
BELL SYSTEM PRACTICES

AT&TCo SPCS

*
I

,

,#-

St’

/$-%

SECTION 254-340-001

Issue 1,’ March 1979

EXTENDED OPERATING SYSTEM (EOS)

OVERVIEW

SOFTWARE SUBSYSTEM DESCRIPTION

3A PROCESSOR EXTENDED OPERATING SYSTEM

CONTENTS PAGE

1. GENERAL

A. Operating System General Concepts .

B. Extended Operating System Structure

.

C. EOS Kernel

D. EOS Tasks

E. Functional Structure

2. PROCESSOR/PROCESS MANAGEMENT .

A. Process/Task Creation

B. Processor Management

C. Event Management

3. MEMORY MANAGEMENT

A,_ Memory Protection

B. Memory Organization

C. Paging

4. DEVICE MANAGEMENT

A.

B.

c.

D.

Channel Management

Device Management

Terminal Administration

EOS Commands

1

2

2

3

3

3

4

4

4

5

6

6

6

7

7

7

7

8

8

CONTENTS PAGE

E. Data Administration

5. INFORMATION MANAGEMENT

A. File System

B. Tape Cartridge Management . .

C. Patching and Overwrite

6. MAINTENANCE

A. General

B. EOS Audits

C. Utilities

7. EOS FUNCTIONAL INTERFACE

8. GLOSSARY

Figures

1. EOS

2. EOS

3. EOS

4. Eos

Functional Structure

Kernel Hierarchy

Call Structure

Process States

8

8

8

9

9

9

9

9

10

11

11

I

12

13

13

14

1. GENERAL

1.01 This section provides a system overview of
the Extended Operating System (EOS) which

NOTICE

Not for use or disclosure outside the

Bell System except under written agreement

Printed in U.S.A. Page 1

executes on the 3A Central Control (3A CC). The
EOS is a general purpose operating system designed
to support real-time, multitasking applications. It
supports applications by acting as a resource manager
of the processor, the peripheral devices, memory,
and data base. The EOS supports system reliability
through duplication and provides the basic maintenance
structure in the form of automatic reconfiguration,
initialization, audits, and diagnostics.

1.02

1.03

EOS:

(a)

(b)

(c)

(d)

(e)

1,04

9

(a)

(b)

(c)

(d)

(e)

(f)

($0

(h)

(i)

Whenever this section is reissued, the reason(s)
for reissue will be listed in this paragraph.

The following series of Bell System Practices
provide the functional descriptions of the

Memory Management, Section 254-340-014

Processor/Process Management, Sections
254-340-030 and 254-340-031

Data Management, Sections 254-340-052
through 254-340-064

Maintenance, Sections 254-340-080 through
254-340-090

Support, Sections 254-340-100 through
254-340-106.

The program listings (PRs) for the EOS are
numbered according to the following assignment

Kernel Functions–4C104, 4C113, 4C129,
4C153, and 4C141 through 4C158

Input/Output (1/0) –4C201 through 4C234

Message and Commands—4C301 through
4C313

Resident Application TTY Tables–4C401
and 4C402

System Utilities–4C501 through 4C506

System Maintenance –4C601 through 4C626

Diagnostics–4C701 through 4C709

Overwrite Function–4C801 and 4C802

Common Systems–lC910 through 1C935.

The input and output manuals for the EOS are
numbered IM-4CO01-01 and OM-4CO0’-I-O1. The
trouble locating manuals are TLM 4C702 through
4C709.

A. Operating System General Concepts

1.05 A general purpose operating system provides
a set of procedures that enables users to

efficiently share a processor installation. Users
compete for and cooperate in using physical resources
such as processor time, storage space, and peripheral
devices. The operating system frees users from
machine details such as physical characteristics
and protocol of peripheral devices, memory structure,
etc. An operating system provides services which
are a level above the physical machine and its basic
instruction set. These services include memory
management, process scheduling, interrupt handling,
file system management, and system maintenance.

1.06 The various operating system services can
be provided either by the system or through

the medium of system calls from a user. Thus an
operating system provides a set of services to
other software that can be used as if the services
are actually provided by the basic machine. This --m,

type of structure therefore augments a virtual
machine on the basic physical machine. The EOS
can thus be viewed as providing a series of virtual
machines, each of which provides some basic
management function.

B. Extended Operating System Structure

1.07 The extended operating system supports
applications by acting as a resource manager

of the processor, the peripheral devices, the
memory, and the information data base. It is
controlled by the application user through the
medium of system calls from the user to the EOS.
System calls are initiated through use of EOS ,.
system macros which are listed and described in
Section 254-340-106.

I
● +
.

1.08 The extended operating system is structured
(Fig. 1) in two divisions: the kernel level

and the system process/task level. The kernel ?
performs the real-time or function critical elements
of the operating system. Process/task level system
functions are asynchronous cooperating processes/tasks.
The user structures the application system as a ,Y,
series of processes/tasks; thus, the EOS and
applications processes/tasks are processed exactly

.
1

Page 2

.

,/-’=

.F”-.

.,

b’

the same by the kernel. The only difference is
that the EOS processes/tasks are functionally part
of the EOS. There is also a structural and functional
distinction between processes and tasks.

(a) A process is the execution of a series of
programs whose sequence of execution is

specified by a file of commands. Each program
contains all instructions and data necessary for
the performance of the command. On completion
of one command, the command interpreter reads
and initiates execution of the next command.
When the last command has been executed, the
process is terminated and all resources are freed.
Processes are defined in EOS by process
descriptors.

(b) A task is an execution module with all
necessary information to allow asynchronous

execution. Like a process, a task is defined in
EOS by a task descriptor which specifies the
resources to be allocated to the task. Unlike a
process, a task has no command file. When a
task terminates, all resources are freed and the
task ceases to exist until required again, at
which time it is rebuilt from the task descriptor.

Processes and tasks are defined by an application
through appropriate EOS system macros and are
listed in an operating system table which is in
program listing form and becomes a part of the
application generic. Details of process and task
management and control are provided in Section
254-340-030.

C. EOS Kernel

1.09 The kernel contains all real-time functions
of the operating system and all functions

required for the implementation of tasks. It also
contains some maintenance functions to control
restart of a task and some initialization functions.
The main functions of the kernel are:

● Dispatcher

● Interrupter Handler

● Timer

● Intertask Communicator.

The functions are arranged in a hierarchy (Fig. 2)
with the functions toward the center representing

1SS 1, SECTION 254-340-001

*

the highest level. The structure is such that calls
from one level to another can only be made inward.
For example, the interrupt handler can call the
dispatcher but the dispatcher cannot call the
interrupt handler. A call may skip levels, eg, the
intertask communicator can call the dispatcher
directly, bypassing both the timer and interrupt
handler levels.

1.10 The kernel functions are requested by EOS
or application processes/tasks via appropriate

EOS system calls which generate various service
requests for the kernel functions.

D. EOS Tasks

1.11 The EOS provides other services which are
implemented as asynchronous tasks.

● File system/device handlers

● Open/close functions

● Attach/detach functions

● Access methods

● Terminal administration

● Process creation/termination

● Command interpretation

● Maintenance.

These tasks call upon the kernel and communicate
through the kernel as do any tasks running under
the operating system.

E. Functional Structure

1.12 The basic function of EOS is to act as a
resource manager and utilize the available

resources in the most effective manner. It
accomplishes this by a systematic scheduling of
the various EOS and application processes and/or
tasks which comprise a particular application system.
In this context, the EOS processing can be described
by a functional organization:

● Processor/process management

● Memory management/organization

Page 3

SECTION 254-340-001

.

Device management

Information management

Maintenance

Interrupt management

System utilities.

1.13 Since most of these EOS functions and all
applications functions are accomplished by

processes/tasks, timely scheduling of the proper
processes/tasks is the basic operation of the EOS.
The scheduling process is accomplished by the
kernel which responds to requests for service from
either the EOS or application tasks (Fig. 3). The
requests can be in the form of interrupts, either
timed or demand, or system calls from the various
processes/tasks which request a service of some
type. The response to these calls basically requires
scheduling and changing state of a process/task
and is predicated on several basic features of the
EOS.

(a) Each process or task is assigned a priority
between O through 255, with 255 being

highest. The application user assigns the priorities
at system generation, assigning task priority in
order of importance.

(b) An ordered list of readied processes/tasks
(ready list) is dynamically maintained in

priority order.

(c) The highest priority process/task on the
ready list is always dispatched first.

(d) Once a process/task is executing in the
RUNNING state, it will run until:

(1)

(2)

(3)

It goes into the WAIT state

It completes and goes into the COMPLETE
state

It is interrupted by a higher priority task
and placed in the INTERRUPTED state.

A general description of the major functions is
given in subsequent parts of this section with more
detailed descriptions in the appropriate sections
referenced in paragraph 1.03.

Page 4

2. PROCESSOR/PROCESS MANAGEMENT .-,

2.o1 Process/task management consists of several
primary functions. These are the creation

and termination of tasks, allocating the processor
to tasks which are ready to execute, and coordinating ---1
tasks and intertask communication (event management).

A. Process/Task Creation

2.02 Tasks are initially created, as specified by
the application, at system generation time

and stored in memory in the form of process or
task descriptors. Tasks may be activated either
at system generation or at some later time by
another executing task or process.

2.03 When a command file initiation request is
received (process) or some interrupt or event

occurs (task), the process or task is constructed
from information contained in the descriptor. The
descriptor describes the task identification, priority,
storage, and device requirements, etc, and resources
are allocated based on this data. This activity, in
turn, requires the services of other tasks. The
descriptor information is then retrieved from dynamic
memory and linked into the ready list in order of
task priority.

2.04 When the task or process completes, a reverse
process takes place, the resources are freed,

and the description is cleared from dynamic memory.
The task in a sense ceases to exist until another
request is received.

B. Processor Management

2.05 Processor management is the procedure
which determines which process or task will

have control of the processor. The basic mechanism
is based on process state transition.

2.06 Only one process/task can be executing (in
the RUNNING state) at one time. All other

tasks in the system are in one of several states
(Fig. 4). These states are: INACTIVE, HOLD,
READY, RUNNING, SUSPEND, WAIT,
INTERRUPTED, or COMPLETE. One function
of the operating system is to handle the logical
transition of a task from state to state. The various
states are defined as follows

● INACTIVE—The state of a nonexecuting
process.

-Y.

1SS 1, SKTION 254-340-001

f-’

f’-

8

:

.

/-

● HOLD —Upon activation, a process enters
this state while attempting to reserve all
required resources before execution starts.

● READY—All conditions necessary for execution
have been satisfied but the processor is not
available. READY state processes are
queued by priority for assignment by the
dispatcher.

● RUNNING —The process state having processor
allocation to execute the running task.

● SUSPEND—The state when a process or
task has been suspended by its parent
process.

● WAIT—The process is suspended pending
the completion of some asynchronous event.

● INTERRUPTED—When an interrupt occurs,
the currently executing process is halted
temporarily and placed in this state while
the interrupt handler is executed. Upon
completion of the interrupt, the interrupted
process will either be returned to the
RUNNING state or, if the interrupt readied
a higher priority process, will be returned
to the ready queue.

● COMPLETE—Upon process completion, the
operating system must delete various table
entries and perform any necessary
post-processing, eg, statistics recording.
During this period, the process will be in
this state.

2.07 Various mechanisms which can initiate state
transition are as follows

● Hardware interrupts which may require some
immediate action on the part of the system
and precipitate the preemption of the currently
executing task and creation of a new task.

● The event mechanism is used to provide
synchronization of tasks. A task can wait
for the occurrence of an event and, when
the event does occur, the task will resume
execution.

● For tasks which must be run at specified
time intervals, a timer interrupt will cause
movement from state to state.

● A task may be moved to the WAIT state
for an 1/0 completion or be suspended by
another task.

● The normal activation and termination of a
task.

2.08 The major state transition involved in processor
management is the movement of a task from

the READY state to the RUNNING state. When
a task is moved to the READY state, it is placed
on the ready list in order of its priority. The
determination of the task to be moved to the
RUNNING state is based solely on which task on
the ready list has the highest priority. The
priorities are determined statistically and assigned
upon creation of the task; however, the priority
of a task may be altered dynamically by the system
or the task itself during operation.

C. Event Management

2.09 An event is a signal to a process or task
that a previously specified state change has

occurred. Each process and task has a unique set
of 32 event flags, 32 event mask bits, and the
ability to link a subroutine, called an event routine,
to each event. Events are used to:

(1) Signal the completion of another process or
task

(2) Signal the completion of an 1/0 operation

(3) Signal the completion of a specific time
interval

(4) Signal the receipt of an interprocess message

(5) Signal the occurrence of certain maintenance
actions.

2.10 Events permit EOS to coordinate the execution
of a number of processes or tasks and to

overlap input or output operations with the execution
of other statements in the process or task that
initiated the operations. Events are defined in
each task requiring them, based on certain criteria
12 of the 32 event flags are reserved for EOS
use, thus 20 event flags are available for each

Page 5

SECTION 254-340-001

process and task. The event flags reserved for
EOS use are:

resources of the processor main memory main
store (MAS). The function is composed of three
basic activities: protection, organization, and paging.

Flag(s) use

A. Memory Protection

o, 1, 2, 3 Maintenance

4 File System

5 Reply Received

6 Request Received

9 1/0 Error

7, 8, 10, 11 Unassigned.

2.11 The EOS is event-driven and, once a process
relinquishes control of the processor, it can

be rescheduled for execution only as a result of
the occurrence of an event. When an event occurs,
its associated process is readied for execution.
Next, the application process indicates whether it
requires notification by EOS that an event has
occurred or whether it will schedule its own detection
of events.

2.12 The EOS notifies the process that an event
has occurred via the use of event routines.

Event routines are subroutines which are linked
to event flags. When a readied process is dispatched
by EOS, the local dispatcher assumes control if
any event flags are set.

2.13 Each process or task also has a 32-bit MASK
register which permits the enabling or

disabling of event routines. A mask bit of zero
means the corresponding event routine is disabled,
and a mask bit of one means the corresponding
event routine is enabled.

2.14 After all event flags have been processed
by the local dispatcher, the EOS returns

control to the point in the program where the
preemption occurred in the process or task. The
local dispatcher controls the flow of control to the
event routines. The functional details and major
program interface for processor/process management
are in Section 254-340-030.

3. MEMORY MANAGEMENT

3.01 The EOS memory management is the function
which is concerned with controlling the

Page 6

3.02 Main memory can be write-protected in
blocks of 4096 (4K) words. Registers in

the memory controller are used to designate which
4K blocks of memory are to be write-protected.
The EOS specifies write-protection based on the
write-protect control table which is located in the
operating system tables. The control table provides
a map over main memory when complete. Each
word of the table represents two 32K-word memory
modules, with each bit representing a 4K block of
memory. A block of memory is write-protected
when its corresponding bit is set to “l”. For
example, bit O of word O represents the first 4K
block; when this bit is set, words O through 4095
in MAS are write-protected.

3.o3 Which blocks to write-protect are left to
the application with the following exceptions.

(a) Because the interrupt transfer vector originates
at address O, the first 4K block of memory

must always be protected.

(b) The second 4K block is never write-protected
since it contains the location of the paging

buffer and other variable data areas.

B. Memory Organization

3.o4 The basic EOS memory organization consists
of two primary types: static (or fixed)

and dynamic.

3.OS The fixed structure is located in the first
8K of memory and is divided between the

write-protected first 4K and writable second 4K.

(a) The first 4K contains the interrupt transfer
vector, maintenance transfer vector, system

transfer vector, and the read-only kernel programs.

(b) The second 4K is writable and contains the
hold-get stack, system variables, and the

paging buffer.

These areas are defined in the operating system
table, which represents the basic source of
information for system generation.

-%,

1SS 1, SECTION 254-340-001

r-’
3.06 The dynamic area can be located anywhere

within the first 64K block of memory. All
EOS data structures are allocated in this ‘area,
and the area may be dynamically allocated during
run time. Dynamic memory contains various types

,- of data items, eg, task descriptors, local file tables,
timers, etc, allocated by specific block types.

. C. Paging

\
3.o7 Certain programs and data tables which are

. infrequently used are stored on the cartridge

m. tape. These programs are normally those which
are not used at any specific interval but must be
available on demand. In the EOS, all diagnostic
programs are of this type and are stored off-line.

3.08 When these programs are required (normally
via a manual request), they must be read

from the tape into the processor in order to execute.
The process of reading in the programs is called
paging and is a combination of activation between
memory management and tape operation programs.

r
.

b

,

r

f-’

3.09 The programs are read into and then executed
in the paging buffer. This buffer is a

location in fixed store (paragraph 3.05) whose size
is dictated by application usage requirements.
Paging saves a significant amount of storage. The
functional details pertaining to memory management
are in Section 254-340-064.

4. DEVICE MANAGEMENT

4.01 The basic functions of device management
are

● Keeping track of the status (busy, idle,
out-of-service) of each device

● Determining which requesting process or
task may use an 1/0 device, when, and for
how long

● Assigning an 1/0 device and the associated
control units and channel

● Releasing the 1/0 device and making it
available to another requesting process/task.

These functions encompass both channel management
and device management.

A. Channel Management

4.02 The EOS maintains a data base which
provides initialization information for all

peripheral channels, the direct memory access
(DMA), and all assigned 1/0 devices. The data
base contains device identification and characteristics.
This includes assigned parallel channels and associated
subparallel channels, interrupt levels, and number
of duplex bus selectors on a parallel channel.

4.o3 The EOS is responsible for controlling the
DMA access during an initialization sequence.

Whenever the processor goes through an initialization
or switches the off-line and on-line 3A CC units,
EOS sets the DMA control bits so that the off-line
processor cannot access the on-line processor main
memory. The purpose is Jo isolate any erroneous
data and preserve the integrity of the backup
memory contents.

B. Device Management

4.o4 The EOS currently has the capability to
manage the following 1/0 devices

(a) Cartridge Tape Unit

(b) TELETYPE”

(c) Programmable Magnetic Tape System
(PROMATS)

(d) RSI-232 Remote Interface Unit

(e) Direct Memory Access

(f) System Status Panel

(g) DATASPEED” 40.

4.o5 Each 1/0 device supported by EOS has an
entry in a “device equipment table” which

is specified in the operating system table and is
maintained as part of the system configuration.
This consists of the device name, location, control,
channel identification, and interface data:

(a) Type of channel required

(b) Device address

(c) Device type

(d) Device software name ● Set or change a process or task state

(e) Device TTY message name

(f) Device 1/0 functions, ie, read only, write
only, or read and write

● ● Load from the PROMATS tape

● Enter the interactive debugging facility.

E. Data Administration

(g) Assigned interrupt level.

4.06 The mechanism of channel and device
management is via EOS system tasks. These

tasks are created as required by service calls from
application tasks or other EOS tasks when channel
or 1/0 activities are required. Service calls are
initiated by EOS system macros from the application
or EOS tasks.

C. Terminal Administration

Note: Applicable to generic issues prior to
Issue G2A.

4.o7 The terminal administrator task provides
the interface between a process or task that

wants to send or receive a TTY message and
teletypewriter controllers (TTYCS). The program
provides for eight software defined channels. Each
channel is assigned a specific activity. For example,
channel O is defined as the maintenance channel
and will receive all maintenance messages.

4.08 The terminal administrator (TERMAD) is an
EOS task which processes binary coded client

output messges into the code which the TTY utilizes,
directs it to the proper channel, and issues the
write command when the TTYC is available. The
TERMAD also receives input messages and passes
them to client programs. Details of device
management and terminal administration are in
Sections 254-340-054 and 254-340-062.

D. EOS Commands

4.w The EOS provides several direct TTY
commands to facilitate its use. Processes

implemented by EOS commands are low priority
and execute in the background without interfering
with real-time task execution.

4.10 Examples of some of the EOS commands
currently being supported are:

● Set or read the system clock

Note: The following is applicable to Issue
G2A and subsequent issues of the generic.

4.11 The EOS data administration programs provide
a centralized package for controlling and

distributing 1/0 messages between devices and
EOS or application programs. The programs pass
messages to clients and receives messages from
clients in an encoded format that relieves clients
of the tasks of manipulating ASCII strings. All
formatting is performed for the client by the central
routines, thus ensuring consistency and proper
system states for message processing.

4.12 Data administration performs basic 1/0
functions such as backup device selection,

duplication of data on more than one device, and
determining which device to use in a centralized
administration package. This permits the acceptance
of data from a client and proper redirection to
the appropriate device(s). The package also reads
data from a device and directs it to the appropriate
device. All reads and writes are via the EOS file
system. See Section 254-340-040 for details.

5. INFORMATION MANAGEMENT

A. File System

s.01 The EOS provides information management
in the form of a file system with cataloging

facilities and management of the cartridge data
base.

5.02 The file system provides the common user
interface with information residing on any

of the supported peripheral devices. The application
program defines the file to be accessed in the form
of a User File Block. It then requests operations
on the file through macro calls. It is the job of
the file system to locate files and translate user
requests into calls to the appropriate device handler,
etc, to execute these requests.

s.03 The primary information data base for EOS
is contained on the data cartridge. This

I

o

Page 8

1SS 1, SECTION 254-340-001

includes the generic, nonresident programs, office
,P data base, patch files, etc. Much of this information

must be positioned and formatted on the cartridge
is very precise and well-defined positions due to
bootstrapping considerations. The EOS provides

-. mechanisms for building this cartridge, accessing
data on the cartridge, and maintaining the
information. Modifying information on the cartridge
is supported by EOS facilities such as patching

4 and by file system general access to the cartridge.

A

B. Tape Cartridge Management

5.04 The tape cartridge supported by EOS is
employed as backup for the primary system

memory and data base. The EOS allows the
application to specify one of three EOS supported
access methods (sequential, basic, or random) to
control how data is physically stored on the cartridge.

f-

● Sequential Access treats the entire
cartridge as one continuous medium and
any read or write operation addresses the
tape record following the one previously
read or written.

● Basic Access treats the entire cartridge
as one continuous medium and allows records
to be accessed in a random manner based
on location information contained in the
record.

● Random Access treats the cartridge as
a collection of files accessed independently
and allows records to be randomly accessed
within a file based upon location information
contained in a pretreated cartridge resident
directory.

.r- C. Patching and Overwrite

5.o5 The EOS provides capability to patch and.
overwrite programs. Overwriting is an

operation which allows replacing existing data or

, instruction code in a particular memory location
with new data or instruction code. Patching replaces
a program instruction with a branch instruction to

,- a modified or new section of code in a special patch
area with a return to the original code sequence.

5.06 A method is also provided to change the
data and programs that reside only on the

P tape cartridge. This method employs a dedicated
tape file (patch file) which identifies the locations

which have been patched plus their new contents.
The EOS arranges that all changes in the patch
file are applied to backup and nonresident programs
and data when they are loaded into the processor
main store. ●

6. MAINTENANCE

A. General

6.01 The EOS maintenance services are available
to the user via a straightforward interface

based on system maintenance control macros. The
EOS maintenance services encompass three basic
functions:

(a) Initialization and recovery

(b) Duplex processor operation and resident
maintenance

(c) Common diagnostics.

These functions contain the essential maintenance
features provided by EOS which are used by an
application to meet its system requirements. A
general description of these basic functions is in
Section 254-340-080.

6.02 The EOS furnishes additional maintenance
support to an application in the form of

audits and system utilities.

B. EOS Audits

6.03 Audit programs verify and maintain the
integrity of the system and provide for an

orderly recovery from a system initialization. Audit
programs detect both when the system is malfunctioning
and ensure that the data base is maintained during
and after initialization. Audit programs perform
the following functions

● Verify the integrity of the data base

● Repair erroneous data, if possible

● Collect resources that are tied up in error

● Notify maintenance programs when system
must be reinitialized.

6.04 The two basic types of EOS audits are
background and initialization audits. Audits

Page 9

SECTION 254-340-001

that run in the background are run at low priority
to monitor the system and check data which is not
dynamically changing. Background audits cause
system initializations when uncorrectable inconsistencies
are discovered. Since background audits will be
interrupted frequently because of low priority, most
dynamic data cannot be audited without blocking
interrupts during a particular test. Thus, audits
of the EOS kernel and file system tables are only
run during system initialization.

6.05 The EOS main store audit programs complement
correct main store locations in both memories

so that if the processor cannot be operated in the
duplex mode, the functioning 3A CC has an improved
chance of maintaining system integrity. The main
store audit performs the following functions.

(1) Can be invoked manually via TTY or
automatically.

(2) Runs entirely at the lowest priority level (0)
and uses up real-time left over from application

functions.

(3) Is invoked whenever a successful update of
the off-line 3A CC has occurred. It is

normally stopped whenever the off-line 3A CC
is removed from service.

(4)

(5)

Scans both main stores for words having
single parity errors.

Double parity errors will cause the 3A CC
in which the error occurs to be taken off-

line; the erroneous word is then complement
corrected.

C. Utilities

6.o6 The utilities programs are called into service
via the maintenance TTY with message

formats as specified in the Input/Output Message
Manual. Both resident and nonresident general
purpose utility functions are implemented for the
EOS.

6.07 Examples of the resident utility functions
are as follows:

(a) Load Store–Used to modify the contents
of a temporary store word.

(b)

(c)

Monitor Store–Used to monitor four consecutive .,--%,,
16-bit store words for changes.

Load Register–Used to modify the contents
of one of the general purpose registers (RO

through R15).
.#---+-

(d) Monitor Register–Used to monitor the
contents of four consecutive general purpose

registers for changes. The output message from
*

the monitor utilities may be directed to either 4
the office maintenance TTY or the display buffer.
The monitoring occurs once per base loop.

.- 7
(e) Load Indirect (Store).

(f) Monitor Indirect (Register)–The monitor
and load indirect TTY message calling the

utilities will contain the register numbers of a
pair of registers which contain the 20-bit main
memory address of the word to be loaded or
monitored. Otherwise, the action is the same
as load store and monitor register.

(g) Dump Store

(1) The contents of a specified block of on-line ~.
store locations are printed on the maintenance

TTY.

(2) The contents of a specified block of off-line
store locations are printed on the maintenance

TTY.

(3) Off-line store locations are printed when
a system initialization occurs.

6.o8 Examples of the nonresident utilities
follows

are as
-,

.

(a) Off-line Register Dump–Prints the contents
of specified general purpose registers in the

off-line control unit on the maintenance TTY.

(b) Overwrite Utility–This utility provides the .-

means of making authorized changes to the
system software.

A description of the utility functions is in Section ‘n

254-340-082.

Page 10

1SS 1, SECTION 254-340-001

-.
7. EOS FUNCTIONAL INTERFACE

F

7.01 The EOS system calls provide the interface
between the application programs and the

operating system and are designed for a wide
variety of uses including

b

● Timer control

● Event control

● Current process control

● External process control

● Interprocess communication

● Storage control

.

Control Unit (CU)-Consists of a 3A CC,
main memory, cartridge tape device, and
supporting equipments.

EOS–Extended Operating System.

Input/Output (1/0)—A peripheral dat~
transfer device such as a TTY or tape drive,
or a data read or write which causes some
data media to change state.

Kernel—The basic software functions of
EOS as compared to those that operate as
processes.

● Input/output control
MAS—Main store.

● Maintenance control

● General purpose

● File system.

,-
7.02 Each system call can be classified as either

an active or declarative macro. Generally,
active macros will expand into executable code,
while declarative EOS macros generate data structures.
See Section 254-340-106 for the description of EOS
system macros.

8. GLOSSARY

Macro—A frequently used set of instructions
identified by a name and parameter values.
Used to simplify programming and to
generate more uniform code.

8.01 The following terms and definitions are used
in this document.

Application (Programs)–Programs that
run under control of EOS and are designed
to support a specific system application on
the 3A Processor.

ASCII—American Standard Code for
Information Interchange.

Bit–An abbreviation of the term “binary
digit”, a bit constitutes a single position in
a binary number and has value O or 1.

Buffer—A temporary storage area, generally
a memory word(s) used to temporarily hold
data and isolate circuits or program segments.

MemoryAynonymous with storage–consists
of devices arranged so that large units of
information may be held (written) and, at a
later time, retrieved (read).

Operating System–A collection of software
which provides management of system
resources.

Paging—An organized method of moving
large quantities of program code or data
from one storage medium to another under
program control.

Parity—A data validation check which
consists of comparing the odd or even status
of bits of a data word against a bit indicating
that status.

.

Priority—The assigned level of importance
by which various entities will be processed,
if more than one requests service at the
same time.

Process (EOS)—The execution of a series
of programs whose sequence of execution
is specified by a file of commands.

PROMA Z’S-An acronym for “Programmable
Magnetic Tape System”, a magnetic tape
recorder.

Page 11

SECTION 254-340-W1

Store–Same as memory.

Task (EOS)—An execution module which
contains all of the necessary information to
allow asynchronous execution.

TTYC–Teletypewriter controller.

3A CC–3A Central Control.

SYSTEM
PROCESS

LEVEL

@@@@@@@

\
—--------- -

Fig. 1—EOS Functional Structure

.

---- .

Page 12

1SS 1, SECTION 254-340-001

/-

,-

.

d

●

Fig. 2—EOS Kernel Hierarchy

mINTERRUPT
HANDLERS TIMERS oSUPERVISOR

CALL (SVC)
HANDLER

I

DISPATCHER

i ,V J

FILE PROCESS
OTHER

SYS APPLICATION -
SYS

SPECIAL
CREATOR PROC TASKS

+ PROGRAMS

INTERRUPTS SYSTEi CALLS

I I —

Fig. 3—EOS Call Structure

F-

Page 13

SKTION 254-340-001

Fig. 4—EOS Process States

.

-

.--1,

Page 14

14 Pages

—.

	General
	Processor/Process Management
	Memory Management
	Device Management
	Information Management
	Maintenance
	EOS Functional Interface
	Glossary
	Figure 1
	Figure 2
	Figure 3
	Figure 4

