Overview, 2-1
Using an Editor, 2-3
Using Script Objects, 2-4
Using the Script Builder, 2-6

Debugging, 3-9, 4-46
catch Command, 4-46

Executing
Effect on Symbol Tables, 2-15
eval Command, 4-45
Interactively, 4-59
Overview, 2-2
Using the Script Builder, 2-8

Executing Without Database Update, 2-39
Exiting From, 7-3, 7-16

Exit Handler, 7-16
Specifying an Exit String, 7-16

Hints for Creating, 3-1 to 3-20
Importing, 4-60
Name of File Being Executed, 6-15
Pausing, 7-32
Receiving Data at Execution, 7-25
Runtime Objects ID, 6-15
Sending Child Script Requests, 8-8
Specifying an Exit String, 7-16
Submitting

From the CLUI, 2-11

From the GUI, 2-12
Terminating, 3-16

Exit Handler, 6-6
Using UNIX Commands, 3-20

SDs, 2-10
Specifying for Child Script Package, 8-2

SE Groups, 2-10, 6-16
Specifying for Child Script Package, 8-2

Searching for Elements in Lists, 4-31

Searching for Regular Expressions, 7-29

seek, A-74

SEs, 2-10
Background, 2-10, 6-5

Displaying User Name Passed in
Execution Request, 6-16

Using UNIX Commands in Scripts,
3-20

Command-line, 2-13, 2-15, 6-5, 6-16
Displaying Name of Person Starting

an SE, 6-16
Using UNIX Commands in Scripts,

3-20
ConnOnly Mode, 6-4

Effect of Exceptions, 3-9
Database Mode, 6-3
Embedded, 2-10, 6-5, 6-16

Displaying Name of Person Starting
an SE, 6-16

Using UNIX Commands in Scripts,
3-20

Execution Modes
ConnOnly, 2-14, 6-4
FullState, 2-14, 2-15, 6-4
StateLess, 6-4
Stateless, 2-14

FullState Mode, 6-4
Groups, 6-16
Library Path, 6-11
StateLess Mode, 6-4

Effect of Exceptions, 3-9

set, 4-3, A-75

set Command
Used to Create Lists, 4-22

Sorting Lists, 4-32

source, A-76

source Command, 4-60
 Index–15

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Special Characters
Inserting, 4-16
Suppressing, 4-18

split, A-77

Stateless Mode, 2-14
Effect of Exceptions, 3-9

stdio
Input/output Functions, 4-55
See Also Files

string, A-78

Strings, 4-2
Converting Between Strings and Lists,

4-33
Creating from List Elements, 4-34
Globbing, 4-53
Manipulating, 4-53
Matching, 4-53
Regular Expressions, 4-54, A-65
Setting, 4-3
Splitting into List Elements, 4-33
Unsetting, 4-3

Substitution, 4-15
Backslash, 4-16
Command, 4-15
Variables, 4-15

Summary Events, 2-30

Suppressing, 4-19

Suppressing Variable Substitution, 4-19

SUT, 1-3

SUT Timing (suttiming) Events, 2-32

Sutimage Events, 2-31

SUTimage Files, 2-18, 2-20
Format, 2-20

switch, A-80

Symbol Tables, 2-15
Adding Variables to a Table, 7-37
Changing Variables in a Table, 7-37
Deleting a Variable in a Table, 7-34
Returning Entire Table, 6-17
Returning the Value of a Variable, 7-36
Seeing if a Variable Exists is a Table,

7-35

Synchronizing Concurrently Executing Scripts,
2-10
See also Concurrency

Synchronous Terminal Screen Locations
See Location Processing

Synchronous Terminals
See Term3270 Package

System Prompt
Setting, 9-10, 9-28

System Prompts, 9-4

System Shell, Setting, 9-10, 9-28

System Under Test, 1-3

T

Tag Name Files, 10-12

Tag Name Processing, 10-12

Tag-value Pairs, 3-3, 3-7

TagDir, 10-13
Specifying, 10-17, 10-47

Tags
Finding Screen Locations, 10-27
Using to Move a Cursor on a 3270 Screen,

10-31
Using to Return 3270 Screen Images,

10-32
Using to Specify 3270 Screen Location,

10-12

Tcl
Arrays, 4-21, 4-35
Backslash Sequences, 4-17
Basic Concepts and Definitions, 4-2
Comments, 4-20
Control Flows, 4-36 to 4-45

break Command, 4-41
continue Command, 4-42
eval Command, 4-45
for Command, 4-39
foreach Command, 4-40
if Command, 4-36
switch Command, 4-43
while Command, 4-38

Controlling the Flow of Execution of a
Script, 4-36
See Also Control Flows

Converting Between Strings and Lists,
4-33

Deferring Evaluation, 4-19
Error Global Variables, 4-47
Index–16

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Error Information Procedures, 3-9, 4-46
Escape Sequences, 4-17
Events, 4-5
Exceptions, 4-46
Expressions, 4-4, 4-7 to 4-14

Conversion, 4-14
Mathematical Functions, 4-13

Math Functions, 4-14
Trig Functions, 4-13

Operands, 4-7
Operators, 4-8

Arithmetic Operators, 4-8
Bitwise Operators, 4-10
Logical Operators, 4-9, 4-10
Precedence, 4-11
Relational Operators, 4-9

Extensions to, 1-3
Floating-point Numbers, 4-7
Introduction, 1-1
Lists, 4-2, 4-21 to 4-34

Converting Between Strings and
Lists, 4-33

Creating, 4-22 to 4-25
Concatenating Items, 4-23
Using the concat Command, 4-23
Using the list Command, 4-24
Using the set Command, 4-22

Extracting Elements From, 4-26
Joining Elements into a String, 4-34
Modifying Lists, 4-27 to 4-30

Adding Elements, 4-29
Appending, 4-27
Extracting Elements, 4-30
Inserting, 4-28
Replacing Elements, 4-29

Number of Elements in a List, 4-25
Searching for Elements, 4-31
Sorting, 4-32
Splitting Strings into List Elements,

4-33
Looping Commands, 4-38
Looping Controls, 4-41

Terminating Current Iteration, 4-42
Terminating Looping Commands,

4-41
Number Base, 4-7
Obtaining a List of Previous Commands,

4-5

Operators, 4-8
Arithmetic Operators, 4-8
Bitwise Operators, 4-10
Logical Operators, 4-9, 4-10
Precedence, 4-11
Relational Operators, 4-9

Procedures, 4-50 to 4-52
Creating, 4-50
Exit Handlers, 6-6
Exiting From, 4-51
Global Variables, 4-52
Local Variables, 4-51

Quoting, 4-18
set Command, 4-3
Sorting Lists, 4-32
Strings, 4-2

Converting Between Strings and
Lists, 4-33

Substitution
Backslash, 4-16
Command, 4-15
Variables, 4-15

Suppressing Special Characters, 4-18
Syntax, 4-15 to 4-20

Comments, 4-20
Quoting, 4-18

Using Braces, 4-19
Using Double Quotes, 4-18

Substitution, 4-15
Backslash, 4-16
Command, 4-15
Variables, 4-15

unset Command, 4-3
Variables, 4-2

Append, 4-5
Creating, 4-3
Increasing the Value of, 4-4
Removing, 4-3

Tcl Commands, Basic
append, A-2
array, A-3
break, A-5
case, A-6
catch, A-7
cd, A-8
close, A-9
concat, A-10
continue, A-11
 Index–17

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
eof, A-12
error, A-13
eval, A-14
exec, A-15
exit, A-18
expr, A-19
file, A-24
flush, A-27
for, A-28
foreach, A-29
format, A-30
gets, A-33
glob, A-34
global, A-35
history, A-36
if, A-39
incr, A-40
info, A-41
join, A-44
lappend, A-45
library, A-46
lindex, A-50
linsert, A-51
list, A-52
llength, A-53
lrange, A-54
lreplace, A-55
lsearch, A-56
lsort, A-57
open, A-58
pid, A-60
proc, A-61
puts, A-62
pwd, A-63
read, A-64
regexp, A-65
return, A-70
scan, A-72
seek, A-74
set, A-75
source, A-76
split, A-77
string, A-78
switch, A-80
tclvars, A-82
tell, A-85
time, A-86
trace, A-87

unknown, A-90
unset, A-91
uplevel, A-92
upvar, A-93
while, A-94

tclvars, A-82

TclX, 1-1
Help Facility, 1-2

TCP Package, 16-1
Appending Messages, 16-15
Attributes

Receive Time Stamp, 16-32
Comparisons

Listen Mode, 16-24
Matching Messages, 16-26
Specifying Tcl Procedure, 16-26

Connections
Accepting, 16-5
Creating, 16-7, 16-23
Deleting, 16-9
Disconnecting, 16-10
Receive Time Stamp, 16-32
Receiving messages, 16-11
Returning a Connection Name,

16-29
Sending, 16-13
Specifying a Connection Name,

16-29
Creating connection, 16-23
Data

Appending Messages, 16-15
Creating connection, 16-23
Receiving Messages

File Name, 16-22
Last Received, 16-21

Receiving messages, 16-18
Specifying application name, 16-17

Listing Open Connections, 16-19
Loading, 16-1
Receiving Messages

File Name, 16-22
Last Received, 16-21

Receiving messages, 16-18
Specifying application name, 16-17

Telexel Channel Names
Channel Names, 6-1

tell, A-85
Index–18

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Term3270 Package
Attribute Definitions, 10-6
Attributes Overview, 10-3
Columns

Returning Current Position, 10-39
Compared Files, Carriage Returns in, 7-12
Comparing a Region, 10-14
Comparisons

Ignoring a Region on a 3270 Screen,
10-29

Number of Failed, 10-41
Number of Successful, 10-41
Number of Warnings, 10-48

Connections
Returning a Connection Name,

10-17, 10-45
Specifying a Connection Name,

10-17, 10-45
State, 10-46
Status, 10-47

Creating a Connection, 10-16
Data

Returning Number of Bytes
Received, 10-40

Sending to an Application, 10-36
Waiting for Responses, 10-37

Disconnecting a Connection, 10-20
Fields on a 3270 Screen

Moving to a Specified Field, 10-22
Moving to the Next Field, 10-24
Returning the Length of a Field,

10-23
Finding Data on a Screen, 10-25
Function Keys

Counting Number Pressed, 10-43
Counting Usage of, 10-17, 10-39
Last Key Pressed, 10-43
Simulating, 10-34, 10-35

Host
Returning Current Host Name,

10-42
Specifying, 10-16

Invisible Fields, 10-17, 10-40
Label Processing, 10-11
Listing Mask Handles, 10-44
Listing Open Connections, 10-40
Listing Valid Attribute Values, 10-30
Loading, 7-18, 10-1

Location Processing, 10-9 to 10-13
By Labels, 10-11
By Row and Column, 10-10
By Tag Names, 10-12
Formats, 10-27
Screen Ids, 10-27
Tag Name Files, 10-12
TagDir, 10-13

Methods Overview, 10-1
Model

Returning Current Value, 10-44
Specifying, 10-17

Moving a Cursor, 10-22, 10-24, 10-31
Output

Writing Screen Attributes to
SUTimages File, 10-17, 10-47

Port Number
Returning, 10-17, 10-45
Specifying, 10-17, 10-45

Returning Attribute Values, 10-28
Returning Current Host Name, 10-42
Returning Number of Bytes Received,

10-40
Row/Column Processing, 10-10
Rows

Returning Current Position, 10-46
Screen Identification File, 10-13, 10-46
Screen Images, 10-32
Simulating Pressing a 3270 Function

Key, 10-34, 10-35
Specifying, 10-16
Tag Name Processing, 10-12
TagDir

Specifying, 10-17, 10-47
Timeout

Returning, 10-17, 10-48
Specifying, 10-17, 10-48

TN3270E, 10-17, 10-48
Waiting for Responses, 10-37

Specifying an Initial Read, 10-17,
10-42

Supplying an Expected Response,
10-17, 10-42

TermAsync Package
Attributes Overview, 9-2
Buffer Size, 9-10, 9-25
Columns, Returning Current Position,

9-25
 Index–19

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
Comparing a Region, 9-7
Comparisons

Number of Failed, 9-26
Number of Successful, 9-27
Number of Warnings, 9-30

Concealing Data in SUTimages Files, 3-8
Connections

Returning a Connection Name, 9-10,
9-27

Specifying a Connection Name,
9-10, 9-27

Status, 9-29
Creating a Connection, 9-9
Data

Delaying Sending to an Application,
9-10, 9-26

Sending to an Application, 9-20,
9-22

Waiting for Responses, 9-22, 9-23
Disconnecting a Connection, 9-12
Emulated Terminal, 9-9, 9-30
Listing Mask Handles, 9-27
Listing Open Connections, 9-26
Listing Valid Attribute Values, 9-15
Loading, 7-18, 9-1
Methods Overview, 9-1
Output

Concealing Data in SUTimages Files,
3-8

Writing Screen Attributes to
SUTimages File, 9-10, 9-29

Responses from Applications, returning,
9-16

Returning Attribute Values, 9-14
Rows, Returning Current Position, 9-28
Screen Images, 9-18
Screens

Returning Size, 9-29
Specifying Size, 9-10

Sending Data to an Application, 9-20,
9-22, 10-36

Setting System Shell, 9-10, 9-28
System Prompts, 9-4
Timeout

Returning, 9-9, 9-30
Specifying, 9-9, 9-30

Waiting for Responses, 9-5, 9-22, 9-23
Wildcards, 9-10, 9-31

Terminating Scripts, 3-16

Terminfo File
TermAsync Package

Terminfo File, 9-10, 9-30

Test Object Events, 2-32

Tests
Beginning a Test, 7-4
Delimiting, 7-4, 7-15
Ending a Test, 7-15
Version IDs, 6-18

time, A-86

Time Functions, 7-8

Timeout
Returning, 8-2, 9-9, 9-30, 10-17, 10-48,

12-33, 13-24
Specifying, 8-2, 9-9, 9-30, 10-17, 10-48,

12-33, 13-24
Specifying a Handler, 6-19

TimeoutHandler, 6-19

TN3270E, 10-17, 10-48

TOP Package
Appending Messages, 12-12
Attributes

Receive Session Number, 12-27
Receive Status, 12-28
Receive Time Stamp, 11-29, 12-29
Send Session Number, 12-30
Send Status, 12-31
Send Time Stamp, 12-32

Comparisons
Listen Mode, 12-19
Matching Messages, 12-21
Specifying Tcl Procedure, 12-21

Connection ID, 16-20
Connections

Creating, 12-5
Disconnecting, 12-7
DTN, Defining, 12-17
PSN, Defining, 12-26
Receive Session Number, 12-27
Receive Status, 12-28
Receive Time Stamp, 11-29, 12-29
Returning a Connection Name,

11-26, 12-25
Returning a TOPCOM Handler,

12-34
Index–20

BR 007-252-004 MYNAH System Scripting Guide
Issue 4, December 1998 Index
Revision 1, February 1999 Release 5.3
Send Session Number, 12-30
Send Status, 12-31
Send Time Stamp, 12-32
Specifying a Connection Name,

11-26, 12-25
Specifying a TOPCOM Handler,

12-34
Converting Messages, 12-15
Data

Appending Messages, 12-12
Converting Messages, 12-15
Maximum Number of Messages,

12-23
Maximum Segment Length, 12-24
Receiving, 12-8
Receiving Messages

File Name, 12-18
Last Received, 12-16

Sending, 12-10
Message size, 12-10

Destination Transaction Name (DTN),
12-17

Listing Open Connections, 12-14
Loading, 7-18, 12-1
Maximum Number of Messages, 12-23
Maximum Segment Length, 12-24
Message size, 12-10
Presentation Services Name (PSN), 12-26
Receiving Data, 12-8
Receiving Messages

File Name, 12-18
Last Received, 12-16

Sending Data, 12-10
Message size, 12-10

Timeout
Returning, 12-33
Specifying, 12-33

trace, A-87

Trig Functions, 4-13

U

UNIX
Commands in Scripts, 3-20

unknown, A-90

Unloading Extension Packages, 7-38

unset, A-91

unset Command, 4-3

uplevel, A-92

upvar, A-93

User Events, 2-33

V

Variable Substitution, 4-19

Variables, 4-2, 4-15
Addng Variables to a Symbol Table, 7-37
Appending, 4-5
Changing Variables in a Symbol Table,

7-37
Creating, 4-3
Deleting in Symbol Tables, 7-34
Elements in Arrays, 4-35
Existing in Symbol Tables, 7-35
Global, 4-51, 4-52

global Command, 4-52
Increasing the Value of, 4-4
Local, 4-51
Removing, 4-3
Symbol Tables, 7-36

W

Waiting
Batch Package, 17-13
Child Script Package, 8-9
Completing all Child Scripts, 8-11
Completing any Child Scripts, 8-12
General Extensions, 7-2
Term3270 Methods, 10-2
TermAsync Attributes, 9-3
TermAsync Methods, 9-2

Waiting for Responses
Setting the System Prompt, 9-10, 9-28
Specifying an Initial Read, 10-17, 10-42
Supplying an Expected Response, 10-17,

10-42
TermAsync Package, 9-5

while, 4-38, A-94

Wildcards, 9-10, 9-31

Writing Output, 7-24
 Index–21

MYNAH System Scripting Guide BR 007-252-004
Index Issue 4, December 1998
Release 5.3 Revision 1, February 1999
X

xmyCmd, 3-2
scramble, 3-3
submit

Output Files, 3-12

xmyPrint, 2-33

xmyPrompt
Supplying Encryption Key, 3-5
Using to Prompt for Sensitive Data, 3-1,

7-25
Using to Receive Data, 7-25

xmySE
See Child Script Package

xmytclsh, 2-2, 2-12, 4-59
Prompt, 4-59
Used for Examples, 4-2
Using source Command, 4-60

xmyUdb, 3-2, 3-3
Loading Keyed Lists, 3-6
Supplying Encryption Key, 3-5

xmyVar Array, 6-1 to 6-21
Comparisons

Failed, 6-8
Good, 6-10
Maximum, 6-12
Warnings, 6-21

Database Mode, 6-3
Engine Modes, 6-4
Engine Types, 6-5
Exit Handler, 6-6
Library Path, 6-11
Maximum Failed Comparisons Exit

Handler, 6-13
Name of Script Being Executed, 6-15
Output Directory, 6-14
Output Level, 6-14
Runtime Objects ID, 6-15
SE Group, 6-16
Symbol Tables

Returning Entire Table, 6-17
Test Version IDs, 6-18
Timeout Handler, 6-19
Updating Comparison Counters, 6-20
User Submitting/Starting a Process, 6-16
Index–22

	Contents
	List of Figures
	List of Tables
	Preface
	1. Introduction
	1.1 Using the TclX Help Facility
	1.2 MYNAH Extensions Overview
	1.2.1 Extension Types
	1.2.1.1 Class Commands
	1.2.1.2 Instances
	1.2.1.3 Handles
	1.2.1.4 Methods
	1.2.1.5 Attributes

	1.2.2 Extension Functional Categories

	2. General Scripting
	2.1 Overview
	2.1.1 Creation
	2.1.2 Execution

	2.2 Creating Scripts
	2.2.1 Using an Editor to Create Code
	2.2.2 Using the Script Object Code View to Create ...
	2.2.3 Using the Script Builder to Create Code

	2.3 Executing Scripts
	2.3.1 Using the Script Builder to Execute Code
	2.3.2 Using Background Execution
	2.3.2.1 Background Execution Overview
	2.3.2.2 How to Submit Scripts to the Background
	2.3.2.2.1 From the CLUI
	2.3.2.2.2 From the GUI

	2.3.2.3 Background Execution and the Database

	2.3.3 Using xmytclsh
	2.3.4 Maximum number of Connections (concurrency)

	2.4 SE States at Start Time
	2.4.1 Stateless Mode
	2.4.2 ConnOnly Mode
	2.4.3 FullState Mode

	2.5 File Output
	2.5.1 Determining How Many Output Directories to R...
	2.5.2 Location of the Output Files
	2.5.2.1 Other Possible Locations
	2.5.2.2 Output Directory Symbolic Link

	2.5.3 Content of the Output Directory
	2.5.4 SUTimage files
	2.5.5 compares File
	2.5.6 The Output File
	2.5.6.1 Child Script Events
	2.5.6.2 Compare Events
	2.5.6.3 Exception (error) Events
	2.5.6.4 Language Events
	2.5.6.5 Script Events
	2.5.6.6 Summary Events
	2.5.6.7 Sutimage Events
	2.5.6.8 SUT Timing (suttiming) Events
	2.5.6.9 Test Object Events
	2.5.6.10 User Events

	2.5.7 The result File
	2.5.7.1 Run Section
	2.5.7.2 Summary Section
	2.5.7.3 result File Example

	2.6 Database Output
	2.6.1 Runtime Objects
	2.6.2 Result Objects

	2.7 Execution Without Database Update
	2.8 Loading Procedures

	3. Scripting Hints
	3.1 Concealing Sensitive Data
	3.1.1 Prompting for Sensitive Data using the Scrip...
	3.1.2 Obtaining Sensitive Data for Scripts That Ru...
	3.1.2.1 xmyUdb
	3.1.2.2 xmyCmd scramble
	3.1.2.3 Encrypted Database Files using des
	3.1.2.4 Using an Encrypted File
	3.1.2.4.1 Working With Keyed Lists
	3.1.2.4.2 Example of Loading Data from Keyed Lists...

	3.1.3 Concealing Sensitive Data in Async SUTimages...

	3.2 Debugging - Dealing with Errors and Exceptions...
	3.2.1 Overview
	3.2.2 Tcl Error/Exception Information Procedures
	3.2.3 MYNAH Exception Handling
	3.2.3.1 General Actions
	3.2.3.2 Error Processing

	3.3 Output Ownership Considerations
	3.3.1 Execution Directory Permissions When Using t...
	3.3.2 File Ownership When Using the BEE

	3.4 Setting Output Levels
	3.4.1 Returning the Current Output Level
	3.4.2 Changing the Output Level

	3.5 Script Termination
	3.5.1 Using a Termination Procedure
	3.5.2 Cleanup for Scripts Sent to ConnOnly and Ful...
	3.5.3 Sample Code

	3.6 UNIX Commands in Scripts

	4. Tcl Basics
	4.1 Before We Begin
	4.1.1 Examples in this Document
	4.1.2 Basic Concepts and Definitions
	4.1.3 set
	4.1.4 unset
	4.1.5 expr
	4.1.6 incr
	4.1.7 append
	4.1.8 history

	4.2 Expressions
	4.2.1 Operands
	4.2.2 Operators
	4.2.2.1 Arithmetic Operators
	4.2.2.2 Relational Operators
	4.2.2.3 Logical Operators
	4.2.2.4 Bitwise Operators
	4.2.2.5 Choice Operator
	4.2.2.6 Precedence

	4.2.3 Mathematical Functions
	4.2.4 Conversion

	4.3 Tcl Syntax
	4.3.1 Substitution
	4.3.1.1 Variable
	4.3.1.2 Command
	4.3.1.3 Backslash

	4.3.2 Quoting
	4.3.2.1 Using Double Quotes
	4.3.2.2 Using Braces

	4.3.3 Comments

	4.4 Lists and Arrays
	4.4.1 Creating Lists
	4.4.1.1 Using the set Command
	4.4.1.2 concat
	4.4.1.3 list
	4.4.1.4 llength

	4.4.2 Extracting Elements from a List - lindex
	4.4.3 Modifying Lists
	4.4.3.1 lappend
	4.4.3.2 linsert
	4.4.3.3 lreplace
	4.4.3.4 lrange

	4.4.4 Searching Lists - lsearch
	4.4.5 Sorting Lists
	4.4.6 Converting Between Strings and Lists
	4.4.6.1 split
	4.4.6.2 join

	4.4.7 Arrays

	4.5 Control Flows
	4.5.1 if
	4.5.2 Looping Commands
	4.5.2.1 while
	4.5.2.2 for
	4.5.2.3 foreach

	4.5.3 Looping Control
	4.5.3.1 break
	4.5.3.2 continue

	4.5.4 switch
	4.5.5 eval

	4.6 Tcl Error/Exception Procedures
	4.6.1 catch
	4.6.2 Tcl Error Global Variables
	4.6.2.1 errorCode
	4.6.2.2 errorInfo

	4.7 Procedures
	4.7.1 proc
	4.7.2 return
	4.7.3 Local and Global Variables

	4.8 String Manipulation
	4.8.1 string match
	4.8.2 regexp

	4.9 File Input/Output
	4.9.1 open
	4.9.2 close

	4.10 Using xmytclsh
	4.11 Importing Scripts Using the source Command

	5. Using the Compare Master
	5.1 Compare Master Basics
	5.2 Region Dimension Restrictions
	5.3 Suppressing the Compare Master
	5.4 Example

	6. xmyVar Global Script Variables
	6.1 Channel
	6.2 CreateNewCompareMaster
	6.3 DatabaseMode
	6.4 EngineMode
	6.5 EngineType
	6.6 ExitHandler
	6.7 FailedCompares
	6.8 GoodCompares
	6.9 LibraryPath
	6.10 MaxFails
	6.11 MaxFailsHandler
	6.12 OutputDir
	6.13 OutputLevel
	6.14 RuntimeId
	6.15 ScriptName
	6.16 SEGroup
	6.17 SubmittedBy
	6.18 SymTbl
	6.19 SymTblNAC
	6.20 TestVersionId
	6.21 TimeoutHandler
	6.22 UpdateCompares
	6.23 WarningCompares

	7. General MYNAH Tcl Extensions
	7.1 Overview
	7.2 General Commands
	7.2.1 exit
	7.2.2 xmyBegin
	7.2.3 xmyCompare
	7.2.4 xmyDate
	7.2.5 xmyDiff
	7.2.6 xmyEnd
	7.2.7 xmyExit
	7.2.8 xmyGetLine
	7.2.9 xmyLoadPkg
	7.2.10 xmyMask
	7.2.10.1 create
	7.2.10.2 destroy
	7.2.10.3 disable
	7.2.10.4 enable

	7.2.11 xmyPrint
	7.2.12 xmyPrompt
	7.2.13 xmyReadGrep
	7.2.14 xmyRegex
	7.2.15 xmySimilar
	7.2.16 xmySleep
	7.2.17 xmySource
	7.2.18 xmySymTblDel
	7.2.19 xmySymTblExists
	7.2.20 xmySymTblGet
	7.2.21 xmySymTblPut
	7.2.22 xmyUnloadPkg
	7.2.23 xmyUpdateResult

	7.3 Encryption Utilities
	7.3.1 xmyUdb
	7.3.2 xmyCmd scramble

	7.4 Performance Measurement Functions

	8. Child Script Extension Package
	8.1 Child Script Connection Methods
	8.2 connect
	8.2.1 cancel
	8.2.2 destroy
	8.2.3 pause
	8.2.4 resume
	8.2.5 send
	8.2.6 sendWait
	8.2.7 wait

	8.3 xmySE waitAll
	8.4 xmySE waitAny
	8.5 General Child Script Concerns
	8.5.1 Deadlock
	8.5.2 Zombie Processes

	9. TermAsync Extension Package
	9.1 Overview
	9.1.1 Methods Overview
	9.1.2 Attributes Overview

	9.2 System Prompts
	9.3 Waiting for a Response
	9.4 Adding an Extra Enter in a Script
	9.5 xmyTermAsync class
	9.5.1 Methods
	9.5.1.1 compare
	9.5.1.2 connect
	9.5.1.3 disableMask
	9.5.1.4 disconnect
	9.5.1.5 enableMask
	9.5.1.6 getAttributes
	9.5.1.7 listAttributeTypes
	9.5.1.8 response
	9.5.1.9 screen
	9.5.1.10 send
	9.5.1.11 sendWait
	9.5.1.12 wait

	9.5.2 Attributes
	9.5.2.1 -bufferlen
	9.5.2.2 -column
	9.5.2.3 -connections
	9.5.2.4 -delay
	9.5.2.5 -failedCompares
	9.5.2.6 -goodCompares
	9.5.2.7 -masks
	9.5.2.8 -name
	9.5.2.9 -position
	9.5.2.10 -prompt
	9.5.2.11 -row
	9.5.2.12 -shell
	9.5.2.13 -showAttributes
	9.5.2.14 -size
	9.5.2.15 -status
	9.5.2.16 -terminal
	9.5.2.17 -terminfo
	9.5.2.18 -timeout
	9.5.2.19 -warningCompares
	9.5.2.20 -wildcard

	9.5.3 Changing Configuration Parameters
	9.5.4 Querying Configuration Parameters

	9.6 Async Procedures
	9.6.1 xmyPrintScreen

	9.7 Async Scripting

	10. Term3270 Extension Package
	10.1 Overview
	10.1.1 Methods Overview
	10.1.2 Attributes Overview

	10.2 Term3270 Attribute Definitions
	10.3 Term3270 Location Processing
	10.3.1 Row/Column Processing
	10.3.2 Label Processing
	10.3.3 Tag Name Processing

	10.4 xmyTerm3270 Class
	10.4.1 Methods
	10.4.1.1 compare
	10.4.1.2 connect
	10.4.1.3 disableMask
	10.4.1.4 disconnect
	10.4.1.5 enableMask
	10.4.1.6 fieldBegin
	10.4.1.7 fieldLength
	10.4.1.8 fieldNext
	10.4.1.9 find
	10.4.1.10 findLabel
	10.4.1.11 format
	10.4.1.12 getAttribute
	10.4.1.13 ignore
	10.4.1.14 listAttributeTypes
	10.4.1.15 moveCursor
	10.4.1.16 screen
	10.4.1.17 send
	10.4.1.18 sendWait
	10.4.1.19 type
	10.4.1.20 wait

	10.4.2 Attributes
	10.4.2.1 -column (R)
	10.4.2.2 -collectKeyCount (W/R)
	10.4.2.3 -compareInvisibleFields (W/R)
	10.4.2.4 -connections (R)
	10.4.2.5 -dataBytesReceived (R)
	10.4.2.6 -failedCompares (R)
	10.4.2.7 -formatName (R)
	10.4.2.8 -goodCompares (R)
	10.4.2.9 -host (W/R)
	10.4.2.10 -initialWait (W/R)
	10.4.2.11 -initialWaitExpect (W/R)
	10.4.2.12 -keyCount (R)
	10.4.2.13 -lastKeyPressed (R)
	10.4.2.14 -lastResponseTime (R)
	10.4.2.15 -lastTransmitTime (R)
	10.4.2.16 -masks (R)
	10.4.2.17 -model (W/R)
	10.4.2.18 -name (W/R)
	10.4.2.19 -port (W/R)
	10.4.2.20 -queryConnection (R)
	10.4.2.21 -row (R)
	10.4.2.22 -screenIdFile (W/R)
	10.4.2.23 -showAttributes (W/R)
	10.4.2.24 -status (R)
	10.4.2.25 -tagDir (W/R)
	10.4.2.26 -timeout (W/R)
	10.4.2.27 -TN3270E (W/R)
	10.4.2.28 -warningCompares (W/R)

	10.5 3270 Procedures
	10.5.1 xmyPrintScreen

	10.6 When to use send and sendWait Methods
	10.6.1 MYNAH send and sendWait Methods
	10.6.2 Summarization

	11. General Application-to-Application Tcl Languag...
	11.1 Overview
	11.1.1 Methods Overview
	11.1.2 Attributes Overview

	11.2 xmyAppApp class
	11.2.1 Methods
	11.2.1.1 connect
	11.2.1.2 delete
	11.2.1.3 disconnect
	11.2.1.4 receive
	11.2.1.5 send

	11.2.2 Attributes
	11.2.2.1 -append
	11.2.2.2 -broadcast
	11.2.2.3 -connections
	11.2.2.4 -connId
	11.2.2.5 -data
	11.2.2.6 -file
	11.2.2.7 -IFhost
	11.2.2.8 -listen
	11.2.2.9 -match
	11.2.2.10 -maxMsgs
	11.2.2.11 -name
	11.2.2.12 -recvPort
	11.2.2.13 -recvStatus
	11.2.2.14 -recvTime
	11.2.2.15 -sendPort
	11.2.2.16 -sendStatus
	11.2.2.17 -sendTime
	11.2.2.18 -timeout

	11.3 Example

	12. TOP Tcl Language Extension
	12.1 Overview
	12.1.1 Methods Overview
	12.1.2 Attributes Overview

	12.2 xmyTop class
	12.2.1 Methods
	12.2.1.1 connect
	12.2.1.2 disconnect
	12.2.1.3 receive
	12.2.1.4 send

	12.2.2 Attributes
	12.2.2.1 -append
	12.2.2.2 -connections
	12.2.2.3 -conversion
	12.2.2.4 -data
	12.2.2.5 -dtn
	12.2.2.6 -file
	12.2.2.7 -listen
	12.2.2.8 -match
	12.2.2.9 -maxMsgs
	12.2.2.10 -maxSegmentLen
	12.2.2.11 -name
	12.2.2.12 -psn
	12.2.2.13 -recvSession
	12.2.2.14 -recvStatus
	12.2.2.15 -recvTime
	12.2.2.16 -sendSession
	12.2.2.17 -sendStatus
	12.2.2.18 -sendTime
	12.2.2.19 -timeout
	12.2.2.20 -topcom

	12.3 Examples
	12.3.1 Example 1
	12.3.2 Example 2

	13. PRT3270 Tcl Language Extensions
	13.1 Overview
	13.1.1 Methods Overview
	13.1.2 Attributes Overview

	13.2 xmyPrt3270 class
	13.2.1 Methods
	13.2.1.1 connect
	13.2.1.2 disconnect
	13.2.1.3 receive

	13.2.2 Attributes
	13.2.2.1 -append
	13.2.2.2 -connections\
	13.2.2.3 -conversion
	13.2.2.4 -data
	13.2.2.5 -file
	13.2.2.6 -listen
	13.2.2.7 -match
	13.2.2.8 -maxMsgs
	13.2.2.9 -name
	13.2.2.10 -printcom
	13.2.2.11 -recvSession
	13.2.2.12 -recvStatus
	13.2.2.13 -recvTime
	13.2.2.14 -timeout

	13.3 Example

	14. FCIF Tcl Language Extensions
	14.1 Overview
	14.1.1 Methods Overview

	14.2 xmyFcif Class
	14.2.1 Methods
	14.2.1.1 create
	14.2.1.2 compare
	14.2.1.3 compareTags
	14.2.1.4 destroy
	14.2.1.5 extraTags
	14.2.1.6 getTag
	14.2.1.7 reorder

	15. Message Response Directory Tcl Language Extens...
	15.1 xmyMsgDir class
	15.1.1 Methods
	15.1.1.1 close
	15.1.1.2 delete
	15.1.1.3 open

	15.1.2 Attributes
	15.1.2.1 -data
	15.1.2.2 -file
	15.1.2.3 -first
	15.1.2.4 -handler
	15.1.2.5 -last
	15.1.2.6 -marked
	15.1.2.7 -maxMsgs
	15.1.2.8 -move
	15.1.2.9 -msgDir
	15.1.2.10 -next
	15.1.2.11 -numMsgs
	15.1.2.12 -position
	15.1.2.13 -prev
	15.1.2.14 -printcom
	15.1.2.15 -recvSession
	15.1.2.16 -subDir
	15.1.2.17 -topcom

	15.1.3 Example

	15.2 Match Tcl Extensions
	15.2.1 xmyMsgMatch
	15.2.2 xmyMsgMatchUntil
	15.2.3 xmyMsgMatchNext

	15.3 Marking/Unmarking Messages - xmyMsgMarkFile

	16. TCP App-to-App Tcl Language Extensions
	16.1 Overview
	16.1.1 Methods Overview
	16.1.2 Attributes Overview

	16.2 xmyTcp Class
	16.2.1 Methods
	16.2.1.1 accept
	16.2.1.2 connect
	16.2.1.3 delete
	16.2.1.4 disconnect
	16.2.1.5 receive
	16.2.1.6 send

	16.2.2 Attributes
	16.2.2.1 -append
	16.2.2.2 -appName
	16.2.2.3 -broadcast
	16.2.2.4 -connections
	16.2.2.5 -connId
	16.2.2.6 -data
	16.2.2.7 -file
	16.2.2.8 -host
	16.2.2.9 -listen
	16.2.2.10 -match
	16.2.2.11 -maxMsgs
	16.2.2.12 -name
	16.2.2.13 -port
	16.2.2.14 -recvStatus
	16.2.2.15 -recvTime
	16.2.2.16 -sendStatus
	16.2.2.17 -sendTime
	16.2.2.18 -srcHost
	16.2.2.19 -srcPort
	16.2.2.20 -timeout

	16.3 Example

	17. Batch Tcl Language Extensions
	17.1 Accessing The Batch Procedures
	17.2 Submitting a Batch Job - batch_submit
	17.3 Methods
	17.3.1 batch_delete
	17.3.2 batch_host
	17.3.3 batch_jobid
	17.3.4 batch_status
	17.3.5 batch_step_count
	17.3.6 batch_step_result
	17.3.7 batch_wait

	17.4 The .netrc file

	18. DCE Extension Package
	18.1 DCE Overview
	18.1.1 DCE Architecture
	18.1.2 Interface Definition
	18.1.3 IDL File

	18.2 Developing a DCE Application
	18.2.1 DCE Client Development
	18.2.2 DCE Server Development

	18.3 Overview of Scripting
	18.3.1 Emulated Client
	18.3.2 Emulated Server

	18.4 Using the Emulated Client and Emulated Server...
	18.4.1 Overview
	18.4.2 Using the Emulated Client
	18.4.2.1 xmyDceStartClient
	18.4.2.2 xmyDceWaitForClient

	18.4.3 Using the Emulated Server
	18.4.3.1 xmyDceStartServer
	18.4.3.2 xmyDceWaitForServer

	18.4.4 Using the Emulated Server for Starting a Lo...
	18.4.4.1 xmyDceStartIndependentServer

	18.5 Interface Object
	18.5.1 name
	18.5.2 uuid
	18.5.3 major-version
	18.5.4 minor-version
	18.5.5 isClient
	18.5.6 isServer
	18.5.7 constants
	18.5.8 types
	18.5.9 rpcs

	18.6 IDL Types
	18.6.1 array
	18.6.1.1 make-array Constructor
	18.6.1.2 elements Method
	18.6.1.3 index Method

	18.6.2 bool
	18.6.2.1 make-bool Constructor
	18.6.2.2 get Method
	18.6.2.3 set Method

	18.6.3 buffer
	18.6.3.1 make-buffer Constructor
	18.6.3.2 get Method
	18.6.3.3 set Method
	18.6.3.4 length Method

	18.6.4 byte
	18.6.4.1 make-byte Constructor
	18.6.4.2 get Method
	18.6.4.3 set Method

	18.6.5 char
	18.6.5.1 make-char Constructor
	18.6.5.2 get Method
	18.6.5.3 set Method

	18.6.6 double
	18.6.6.1 make-double Constructor
	18.6.6.2 get Method
	18.6.6.3 set Method

	18.6.7 enumeration
	18.6.7.1 make-enum Constructor
	18.6.7.2 get Method
	18.6.7.3 set Method
	18.6.7.4 values Method

	18.6.8 error_status_t
	18.6.8.1 make-error_status_t Constructor
	18.6.8.2 get Method
	18.6.8.3 set Method
	18.6.8.4 values Method

	18.6.9 float
	18.6.9.1 make-float Constructor
	18.6.9.2 get Method
	18.6.9.3 set Method

	18.6.10 handle_t
	18.6.10.1 make-handle_t Constructor
	18.6.10.2 make uuid_t Constructor
	18.6.10.3 get Method
	18.6.10.4 get Method
	18.6.10.5 set Method
	18.6.10.6 set Method
	18.6.10.7 bind Method
	18.6.10.8 setAuthentication Method

	18.6.11 hyper
	18.6.11.1 make-hyper Constructor
	18.6.11.2 get Method
	18.6.11.3 set Method

	18.6.12 long
	18.6.12.1 make-long Constructor
	18.6.12.2 get Method
	18.6.12.3 set Method

	18.6.13 pipe
	18.6.13.1 make-pipe Constructor
	18.6.13.2 setInputFilename Method
	18.6.13.3 setOutputFilename Method
	18.6.13.4 dumpFile Method
	18.6.13.5 readFile Method

	18.6.14 pointer
	18.6.14.1 make-pointer Constructor
	18.6.14.2 get Method
	18.6.14.3 set Method
	18.6.14.4 -> (dereference) Method
	18.6.14.5 get-pointer-contents Method

	18.6.15 short
	18.6.15.1 make-short Constructor
	18.6.15.2 get Method
	18.6.15.3 set Method

	18.6.16 small
	18.6.16.1 make-small Constructor
	18.6.16.2 get Method
	18.6.16.3 set Method

	18.6.17 string
	18.6.17.1 make-string Constructor
	18.6.17.2 get Method
	18.6.17.3 set Method

	18.6.18 structure
	18.6.18.1 make-struct Constructor
	18.6.18.2 make-struct Constructor Containing a Con...
	18.6.18.3 members Method
	18.6.18.4 memberName Method

	18.6.19 uhyper
	18.6.19.1 make-uhyper Constructor
	18.6.19.2 get Method
	18.6.19.3 set Method

	18.6.20 ulong
	18.6.20.1 make-ulong Constructor
	18.6.20.2 get Method
	18.6.20.3 set Method

	18.6.21 union
	18.6.21.1 make-union Constructor
	18.6.21.2 members Method
	18.6.21.3 memberName Method
	18.6.21.4 tagName Method
	18.6.21.5 tagName Method to Retrieve Discriminant
	18.6.21.6 currentTag Method

	18.6.22 ushort
	18.6.22.1 make-ushort Constructor
	18.6.22.2 get
	18.6.22.3 set

	18.6.23 usmall
	18.6.23.1 make-usmall Constructor
	18.6.23.2 get Method
	18.6.23.3 set Method

	18.7 RPC Calls in the Emulated Client
	18.8 Printing Objects
	18.8.1 print

	18.9 Getting the Type of an Object - typeOfHandle
	18.10 RPC Calls in the Emulated Server
	18.11 Constants
	18.12 Destroying Objects
	18.12.1 destroy

	18.13 Deleting Handles and Objects
	18.13.1 xmyDceScope
	18.13.2 Methods Supporting the Deletion of Objects...
	18.13.2.1 xmyDceDeleteHandles
	18.13.2.2 xmyDceDeleteAllHandles
	18.13.2.3 xmyDceDeleteDataHandles
	18.13.2.4 xmyDceSaveHandles
	18.13.2.5 xmyDceRestoreHandles

	18.14 Getting the Interface- xmyDceInterface
	18.15 DCE/Async Commands
	18.15.1 xmyDceRecordEnterOperation
	18.15.2 xmyDceRecordExitOperation
	18.15.3 xmyDceCallRpc

	19. GUI Tcl Language Extensions
	19.1 Accessing the MYNAH Symbol Table
	19.2 SQA Pointer Scripts

	20. Conversion Runtime Procedures
	20.1 FIN Scripts
	20.1.1 ASYNCconnect
	20.1.2 xmyBreakLines / (compare-lines, print-respo...
	20.1.3 xmyCompareLines / compare-lines
	20.1.4 xmyGetEnvFin / getenv
	20.1.5 xmyLastPart / last-part
	20.1.6 xmy_ListToAttributeFin / atr
	20.1.7 xmyRecordCompareFin / (test, compare-lines)...
	20.1.8 xmySetOutputLevelFin / print-level
	20.1.9 xmyTransKeyFin

	20.2 FUR Scripts
	20.2.1 3270connect
	20.2.2 xmyAddMask / add_mask
	20.2.3 xmyDisableMask / disable_mask
	20.2.4 xmyEnableMask / enable_mask
	20.2.5 xmyFieldBegin / fldbeg, fldbeg_tag
	20.2.6 xmyFieldNext / fldnext
	20.2.7 xmyFieldNextTag / fldnext_tag
	20.2.8 xmyGetEnvFur / getenv
	20.2.9 xmy_ListToAttributeFur / (atr, atr_tag)
	20.2.10 xmy_ListToPositionFur / (col, fldbeg, fldb...
	20.2.11 xmyMoveCursorPattern / move_cursor_pattern...
	20.2.12 xmyReconnect / reconnect
	20.2.13 xmyRecordCompareFur / test
	20.2.14 xmySetOutputLevelFur / print-level

	20.3 FIN and FUR Scripts
	20.3.1 xmyEOF / eof
	20.3.2 xmyAddMonth / addmonth
	20.3.3 xmyAToN / aton
	20.3.4 xmyBreakPoint / breakpoint
	20.3.5 xmyCallPrompt / prompt
	20.3.6 xmyCallShell / shell
	20.3.7 xmyExpand / $
	20.3.8 xmyFindLibPath (load)
	20.3.9 xmyKeylGetKey / dbget-key
	20.3.10 xmyMultiPrompt / multiprompt
	20.3.11 xmyMultiPromptField
	20.3.12 xmy_Open / open
	20.3.13 xmyRand / rand
	20.3.14 xmyReadbreak / read
	20.3.15 xmySetZero
	20.3.16 xmySubString / substring
	20.3.17 xmyTCLTransRE / (rematch, adiff, addmask)
	20.3.18 xmyTrim / trim
	20.3.19 xmyTypeOf / typeof

	20.4 Converted ADDAM Scripts
	20.4.1 checktags / checktags
	20.4.2 create_dot_out_file
	20.4.3 export / export
	20.4.4 extratags / extratags
	20.4.5 fcifcomp / fcifcomp
	20.4.6 fciffield / fciffield
	20.4.7 fcifmatch / fcifmatch
	20.4.8 get_parm
	20.4.9 postincr
	20.4.10 printf / printf
	20.4.11 prt3270_connect
	20.4.12 readfile / readfile
	20.4.13 reorder / reorder
	20.4.14 setvl / setvl
	20.4.15 soprespc / soprespc
	20.4.16 sprintf / sprintf
	20.4.17 substr / substr
	20.4.18 top_connect
	20.4.19 vl / vl
	20.4.20 xmyImport / import

	20.5 Converted Tsf Scripts
	20.5.1 add_to_symtab_if_not_already_there
	20.5.2 send_app_to_app_message
	20.5.3 send_script
	20.5.4 send_script_and_check_threshold
	20.5.5 set_up_parent_script
	20.5.6 wait_for_child_scripts
	20.5.7 xmyAddToSymTbl
	20.5.8 xmyRunTestEvents

	Appendix A: Basic Tcl Commands
	A.1 append
	A.2 array
	A.3 break
	A.4 case
	A.5 catch
	A.6 cd
	A.7 close
	A.8 concat
	A.9 continue
	A.10 eof
	A.11 error
	A.12 eval
	A.13 exec
	A.14 exit
	A.15 expr
	A.16 file
	A.17 flush
	A.18 for
	A.19 foreach
	A.20 format
	A.21 gets
	A.22 glob
	A.23 global
	A.24 history
	A.25 if
	A.26 incr
	A.27 info
	A.28 join
	A.29 lappend
	A.30 library
	A.31 lindex
	A.32 linsert
	A.33 list
	A.34 llength
	A.35 lrange
	A.36 lreplace
	A.37 lsearch
	A.38 lsort
	A.39 open
	A.40 pid
	A.41 proc
	A.42 puts
	A.43 pwd
	A.44 read
	A.45 regexp
	A.46 regsub
	A.47 rename
	A.48 return
	A.49 scan
	A.50 seek
	A.51 set
	A.52 source
	A.53 split
	A.54 string
	A.55 switch
	A.56 tclvars
	A.57 tell
	A.58 time
	A.59 trace
	A.60 unknown
	A.61 unset
	A.62 uplevel
	A.63 upvar
	A.64 while

	Glossary
	Index

